
Paper submitted for IEEE ISIE 2017 Edinburgh, Page 1/6

An FPGA-based controller for collaborative robotics
B. P. Jeppesen, N. Roy

Intel FPGA
High Wycombe, UK

ben.jeppesen@intel.com, niladri.roy@intel.com

L. Moro, F. Baronti
Dipartimento di Ingegneria dell’Informazione

Università di Pisa
Pisa, Italy

l.moro2@studenti.unipi.it, federico.baronti@unipi.it

Abstract—The use of robots is becoming more common in
society. Industrial robots are being developed to work with
people, and lower-force collaborative robots are being developed
to help people in their everyday lives. These may need fast and
sophisticated motion control and behavioral algorithms, but are
expected to be more compact and lower cost. This paper proposes
a processor plus FPGA solution for the control systems for such
robots, where the FPGA performs all real-time tasks, freeing the
processor to run lower-frequency high level control and interface
to other devices such as camera systems. A demonstrator robot is
designed, combining multi-axis motion control with 3D robot
vision.

Keywords—Robotics; FPGA; motor; motion; control; vision;
collaborative

I. INTRODUCTION
Collaborative robots are an emerging market with different

needs to traditional industrial robots. For example, traditional
industrial robots used for factory assembly are physically
strong and rely on a working environment closed to humans for
safety. A networked modular system architecture with
centralized motion controller and individual motor drives is
often used to control these robots [1]. On the other hand,
collaborative robots may have force capability comparable to
humans and be required to work around humans without
injuring them [2]. These differences suggest different priorities
for the control system architecture.

A single processor with an FPGA may be suitable for the
main control system, reducing system cost while enabling
higher frequency control loops and better synchronized control.
This paper discusses the potential of this architecture for a six-
axis robot controller, and describes a practical low-cost system
to develop functionality using 3D vision for interaction (Fig.
1). The rest of the paper is organized as follows.

Section II surveys current technology in industrial robotics,
the needs of collaborative robots and the relevance of FPGAs.
Section III discusses the applications of FPGAs to robotics
identified in Section II, and argues that these do not meet the
likely requirements for collaborative robotics. An architecture
is proposed that combines a hard processor running Linux with
an FPGA to form a single controller for multi-axis robots,
which meets the needs identified in Section II.

Section IV describes a low-cost hardware and software
platform combining available development kits to enable
development of low-cost collaborative robot demonstrator.
This combines multi-axis motion control with 3D vision.

Section V presents results from the low-cost demonstrator, as
well as predicted results from a six-axis controller that would
be suitable for an industrial collaborative robot. Section VI
draws conclusions from the work so far.

Fig. 1. Robot arm with controller boards and 3D depth info on screen

II. INDUSTRIAL ROBOTICS

A. Applications of industrial robotics
An industrial robot, as defined by ISO 8373, is ‘an

automatically controlled, reprogrammable, multipurpose
manipulator programmable in three or more axes, which may
be either fixed in place or mobile, for use in industrial
automation applications’. Robots can perform a variety of tasks
that are too hazardous for humans to perform, too monotonous,
or require speed and precision that is difficult or impossible for
humans to achieve. Examples include product assembly in
factories, remote working in nuclear environments, bomb
disposal and medical surgery.

As robot technology has matured, manufacturers and end-
users have begun to explore beyond the initial strategic
advantages. Current trends in industrial robots include [3]:

• Demand for more cost-efficient robots, with high
reliability and productivity

• Robots for high-performance applications such as
water-jet and laser cutting, material-handling, arc-

Paper submitted for IEEE ISIE 2017 Edinburgh, Page 2/6

welding, gluing, dispensing and deburring, where
control strategies are different from those in assembly

• Collaborative robotics coordination, where two or more
robots work on one object perhaps held and articulated
by a third robot; e.g. in arc-welding

• Machine-vision guided robot control, where the desired
robot trajectory is commanded by a machine-vision
system, e.g. in fetching and sorting

Robotic capabilities are now being combined with
additional safety features to create ‘collaborative robots’ that
can work alongside humans to help them in their production
tasks [2]. They make automation accessible to small and
medium manufacturers via their low cost.

