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Abstract—This paper presents a three dimensional guidance
strategy for fixed-wing UAVs using quaternions. The algorithm
is based on constructing two quaternions, one which makes the
UAV fly towards the path and one that makes the UAV follow the
path. These two quaternions are then blended together such that
the path-following objective is reached. The guidance algorithm
is applied to a simple kinematic model for a fixed-wing UAV with
a simple kinematic controller. Simulations are provided to show
the potential of this approach.

I. INTRODUCTION

In the last decades there have been significant impovements
in sensor technology and computing power. This has allowed
for the development of small, cheap and powerful embedded
systems with a wide variety of sensors within robotics. One
particular area of robotics which have gathered a significant
research interest is Unmanned Aerial Vehicles (UAVs). These
flying machines can range from larger fixed-wing aircrafts
to smaller multirotors. The potential applications for these
autonomous vehicles are vast, but the increased autonomy
means that robust and reliable algorithms need to be developed
to ensure safe operation. These type of vehicles are often
highly nonlinear in their dynamics which motivates the use of
nonlinear control for the regulation of their dynamic behaviour.
Control algorithms are usually provided with a desired state
and the control system’s task is to ensure that the actual state
of the system converges to the desired state. The algorithms
that generate these desired states are often termed guidance
algorithms. Based on the actual state of the system and a
certain mission the guidance algorithm should generate a
desired state for the control system. The mission to be solved
can vary, but can often be restated as a geometric mission
of staying on some predefined path. This type of guidance is
called path-following and is the topic of this paper.

A lot of work has been devoted to path-following within
robotics and several algorithms have been developed. One of
the most well-studied guidance methods is the Line-of-Sight
(LOS) guidance approach. It has succesfully been applied to
surface vehicles [1], underwater vehicles [2] and UAVs [3]. In
[4] path-following using LOS guidance in 2D was thoroughly
analysed and solved in the ideal case of no disturbances. It
was also shown how 3D path-following can be divided into
a horizontal plane and a vertical plane, effectively reducing
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the 3D path following problem into two 2D path following
problems. This approach for solving the 3D path-following
problem has been widely used in literature, for instance in [5],
[6] where LOS guidance is incorporating into the dynamics
of the vehicles. There has also been considerable research on
disturbance rejection for LOS-guidance for instance [7], [8]
and references therein.

In recent years other guidance algorithms have also been
developed. In [9] the authors derive a nonlinear path-following
approach adapted from pure-pursuit methods. In [10] an LQR
guidance based method is derived for straight line and circular
path-following. Another path-following strategy is the vector-
field type guidance algorithms [11], [12] and [13] where
a vector field for the course angle is made to drive the
UAV towards the desired path. A survey of two-dimensional
guidance algorithms applied to a kinematic model for a fixed-
wing UAV can be found in [14]. The vector-field methods have
also been extended to 3D in [15] and n-dimensions in [16].

A problem with previous approaches of dividing the guid-
ance into a horizontal and vertical plane assumes that there is
little cross-coupling between the longitudinal and lateral mo-
tion of the UAV which in many cases is not accurate. In most
of the research on path-following, Euler angles are used to
formulate the guidance strategies and seemingly less research
has been done to design three dimensional path-following
strategies using quaternions. It is desirable to develop guidance
algorithms that allow for the coupling between longitudinal
and lateral motion. In [17] conventional LOS guidance was
converted to quaternion form and in [18] a quaternion path-
following controller was derived for acrobatic maneuvers. To
the authors best knowledge little work outside of this exists
on three dimensional guidance of underactuated vehicles using
quaternions. This paper aims to continue the work on defining
quaternion based guidance laws in three dimensions. The
algorithm proposed in this paper takes advantage of the fact
that summing unit-quaternions representing rotations yields
average or blended rotations. A blending function inspired
by [8] is used to blend the two quaternions. One of the
quaternions ensures that the UAV flies towards the closest
point on the path, while the other quaternion ensures that the
UAV follows the path.

This paper is organized in the following way. Section II



introduces quaternions, which is the main tool in this paper,
and some useful properties. Section III details the kinematic
model for the aircraft in quaternion form. Section IV derives
the quaternion guidance algorithm for straight lines and circles
in three dimensions. In Section V simulations are performed
to show the potential of the approach and a brief conclusion
is given in Section VI highlighting some possible extensions
of this work.

