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Abstract—This work presents an Energy Storage Systems
(ESS) sizing strategy, that allows grid connected PV systems
to provide peak-shaved maximum-power-Ramp-Rate (RR) com-
pliant power while storing exceeding power. For this purpose
power generation and power loss caused by complying several RR
restrictions were estimated. The estimation is based on irradiance
and temperature real data from a measuring station located in
the Atacama desert in Chile. The presented sizing strategy is
based on Discrete Wavelet Transform (DWT) and allows to obtain
an energy and power ESS sizing matching different criterion.
Moreover, the selection of the ad-hoc wavelet and decomposition
level, required filter the estimated PV power, is also presented.

Index Terms—PV, ESS sizing, Peak Shaving, Wavelet, Ramp
Rate.

I. INTRODUCTION

THE sustained growth in participation of renewable re-

sources in electric market has brought grid stability

concerns [1], [2]. The intermittent and variable nature of

renewable resources is a major drawback when discussing

further participation of renewable resources in electric markets,

setting a virtual limit to high penetration rates [2]–[4].

Moreover, many countries have upgraded their grid codes

addressing maximum power Ramp Rate (RR), maximum

power variation per unit of time, regulations for renewables.

For example, the grid-code of Hawaii limits RRs to ±2 or

±1 MW per minute, depending on the time of day [5]. In

Puerto Rico RRs are limited to ±10% rated power per minute

for PV systems [6], while in Australia RRs are limited to

±16.67% rated power per minute [7]. Other grid codes limit

only positive RRs (load taking) as is the case of Ireland,

Germany and Chile, where 30 MW per minute, 10% rated

power per minute and 0 to 20 % rated power per minute are

the corresponding positive RR restrictions [5], [8], [9].

ESSs have been vastly researched as an alternative to deal

with generation-demand mismatch and provide additional ser-

vices as peak shaving, base load generation, capacity firming,

load shifting, etc [3], [8], [10]–[15]. All previously named

additional services aim at modifying the power output of a sys-

tem by storing and releasing power, according to the demand

of the selected service. Peak shaving mitigates power peaks

by storing (releasing) exceeding (missing) power, required to

match a desired lower frequency power output, thus dealing

with variability-intermittency drawbacks.

ESS sizing strategies have became a primary concern when

looking for cost-effective solutions, therefore it is not sur-

prising to find several different ESS sizing methods in the

literature. In [13], a desired wind-farm-output-power profile

(base load generation) is compared to a low pass (FIR)

filtered version of a long-horizon wind-speed measurement

with added statistical noise, generating a ESS power curve

reference. The resulting wave form is fed to a cost function

aiming to minimise Battery Energy Storage System (BESS)

cost per service-hours; cost function factors include life-span,

full charge/discharge cycles, initial investment and penalties

for not meeting the agreed power curve form. Nonetheless,

frequency depending phase delay introduced by low pass fil-

tering reshapes the ESS power curve reference, hence causing

over or under sizing of the ESS. In [14], an ESS sizing

strategy that aims at minimising economical penalties caused

by not complying day-ahead power bidding is presented. Bid

power is calculated from historical wind-power data, while

ESS sizing is estimated by comparing bid power with several

scenarios including statistical deviations from forecasted wind

power. Sizing is performed by presenting, in a histogram,

the errors between bid power and the different deviation

scenarios as a function of energy, the ESS energy rating

is selected by choosing a certain biding compliance ratio.

This method presents a high dependence on the bidding

strategy and wind power forecast, which are not described

in the document. Moreover, the sizing strategy considers

inter-day dynamics, which are not relevant for solar daily

cycles (dawn to dusk). A sizing strategy to comply with

maximum power RR regulation is presented in [15]. In order

to achieve such requirement, wind forecast and uncertain load

behaviour are analysed. The strategy considers transforming

the difference between estimated power generation and load

consumption from time-domain to frequency-domain through

Discrete Fourier Transform (DFT). The result is later filtered,

assigning low frequencies (complying with maximum power

RR) as the desired power output, medium frequencies as BESS

sizing reference (with a Depth of Discharge (DoD) ≤ 80%)

and high frequencies as Super Capacitor sizing reference. DFT

strategy, decomposes the full signal into periodic sinusoids,

loosing information regarding the time-location of frequencies,

therefore causing ESS over-sizing. Short Time Fourier Trans-

form (STFT) improves frequencies location accuracy, though



resolution in time/frequency is limited due to the fixed time-

length moving window used to analyse all frequencies. An

strategy to limit power fluctuations in a wind farm by limiting

the maximum frequency of exported power is proposed in [8].