B. Safety
Manufacturers of collaborative robots are introducing new

safety features and certifying their products to safety standards,
for example:

Bionics Robotics GmbH’s “BioRob Arm”. BioRob arm is
accredited for safe human-robot collaboration by the German
Trade Association in accordance with the European Union
machinery directive 2006 / 42 / EC [4].

Yaskawa has certified its collaborative robot, the Motoman
HC10 (which can handle loads up to 10kg and has a reach of
1.2m), to ISO/TS 15066:2016, which specifies safety
requirements for collaborative industrial robot systems and the
work environment. The robot uses a force/torque sensor in each
axis to help avoid dangerous collisions with operators [5].

MRK-Systeme GmbH offer a ‘conversion kit’ to convert a
Kuka KR 5 ARC HW robot into a force limited robot. They
call this Kleinroboter (small robot) KR 5 SI (for Safe
Interaction). This can transform an ordinary industrial robot
into a collaborative robot approved by DIN EN ISO 10218 (for
general robotic devices) and eventually ISO TS 15066
regulations [4].

In additional to physical safety features, a control system
must be sufficiently safe in the presence of faults. The general
industrial functional safety standard, IEC 61508, exists to help
the design of programmable electronic systems used in
industrial machines which could cause a hazard to human life.

C. FPGA SoCs for industrial control
System-on-Chip (SoC) FPGAs, which combine a processor

and FPGA fabric on a single chip, offer these advantages for
control system designs [6]:

• High-performance control - SoC FPGAs can off-load
the processor by implementing digital signal processing
(DSP) algorithms in the FPGA. Implementing in hard
logic gives repeatable execution times and minimizes
latency, maximizing the controllable bandwidth of real-
time control systems [8]. Computationally-intensive
control algorithms like sensorless motor control [12],
direct torque control [13] and model-predictive control
[9][10][11] can be enabled by FPGAs. The hardware
description language code can be generated
automatically from languages including C [9] and

Simulink [8]. Some FPGAs now include hardened
floating point DSP blocks [7], reducing algorithm
development time and hardware execution time
compared to converting floating point calculations to
fixed-point.

• Connectivity—SoC FPGAs can implement multiple
Industrial Ethernet protocols, including emerging
standards, such as IEEE 802.1 TSN, simultaneously on
a single device by instantiating ready-made intellectual
property (IP) cores. The relevant protocol stacks
execute in the built-in SoC FPGA Hard Processor
System (HPS). The high-performance FPGA fabric can
easily meet the stringent IEEE 802.1 TSN timing
requirements [6]. The HPS can also run an OPC server,
enabling enterprise communications over OPC-UA.

• Secure communications—Open SSL encryption,
implemented in the FPGA fabric, provides acceleration
over processor-based implementations. This encryption
enables secure enterprise communication channels [6].

• Future proofing—Designers can reprogram the FPGA
fabric, avoiding major redesign of entire systems.

• Functional Safety: Manufacturers such as Intel FPGA
provide programming tools and IP certified to
functional safety standards including IEC 61508 and
ISO 26262. The flexibility of the FPGA allows the
designer to build in additional redundant logic or safe
communication protocols.

D. FPGAs SoCs for accelerating DSP in robotics
In [14], kinematic calculations are implemented in an

FPGA for faster execution. The ‘Motion controller IP’ also
includes 5-axis speed and position control loops, parallel
quadrature encoder interfaces and PWM generation blocks.
The motors are 24 V geared DC motors. A similar FPGA-
based motion controller for DC motors is used in [15], with the
addition of image processing IP from stereo CMOS image
sensors. A further example is [16], where nonlinear adaptive
and ‘computed torque’ algorithms are partitioned between a
DSP and FPGA. [16] demonstrates the FPGA’s capability for
high frequency control loop updates, achieving 120 kHz
current control and 20 kHz velocity control.