II. PRELIMINARIES
A. Notation

Vectors are denoted by lower-case bold letters while scalars
are non-bold for instance £ € R™ is an n-dimensional vector
while a € R is a scalar. A positive real scalar number a > 0 is
written as a € Ry. The time derivative of a vector is denoted
as © = ‘fi—ff. Superscripts are used to denote the reference
frame a vector is expressed in, for instance zd e R3is a
three dimensional vector in frame F 4. Subscripts for vectors
and scalars are used to indicate the quantity they represent for
instance v! is ground velocity while v? would be velocity
relative to surrounding air. The inner-product between two
vectors € R” and y € R” is written as (z,y) = (z)" y.
The euclidian norm is denoted as ||z|| = (x, z)z.

B. Reference frames

a) NED frame: This coordinate reference frame denoted
Fn, consists of a triad of unit vectors forming a right handed
reference system. The z-axis points north, the y-axis points
east and the z-axis points down completing the right-handed
system. The origin of the NED frame is usually chosen to be
at the intial position of the rigid-body we are working with.
This can for instance be the take-off point in case of a fixed-
wing UAV or pre-defined point in inertial space. The frame is
also assumed to be inertial.

b) Body frame: This coordinate reference frame denoted
Fp is fixed to the UAV’s centre of mass. The z-axis often
points through the front of the UAV, y-axis is normal to the
UAVs plane of symmetry and the z-axis points downwards
completing the right handed coordinate reference frame.

c) Path frame: This coordinate reference frame denoted
F, has its origin on the desired path and the orientation of
the frame is aligned with the desired path. The path-following
goal of the UAV is to align with this frame when it is on the
path.

d) Cross-track frame: This coordinate reference frame
denoted F. has its origin fixed to the UAV’s centre of mass.
The z-axis of this frame points towards the point on the path
which is closest to the position of the UAV.

C. Quaternions

In this section a brief overview of quaternions are given, for
a more complete formulation consult [19] or [20]. Quaternions
are well known to offer a singularity free parameterization of a
rigid-body’s orientation using only four parameters in contrast
to nine parameters for the direction cosine matrices. Similary
to direction cosine matrices they can also be used to transform

vectors between reference frames. A vector u? € R? can be
rotated from JF;, to JF,, by the use of the sandwich product

u" = qn.b ® Ub ® q:hb ()
where the quaternion product is defined as

q1,0q270 - q{qu,v (2)
T 0920+ %0910+ Q1w X G20]

and (-)* is the quaternion conjugate defined as

q1 ®q2 =

a=l0 -a - -a]

The norm of a quaternion can be defined through the quater-

nion product as
gl =va ®q

and should always be equal to unity to ensure that lengths
are preserved when using (1). Therefore in this paper all
quaternions are assumed to belong to Hl = {q € H : ||q| = 1}.
Several quaternions can also be combined using the quaternion
product to represent composite rotations as

da,c = qa,b @ gb,c
and difference in rotations can be defined as
Qv,d = o @ Ga,d-

The quaternion kinematics is defined as [19]

. 1, 1
qa,b = meb ® qa,b = §qa,b ® w(l;b (3)
where wg)b € R3 is the angular velocity of F; relative to

Fa, expressed either in F, or F;. It is possible to interpolate
between quaternions and many methods have been developed
[20]. The simplest interpolation method is linear interpolation,
given two quaternions q, and g, they can be interpolated in
the following way

q. = (1—h)q, + haqy

where h € [0,1]. When h = 0 the quaternion g, is equal to g,
but as h tends towards 1 the quaternion gq. will tend towards
qy. Since it is a simple linear interpolation g, will in general
not be a unit-quaternion and would have to be normalized.

III. MODELING

The kinematic model of a fixed-wing UAV can be expressed
using quaternions as

Pl =qn 00 ®q,, 4)
. 1
qn,b = iqn,b & wfhb (5)
Wh = ke (W2 —wphy) (6)

where p" € R? is the UAV’s inertial position, v* € R? is
the UAV’s body frame velocity, g, € H is the quaternion
expressing the attitude of the UAV, wflyb € R3 is the UAV’s
angular velocity relative to F,, expressed in F, w? € R is the
commanded angular velocity to be defined later and k,, € R4
is some constant gain used in (6) to mimic the behaviour of a



low-level auto-pilot. The UAV is assumed to have an actuator
that generates thrust in the body’s x-axis only and that the
body frame velocity lies entirely along the body’s z-axis. This
is essentially the same as assuming no wind conditions and
the body frame velocity is therefore defined as

=]V 0 0.

It is further assumed that the velocity of the UAV is held
constant and lower bounded while in flight, 0 < By < V. The
UAV is also assumed to have ailerons, a rudder and an elevator
for attitude control and the body frame angular velocity is
defined as

wz’b:[p q T]T

This kinematic model describes a fixed-wing UAV in 6-
DOF motion with four actuators making it underactuated.
This implies that there are constraints on the motion of
the UAV and it cannot be made to follow arbitrary paths.
However, although the UAV is underactuated when viewed in
6-DOF it can be seen as fully actuated if only the rotational
motion is considered which is part of the motivation for using
quaternions.