The strategy considers the addition of a hybrid energy storage

system, formed by a lithium ion BESS and a super capacitor

bank. Several historical data sets are used to estimate the ESS

sizing, each data set is filtered by Discrete Wavelet Transform

(DWT), hence separating the data set in two, a part containing

frequencies below a maximum desired frequency (desired

export power profile) and a part containing higher frequencies

(ESS power profile). ESS profile curves are averaged and

later separated (filtered) into lower frequencies, considered

BESS requirements, and higher frequencies, to be handled

by the super capacitor bank. The efficiency of the converters,

maximum BESS DoD and BESS charge/discharge cycles are

also considered to generate the BESS and super capacitor

bank respective sizing. Even though wavelet strategy improves

time-location and resolution problems related to DFT and

STFT, this strategy relies on averaging the results hence hiding

dynamic behaviours and providing a non-accurate sizing.

This work presents a ESS sizing strategy based in DWT, the

strategy provides an in depth analysis of the required energy

and power ratings for the ESS and its power converter, in order

to provide RR compliant peak-shaved power. An assessment of

annual energy loss, caused by complying different grid-code-

imposed maximum power RR regulations in an hypothetical

2 MW PV plant, is also presented. For this purpose empirical

irradiance and temperature measurement, from Antofagasta

(Chile were used to estimate annual exported power of the

PV plant. To the best knowledge of the authors both, the

assessment of annual losses due to RR compliance and the

DWT-based ESS sizing strategy correspond to new knowledge.

The document is arranged in the following manner, section

II provides a full description of the PV plant model and rating

considered to estimate a 2 MW PV plant power generation

during a full year, an analysis of annual energy loss due to RR

regulation is presented in section III, the ESS sizing strategy

based in DWT is presented in section IV, section V presents

the conclusions of this work.

II. PV PLANT POWER ESTIMATION

A year of irradiance and temperature measurements, taken

from a monitoring station located in the Atacama desert in

Chile (−24.0833◦, −69.9167◦), where used to estimate power

generation of an hypothetical 2 MW PV plant, formed by 447
strings of 20 Jinko JKM 60PP PV modules each [16]. The

PV array estimated power at STC has been oversized by 15%
respect to the inverter rated power (2 MW), in accordance

with common commercial practices to increase plant factor

and correct power reduction caused by temperature.

There are several models capable to estimate power genera-

tion from a PV plant, some of them are circuital models [17],

Artificial Neural Networks (ANN) [18], algebraic equation

[19], etc. Circuital models emulate the behaviour of a PV

module as an electrical circuit, being single and double diode

circuital models the mainstream models. The set of equations

describing these models are usually solved through numerical

methods as Newton-Raphson or Bisection [17], [20]–[22].

These models require parameter identification, performed for

example through any of the strategies described in [23]. ANNs

are another modelling alternative, where inputs pass through

an array of neurons, formed by bias, weights and activation

(transfer) functions in order to estimate an output. The training

procedure consists in adjusting the weights and bias in order

to minimise the mean squared error between the estimated

output and a known target [19], [24], [25]. A similar alternative

to ANN corresponds to Polynomial Regression where the

estimated output is obtained through a polynomial applied to

a set of inputs. The polynomial coefficients are determined

by applying regression to the set of inputs and target(s)

[19]. However, circuital models have a highly dependence

on parameter identification and the accuracy of the numerical

method applied to solve the equation system. On the other

hand, ANN and Polynomial Regression, depend on knowing

the target (desired output), hence are not useful to estimate

the power yield just from irradiance and temperature.

Alternatively, algebraic equations are also capable of esti-

mating PV power generation from irradiance and temperature

measurements, and do not depend on parameter identification,

depending instead on module parameters provided by the PV

module manufacturer (data sheet). This mathematical model

estimates the maximum power point (Pmpp in W) as a function

of the current irradiance (G in W/m2) and cell temperature

(T in ◦C).

Pmpp= [γ · (T − Tstc) + 1] ·
G

Gstc

· Pmpp stc · η ·N (1)

Where γ, Tstc, Gstc, Pmpp stc, η and N are respectively

respectively the Temperature Coefficient of Pmpp in W / ◦C(or

maximum power correction factor for temperature [19]), STC

cell temperature in ◦C, STC irradiance in W/m2, maximum

power point at STC in W, PV module efficiency and number

of modules in the PV plant [19]. Cell temperature (T ) is

estimated as a function of the ambient temperature (Ta)

through [26]:

T = Ta +
G

Gnoct

· (Tnoct − 20◦C) (2)

Where Gnoct and Tnoct are the irradiance (in W/m2) and

cell temperature at NOCT (in ◦C) at Nominal Operating Cell

Temperature (NOCT).