III. CONCEPT FOR AN FPGA-BASED COLLABORATIVE ROBOT
CONTROL ARCHITECTURE

Section II showed that FPGAs have been applied to the
acceleration of kinematic calculations, motor control and
parallel interfacing to multiple motors, as well image
processing. However, these applications to robotics used
relatively large FPGAs [14]-[16]. They targeted geared DC or
brushless DC motors with Hall sensors. Faster and more
accurate position control can be achieved using sinusoidal
PMSM motors with position encoder feedback; these require
more complex control such as field-oriented control.

The FPGA provides advantages for real-time motion
control and real-time algorithm acceleration, but can be a more
expensive solution than a hard processor for more common,
slower or non-real-time processing. For example, it is useful to

Paper submitted for IEEE ISIE 2017 Edinburgh, Page 3/6

have a processor running Linux to use open-source libraries
such as OpenCV for image processing or the Robotic
Operating System for robot motion planning [26].

Nios® II

Safety Device

PHY

Power
Stage

12-48V

Analog / digital
measurements

Position
signalsCamera module

DSP IP

Safety IP
Hard processor

system

Processor

FPGA

Fig. 2. Proposed controller architecture

The proposed control system (Fig. 2) comprises a hard
processor system and an FPGA, which includes a Nios II soft
processor that performs these functions:

• It runs real-time software tasks, freeing the hard
processor to run Linux and standard software libraries.

• It is a central data master in the system, communicating
with the hard processor and other IPs in the FPGA.

• It provides a place to do centralized tasks like start-up
or shut-down sequences and kinematic calculations.

• It can reuse motor control DSP IP multiple times to do
control calculations for each motor axis in turn.

The Nios II is a small IP which enables more efficient use
of the hard processor and the FPGA. Thus, a lower cost FPGA
and hard processor system can be selected compared to a single
hard processor and FPGA with parallel motor control IP.

It is assumed that the robot is equipped with position and
current sensors, which provide real time feedback for control.
There is also a camera module to provide 3D image sensing for
interaction with environment. A safety device can include
separate sensors and shut down the system independently of
the main processor and Nios II (Fig. 2).

The FPGA system includes floating point Custom
Instruction IP, which is used like a co-processor to the Nios II.
The C compiler automatically uses the Custom Instruction IP
to accelerate floating point instructions in the C code. It also
includes IP designed with Intel FPGA’s DSP Builder Simulink
library to accelerate the field-oriented control used for each
motor control axis.

IV. ROBOTICS DEMONSTRATION SYSTEM
To demonstrate a practical FPGA-based robot controller, a

kit has been created from off-the-shelf robot, servo driver and
FPGA control hardware. The emphasis is on combined motion
control and interaction based on camera input. To create a
compact and low-cost demonstration, an educational robot arm
has been chosen which uses self-contained servo actuators.

The robot behavior is a simple example of a collaborative
robot; the robot arm follows the movement of a human hand.

The hand is assumed to be the closest object to the RealSense
camera (Fig. 3).

Fig. 3. Robot arm with control boards, RealSense™ camera (in front of the
wood base) and screen showing 3D depth image in text from

A. Hardware
Robot and control hardware has been chosen as follows:

1) Robot arm and servos
The Lynxmotion AL5D from RobotShop [18] was selected

due to its widespread use in educational robotics projects. It has
5 degrees of freedom: base rotation, shoulder joint, elbow,
wrist and gripper (Fig. 3). Position commands are given to the
servos in the form of 0-5 V PWM signals with 50 Hz frequency
and 2.5%-12.5% duty cycle. Internally, the servos use geared
DC motors with integrated potentiometer-based analog
feedback control to achieve the demanded position.

An alternative educational robot which uses servos that also
provide feedback signals and current-limiting capabilities is the
PhantomX Reactor Robot Arm Kit from Interbotix [19]; it uses
Dynamixel servos [20].

2) Servo driver board
A board is needed to provide PWM data and 5 V power to

the robot servos. Two boards were considered:

• Adafruit 16-Channel PWM / Servo HAT [21], which is
designed to fit above a Raspberry Pi controller with the
its 40-pin connector. The interface is I2C.

• The Terasic Servo Motor Kit [22] drives up to 24
servos, the inputs being PWM signals supplied in
parallel over the 40-pin connector. The board also has
safety features provided by a built-in CPLD and power
monitor chip.