IV. GUIDANCE

The desired path which a UAV should follow is often a
combination of straight lines and arcs which either interpolates
or approximates between some waypoints. An example of an
interpolating path that is widely used would be a Dubin’s
paths, see for instance [21]. Therefore in this section we
derive the guidance algorithm to solve these two cases. In
later publications more general paths will be studied.

A. Straight-line paths

A straight-line path can be defined using two waypoints
W, W3 € R? as a line starting at one waypoint and ending
in the other. A unit vector containing the direction of the
straight-line path can be defined as

n w3 — W

T
S Wy e e ]

Using this direction the course and elevation of the path can
be defined as

Xp = arctan 2 (Upg, Upy)
yp = — arctan 2 (upz, (upx)2 + (Upy)2> :

These two angles can be used to define two quaternions. The
first quaternions g, , defines the orientation needed to follow
the path in the xy-plane and is defined as

. xp1T
sin X2

Qnx = [cos%” 0 O 3

The second quaterion g, , defines the necessary orientation
to follow the path along the xz-plane and is defined as

T
Jp i e
Qny = [cosZ 0 sinZ 0

These two orientations can then be combined through the
quaternion product as

An.p = Gn,x @ Qn~

where g, , is the path quaternion representing the relation
between F;, and F,,. If the UAV is on the path and g;, , ®
qn,» = q; then the UAV is following the path, however if the
UAV is not on the path it only implies that the UAV is flying
parallel to the path. To ensure that the UAV converges to the
path a quaternion representing the cross-track error needs to
be defined. The difference between the position of the closest
point on the path to the UAV and the UAV position defines a
direction which always points towards the path. This direction
can be expressed as a quaternion gy, . such that when qz,c ®
gn,» = gqr the UAV is flying towards the path. The closest
point on a path to the UAV when the path is a straight-line is
the projection of the UAV position onto the path. The cross-
track is then defined as the difference between the closest point
and the UAV position

P = (" = Wi up ) up + Wi p,

Using the cross-track error two new angles can be defined as
Xc = arctan 2 (pzy, L)
Ye = — arctan 2 (pZz, (P2)" + (pr)Q)

which allows us to define two new quaternions

0 0 sinX]”

— Xe
dn,x = [COS 2 2

and -
— Ye iin Xe
qny = [cos 5 0 sing O] .

These two quaternions can be combined as

dn,c = qn,x (29 dn,~

where gq,, . is the cross-track quaternion representing the
relation between F. and F,,. The two quaternions g, , and
gn.c should be blended in such a way that they ensure that
the UAV converges to path and then follows it. To blend the
quaternions a blending function inspired from [8] of the form

qn,d = (Qn,p - qn,c) 67k1|\p2'\| + qn,c (7

is used, where k; € R,. This function behaves in the way
that when ||p?| — oo then e *lP<ll — (0 which implies
that g, 4 — qp,. which will guide the UAV towards the
path. When the UAV approaches the path ||p?| — 0 such
that e~*11PcIl — 1 which implies that q,, 4 — @np so that
the UAV follows the path. The gain k; can be tuned to give
a satisfactory blending between the two quaternions. A high
k1 will result in a faster convergence towards the path, but
will cause overshoots. While a smaller k; results in a slower
convergence towards the path, but a smoother transition with
less overshoot. Using the desired orientation and the UAV
orientation we can define the error as

Qe = qp.q @ qnp- ®)



Remark: After the blending step in (7) the desired quaternion
qn,q should be normalized to ensure unit length.

B. Orbit following
A point on a circle is given as

pr(0)=c"+ [Rc cos R,sin6 O]T . 9)

where ¢” € R3 is the position of the circle’s center and R, €
R is the circle radius. The angle that gives the closest point to
the UAV can be found as the angle between the north direction
and the line from the circle center to the UAV

Xe = arctan2 (py — ¢y, pe — Cz) - (10)

Inserting (10) into (9) gives us the closest point on the circle to
the UAV, from which we obtain the cross-track error expressed
in F,, as

p¢ =pc(xe) —p"
From the cross-track error the quaternion that will let the UAV
approach the circle with angles

Xc = arctan 2 (pZy,pr)
5 2
Yo = — arctan 2 (p;lz, (p?a:) + (pgy) ) :

is obtained from the combination of the two quaternions

0 0 sin&}T

= Xe
qn,x = [COS 5 5

. T
Qny = [cosZ 0 sin®% 0
using the quaternion product

dn,c = 4n,x b2 dn, -
When the UAV is on the circle it should follow the orbit
tangent at the point p?(x.) defined as
n . T
pr(xe) = [— sin . €OSXc¢ O]

since the circle does not have any z-component there is no
need for an elevation quaternion, also since only the direction
is of interest the tangent vector is normalized. The path course
then becomes