Either board can provide appropriate PWM servo
commands. However, the I2C protocol limits the resolution of
the position commands to around 400 values, whereas the
Terasic board receives parallel channels of PWM generated in
FPGA IP, enabling much higher resolution (100,000 values).
The parallel PWM architecture is also scalable to industrial
systems. The Terasic board was therefore chosen.

Paper submitted for IEEE ISIE 2017 Edinburgh, Page 4/6

Fig. 4. MAX 10 Development Kit (bottom left) with 40-pin adaptor board,
Aaeon UP board (bottom right) and Terasic Servo Motor Kit (above)

3) FPGA control board
A MAX® 10 Development Kit [24] was used, due to its

flexibility, low cost and use in existing motor control reference
designs [8]. Connections to the servo boards’ 40-pin
connectors can be made from its ‘pmod’ connectors or by using
an expansion board to convert its HSMC connector to a 40-pin
connector [23] (Fig. 4).

4) Vision processing and supervisory control board
The Intel® RealSense™ Robotic Development Kit [25]

provides vision-based feedback to affect the motion of the
robot arm. The kit comprises a RealSense camera with optical
and depth-sensing infrared measurements [27], communicating
over USB 3 with an Aaeon UP board, which contains an Intel
Atom processor and standard 40-pin connector (Fig. 4).
Tutorials for the board, using Ubuntu Linux and the Robotic
Operating System (ROS) C Library are freely-available [26].

B. Control architecture
1) Control loops and update rates
The control loops are limited by the camera frame rate,

30Hz (frame/s), and the servo control PWM frequency, 50 Hz
(Fig. 5). The camera frame rate is typical of industrial systems.
The PWM frequency is much slower – typical industrial
systems use around 10 kHz PWM. However, the architecture
chosen would support much higher PWM frequencies.

The Intel processor software loop waits for each new frame,
finds the closest point and sends it over SPI to the FPGA SPI
IP. The IP accepts the data and triggers an Interrupt Service
Routine (ISR) in the Nios software to buffer the data. The Nios
software main loop timing is controlled by an interval timer IP
which creates interrupts at 50Hz. The interrupts trigger a
separate ISR, which writes position and speed commands to the
PWM generating IP, and provides a count of the interrupts to
the main loop. The main loop uses the count to schedule two
slower (5 Hz) tasks such that they do not interrupt each other.
The first calculates four new target joint positions based on the
average of the last eight hand positions, while the second
calculates a speed trajectory for the next ten 50 Hz speed

commands. While 5 Hz is relatively slow, the software
structure serves as a model for faster systems where the
trajectory would be calculated at a slower rate than the PWM
update frequency, and ensures smooth motion of the robot arm.

AAEON UP Board, Atom processor, Linux

Realsense
camera

Interrupt and position
{X,Y}, 16-bit, 30 Hz

New
frame

3D data
to

Terminal

Cl. point
position

to SPI
Loop 30 Hz, waits for each new frame640x480

30 frame/s

FIFO
Buffer,

Last 8 {X,Y}

@ 5Hz: Calc joint
pos cmds: filter,

inverse kinematics

@ 5Hz: Calc 50
Hz speed cmds

(trajectory)

50Hz PWM IP
Generate PWM for servos, changing at
speed cmd until position cmd achieved

Find
closest
point

MAX 10 Dev Kit

ISR, SPI (30Hz)
Nios II processor

FPGA
IP

50Hz
Interval
Timer

Command position (5Hz update)
Command speed (50Hz update)

Update 50Hz counter

ISR, Interval Timer (50Hz)
Interval
counter

interrupt

Fig. 5. Control architecture and loop updates in demonstrator system

2) Trajectory planning
Trapezoidal trajectories are calculated: 200 ms periods are

split into 100 ms of constant acceleration followed by 100 ms
of constant speed. The motion finishes at the next target
position. Speed updates are at 50 Hz but position updates are at
5 Hz; there are 5 values of changing speed and 5 values of
constant speed between each position update and the next (Fig.
6).

parabolic

parabolic

linear

Inverse
kinematic
x3

Trajectory
planning
x3

x1

x2

x3

Update new
position x2

Update
speeds x2

Update new
position x3

Update
speeds x3

position
speed

acceleration

PWM IP takes target position
And speed to get there

Fig. 6. Trapezoidal trajectory planning: x-axis is time in 50Hz timesteps; y-
axis is position, speed and acceleration (notional scale)

V. RESULTS AND DISCUSSION
This section presents actual results from the demonstrator

system, together with simulated results from a 6-axis system
representative of a state-of-the-art industrial system.

Paper submitted for IEEE ISIE 2017 Edinburgh, Page 5/6

A. Execution times
1) Demonstration System
The FPGA IP runs continuously and deterministically at

high clock rates (Fig. 5). Apart from the camera and PWM
update frequencies, software execution times are the limiting
factor in performance.

The closest point execution algorithm was measured using
software timers, and took 0.025 ms. This is very small
compared to the 30 Hz frame update rate (equivalent to 33 ms).

Execution times in the Nios software are shown in TABLE
I. The kinematics and trajectory planning calculations both take
much more time than the ISRs. Even so, their total time is less
than 1 ms, so could be used to update the robot position and
speed commands at up to 1 kHz, much faster than the 5-50 Hz
used in the demonstrator, and suitable for an industrial system.

TABLE I. MAX® 10 FPGA WITH NIOS II 100MHZ PROCESSOR,
SOFTWARE EXECUTION TIMES FOR 6 FIELD-ORIENTED MOTOR CONTROL AXES

SW Fix SW Float HW Fix HW Float
 ΣΔ ADC, encoder settling time 10
ISR service time 1
Read ADCs and encoder 2 2 2 2
Rescale position, calc speed 1 1 1 1
Position and speed control 2 2 2 2
Field-oriented control (FOC) 4 6 1.5 3
SVM PWM 1.5 1.5 1.5 1.5
Write diagnostic data 2

Total execution times [µs]
Sum, overheads for all axes 13
Sum, per axis times 10.5 12.5 8 9.5
Number of axes 6 6 6 6
Sum, per axis times * N axes 63 75 48 57
Totals including overheads 76 88 61 70

Time, all
axes [µs]

Time / motor axis, depending on FOC [µs]Software functions in order of
execution

2) Industrial 6-axis controller
In this proposed design, the Nios II processor reads in all

data, does the motor control calculations on each axis in turn,
and then writes general diagnostic data such as logged signals.
The field-oriented control calculations can be implemented in
different ways, such as floating point or fixed point software in
the Nios processor, or floating point or fixed point calculations
as FPGA IP. Each choice represents a different compromise in
terms of execution speed, FPGA resource usage and execution
speed. The total execution time for all six motor control axes
can be estimated based on results for 1 and 2 axes in the
existing Drive on Chip reference design [17]. To update control
at 16 kHz, the total time budget is 62.5 µs.

TABLE I. shows how the total time for six motor control
axes varies depending on the implementation method of the
field-oriented control. The hardware (FPGA IP) fixed-point
implementation must be chosen for the time to be under
62.5 µs. This IP is therefore included in the design in TABLE
III.

B. FPGA Resource Usage
The MAX 10 FPGA has limited logic resources. The main

resource is logic elements, and there are also limited numbers
of ‘hard’ DSP blocks and M9K memory blocks, which are used
to accelerate calculations compared to using ‘soft’ logic alone.

TABLE II. FPGA RESOURCE ESTIMATION THE DEMONSTRATOR SYSTEM

1) Demonstration System
TABLE II. shows resources used by the IP in the

demonstrator design. The total logic is less than 50% of the
MAX 10’s 50,000 logic elements.