Xp = arctan 2 (pfy,pfx)
from which the path quaternion is found as
Qnp = [cos 2 0 0 sin %]T

The desired quaternion can then be defined in the same way
as (7)

Gna = (@np = Gne) e 1PN 4 g, (1n
which is used to find the error quaternion
qe = q;,d ® Gn,b- (12)

Remark: The course angles should be calculated such that
it takes into consideration the UAV’s orientation. The course
angles should be calculated as detailed in [21]

X() = arctan2 ((-), (-)) + 2mm

where m € N ensures that —m < x () — x < 7 and y is the
UAV’s course angle.
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Fig. 1. UAV converging to and following a straight line.
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Fig. 2. Distance error for straight line following.

C. Kinematic control

To ensure that the UAV aligns itself with the desired
orientation an appropriate w? should be defined. As this is not
the main topic of the paper and because of space constraints
the following commanded angular velocity is chosen without
further justification

Wb = —keqoqy (13)

where g. = [qo qv}T is the error quaternion defined in (8)
and (12) while k. € R.. Eventhough the controller will ensure
convergence to the path in most cases,t/ a complete analysis
of the kinematic control of UAVs using quaternions should be
performed and it will be the topic of a later publication.

V. SIMULATION

This section shows the potential of the guidance approach
using three scenarios. In the first scenario the UAV should
converge and follow a straight-line path and in the second and
third scenario the mission is to converge to and follow an orbit
path. The kinematics of (4)-(6) together with the kinematic
controller defined in (13) are simulated with the parameters
V=25 k,=1, k =0.01, k. =1 and R. = 600.
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Fig. 3. UAV converging to and following a circle.
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Fig. 4. Distance error for loiter path following.

A. Scenario 1: Straight-line path

In this scenario the initial conditions are set to

—[500 0 0]"
Gnp :[1 0 o
wh, =0 0 O]T
b:[v 0 0}
=[0 o of
=

1000 1000 —250]"

As can be seen in Figure 1 the UAV reaches the straight line
path and follows it. In the simulation there is a significant
overshoot which in some cases is undesirable, the gains in
the simulations could be adjusted to try and minimize the
overshoot as well as a different kinematic controller which
includes a dampening term. In Figure 2 the distance error
between the path and the UAV is plotted. It can be seen that
it converges towards zero but has a long settling time. It can
also be seen that the distance error increases in the beginning
which is because the UAV is initially pointing away from the
path and it needs to initiate a turn to fly towards the path.
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Fig. 5. UAV converging to and following a circle.

B. Scenario 2: Orbit path

In this scenario the initial conditions are set to

n=0 0 0"

:[0 1000 —100]T

As can be seen in Figure 3 the UAV converges towards the
circle and follows it. From Figure 4 it can be seen that the
distance error never reaches zero but a constant value (7.8
meters in this case) which is because the path quaternion is
defined from the tangent of the closest point on the circle to
the UAV. The UAV needs some time to converge to this path
quaternion and by the time this has happened the UAV as
moved slightly away from the circle. The distance error could
be reduced for instance by choosing a tangent vector that lies
a bit ahead of the UAV so that it has time to converge to the
path quaternion.

C. Scenario 3: Orbit path

In this scenario the initial conditions are set to

p"=1[0 0 —200]"
any=[1/2 172 172 1/2]"
Zb:[o ]
o=V 0 0

—[0 o —100]".

Here the UAV starts at the center of the circle such that there
is no defined closest point. Since the closest point is calculated
based on angle the line from the center of the circle to the UAV
the angle becomes zero when the UAV is at the circle center.
Therefore the UAV will calculate the closest point to be at
p2(0). This forces the UAV to leave the circle’s center and
when that happens the closest point is again defined. In this
scenario there is also a constant distance error as explained in
the previous scenario.



VI. CONCLUSION

A guidance algorithm for three dimensional path-following
for fixed-wing UAVs using quaternions has been derived for
straight line paths and orbits. The algorithm works in three
stages, first the tangent vector to the path is found and a path
quaternion is defined from it, then the closest point is found
from the UAV to the desired path which defines the cross-track
error and a cross-track quaternion is defined from it. Lastly the
two quaternions are blended together such that they complete
the goal of converging to and following a pre-defined path. The
approach should be generalizable to arbitrary parametric paths
and part of the future work will be to detail this generalization.
One of the key assumptions in this paper was the abscence
of wind which is an unrealistic assumption and future work
should include these type of conditions.
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