TABLE III. FPGA RESOURCE ESTIMATION FOR 6-AXIS DRIVE ON MAX 10

Entity LE M9K DSP
Nios II 32bit soft CPU 3400 28 6
Floating Point CI IP 2300 4 10
Tightly Coupled Memory 1 16 0
DDR3 RAM interface 5200 11 0
Memory-mapped interconnect 4500 0 0
JTAG debug 1000 3 0
FOC accelerator, fixed point 2400 2 24
Drive 1 subsystem 3600 0 0
Drive 2 subsystem 3600 0 0
Drive 3 subsystem 3600 0 0
Drive 4 subsystem 3600 0 0
Drive 5 subsystem 3600 0 0
Drive 6 subsystem 3600 0 0
SPI interface to ext processor 500 0 0
Safety IP 2000 6 0
Total 42901 70 40
Available 49760 182 288
Utilization 86% 38% 14%

2) Industrial 6-axis controller
Using the existing multi-axis motor control reference

design as a reference [17], the FPGA resource usage on the
MAX 10 FPGA for a 6-axis robot with field-oriented control of

Entity Logic
Elements

M9K
memory
blocks

9x9
DSP

blocks
Nios II processor 3119 28 6

Floating Point CI IP 2247 3 9
DDR3 RAM

interface
4809 9 0

Interconnect 4578 8 0
JTAG debug 887 1 0

Interval Timer 179 0 0
SPI interface 133 0 0
I2C interface 304 0 0
PWM IP 0 619 0 0
PWM IP 1 611 0 0
PWM IP 2 614 0 0
PWM IP 3 608 0 0
PWM IP 4 616 0 0

Other components 1173 0 0
Total 20497 51 15

Paper submitted for IEEE ISIE 2017 Edinburgh, Page 6/6

PMSM motors was estimated (TABLE III.). The design fits
comfortably within the 50,000 logic element device.

VI. CONCLUSIONS AND FURTHER WORK
This paper:

• Proposes a hard processor plus FPGA as a low-cost
controller for collaborative robotics.

• Proposes the use of the FPGA for real-time calculations,
so the hard processor can run Linux and use C libraries.

• Uses the example of a 6-axis motor controller doing
field-oriented control at 16 kHz on a MAX 10 FPGA to
demonstrate the practicality of this approach.

• Describes practical low-cost hardware that has been
used to create an FPGA-based robot demonstrator with
collaborative, vision-based behavior.

This work provides a platform for further development with
more sophisticated robotic control or servo motor control.

ACKNOWLEDGMENTS
Intel FPGA would like to acknowledge the support of Intel

colleagues Roi Ziss and Soliman Nasser with the Intel®
RealSense™ Robotics Development Kit and Fabrizio Del
Maffeo at Aaeon, creater of the UP board used in the kit.

REFERENCES
[1] Article from Drives and Controls on modular robot system by Nexcom,

2016:
http://drivesncontrols.com/news/fullstory.php/aid/5134/Modular_robot_
control_system_allows_users_to_mix-and-match.html

[2] ABB YuMi collaborative robot datasheet, 2015:
https://library.e.abb.com/public/55362813a776464383279a729b715c89/
ROB0317EN_YuMi.pdf

[3] N. Roy, “Industrial Robotics – Trends, Challenges and Opportunities”,
EDN China, January 2016, published online in Chinese:
http://archive.ednchina.com/www.ednchina.com/ART_8800523978_20_
35479_TA_1bc42928.HTM (English version available from Intel FPGA
or the authors)

[4] Robotiq, “Collaborative Robot Ebook”, Sixth Edition,
http://robotiq.com/wp-content/uploads/2015/03/Review-of-
collaborative-robot-kuka-baxter-universal-robot-abb-F.pdf

[5] Drives and Controls article on Yaskawa Motoman collaborative robot:
http://drivesncontrols.com/news/fullstory.php/aid/5212/Yaskawa_unveil
s_its_first_collaborative_robot_outside_Japan.html

[6] Intel FPGA, White Paper 01259: “PLC Architecture in the Industry 4.0”
2015. https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/wp/wp-01259-plc-architecture-in-the-
industry-4.0-world.pdf

[7] Arria 10 FPGA Handbook: https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/hb/arria-10/a10_handbook.pdf

[8] B P Jeppesen, A Crosland, "An FPGA-based platform for integrated
power and motion control," IECON 2016, IEEE, Florence, Italy, 2016.

[9] K.V. Ling, S.P. Yue and J.M. Maciejowski, “A FPGA Implementation
of Model Predictive Control”, Proceedings of the 2006 American
Control Conference, Minneapolis, Minnesota, USA, June 14-16, 2006

[10] Adam Mills, Adrian Wills, Steven Weller, and Brett Ninness,
"Implementation of Linear Model Predictive Control using a Field
Programmable Gate Array," IET Control Theory & Applications, 2012,
Volume: 6, Issue: 8, Pages: 1042 - 1054, DOI: 10.1049/iet-
cta.2010.0739 University of Newcastle, Callaghan, NSW 2308,
Australia. sonic.newcastle.edu.au/reports/Document915.pdf

[11] Alfonso Damiano, Gianluca Gatto, Ignazio Marongiu, Aldo Perfetto,
and Alessandro Serpi, "Operating Constraints Management of a Surface-
Mounted PM Synchronous Machine by Means of an FPGA-Based
Model Predictive Control Algorithm," IEEE Transactions on Industrial
Informatics, February 2014.

[12] L. Idkhajine, E. Monmasson, A. Maalouf, “Fully FPGA-Based
Sensorless Control for Synchronous AC Drive Using an Extended
Kalman Filter”. IEEE Transations on Industrial Electronics, Vol. 59, No.
10, October 2012.

[13] T. Sutikno, N. R. N. Idris, A. Jidin, M. N. Cirstea, “An Improved FPGA
Implementation of Direct Torque Control for Induction Machines”,
IEEE Transactions on Industrial Informatics, 2013, Vol. 9, Issue 3, pp.
1280-1290, DOI: 10.1109/TII.2012.2222420

[14] Ying-Shieh Kung, Kuan-Hsuan Tseng, Chia-Sheng Chen, Hau-Zen Sze
and An-Peng Wang, "FPGA-Implementation of Inverse Kinematics and
Servo Controller for Robot Manipulator," IEEE, International
Conference on Robotics and Biomimetics, 2006.

[15] Yi-Ting Chen, Ching-Long Shih and Guan-Ting Chen, "An FPGA
Implementation of a Robot Control System with an Integrated 3D Vision
System," Smart Science, 2016. ISSN: (Print) 2308-0477 (Online)
Journal homepage: http://www.tandfonline.com/loi/tsma20. Link to
article, http://dx.doi.org/10.1080/23080477.2015.11665643

[16] Xiaoyin Shao; Dong Sun, Development of a New Robot Controller
Architecture with FPGA-Based IC Design for Improved High-Speed
Performance, IEEE Transactions on Industrial Informatics, Year: 2007,
Volume: 3, Issue: 4. Pages: 312 - 321, DOI: 10.1109/TII.2007.912360.
IEEE Journals & Magazines

[17] Altera (now Intel FPGA), Application Note AN-669: “Drive-On-Chip
Reference Design”, 2015,
www.altera.com/en_US/pdfs/literature/an/an669.pdf

[18] Lynxmotion AL5D Robot Arm from RobotShop:
http://www.lynxmotion.com/c-130-al5d.aspx

[19] Interbotix PhantomX robot arm using Dynamixel servos:
https://interbotix.com/p/phantomx-ax-12-reactor-robot-arm.aspx

[20] Dynamixel servos from Robotis: http://www.robotis.us/dynamixel/
[21] Adafruit 16-Channel PWM / Servo HAT:

https://www.adafruit.com/product/2327
[22] Terasic Servo Motor Kit: http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&No=1028
[23] Terasic HSMC to 40pin adaptor board: http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=67&No=322
[24] MAX 10 Development Kit:

https://www.altera.com/products/boards_and_kits/dev-kits/altera/max-
10-fpga-development-kit.html

[25] Intel® RealSense™ Robotic Development Kit:
https://software.intel.com/en-us/realsense/robotic-development-kit

[26] Tutorials for Intel® RealSense™ Robotic Development Kit:
https://01.org/developerjourney/recipe/intel-realsense-robotic-
development-kit

[27] RealSense camera specifications: https://software.intel.com/en-
us/articles/intel-realsense-data-ranges