This latter model was selected to estimate the annual

exported power of the hypothetical 2 MW PV plant. For

this purpose uniform irradiance and temperature conditions,

sampled every minute, and PV plant parameters, presented

in Table I, were applied. Fig. 1 shows the estimated annual

power generation (Pmpp), where the missing area, from 15th

to 21st of August 2015 and 26th of August 2015, corresponds

to 8 days of data loss. The estimated PV power presents an

annual energy generation of 4, 952 MWh and a plant factor of

28.26%.



TABLE I
PV PLANT AND MODULES PARAMETERS

Symbol Parameter Value

PV plant

Ppv mpp stc Rated Power 2 MW
N Total number of PV modules 8, 940

PV module at STC

Pmpp stc Maximum power point 260 W
Vmpp stc MPP voltage 31.1 V
impp stc MPP current 8.37 A
Voc stc Open circuit voltage 38.1 V
isc stc Short circuit current 8.98 A

Gstc Irradiance 1000 W/m2

Tstc Temperature 25 ◦C

PV module at NOCT

Gnoct Irradiance 800 W/m2

Tnoct Temperature 45 ◦C

γ Temperature coefficient of Pmpp −0.4 %/◦C
η MPPT efficiency 99 %

Fig. 1. Model estimated annual PV power generation at DC side (Pmpp) per
day and hour.

III. MAXIMUM POWER RAMP RATE LOSSES

Chilean grid code limits positive RRs (load taking) between

0 and 20% of the PV plant nominal power per minute, while

negative RRs are not restricted. The instantaneous positive RR

level is stated by the Transmission System Operator (“Sistema

Electrico Nacional”) according to its requirements in order

to guarantee grid stability [9]. Power ramps exceeding RR

regulation are not allowed, forcing the system to operate in

a non-optimal power point and thus causing non-estimated

annual energy losses.
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Fig. 2. Annual energy loss caused by RR regulation: a) Histogram of positive
power RR per minute beyond x (RRx%) and b) Recoverable annual energy
loss under different RR regulation (RR x%).

An analysis of annual energy loss caused by complying with

positive power RR limitation is shown in Fig. 2. Where RR

x% corresponds to a maximum power RR of x% per minute

of the nominal power of the PV plant. The top plot (Fig. 2a))

presents histograms of power exceeding positive RRs of 5, 10,

15 and 20% of the nominal PV plant power (2 MW). While,

the bottom plot (Fig. 2b)) shows the recoverable annual energy

loss as function of the power loss (power exceeding each RR

regulation).

From Fig. 2 applying constantly RR regulations of 5%, 10%,

15% or 20% will generate annual energy losses of 43, 20, 11
or 7 MWh, respectively. Which correspond to 0.087%, 0.04%,

0.022% or 0.014% of the annual energy generation, hence

annual energy losses caused by RR complying are negligible.

Nonetheless, RR regulation must be complied, by loosing or

storing the RR % non complying. A RR 10% was selected as

limit to be used during rest of the document, since this presents

a good compromise between 0 and 20%, and it matches other

grid-codes RR regulations.

IV. ESS SIZING STRATEGY

The ESS sizing strategy consists in filtering the estimated

PV power (Pmpp) through DWT (see Appendix V-A), sepa-

rating the PV power into a peak-shaved RR-10%-compliant

power curve (Pout) and a non-peak-shaved RR 10% non-

compliant power curve (Pess). This latter curve is obtain

from the subtraction Pmpp − Pout, and corresponds to the

power reference to be consider for the ESS sizing process.

Daubechies 8 decomposition level 4 was applied to perform

the filtering process. The selection of this Wavelet and the

required decomposition level is presented in subsection IV-A.

ESS power analysis is presented in Fig.3. This analysis is

performed over the ESS maximum accumulable daily energy

the ESS is capable to store if limiting bi-directional power
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Fig. 3. ESS power analysis: a) ESS power as function of the daily accumulated
energy analysis and b) Histogram of positive (Pess > 0, store) and negative
(Pess < 0, release) power measured per minute during a year.

to a certain power level. For this purpose daily ESS charge

depletion was considered.

ESS maximum accumulable daily energy will be addressed

as EMADE and accordingly the maximum annual value of

EMADE, the annual average of EMADE and annual standard

deviation of EMADE will be identified as Êmade, Emade and

σemade. Curves depicted in Fig.3 correspond to Cm = Êmade,

Ca3s = Emade + 3 · σemade, Ca2s = Emade + 2 · σemade,

Ca1s = Emade+1·σemade and Ca = Emade. The bottom plot

in Fig.3 presents a histogram of positive (store) and negative

(release) power. The decrease in EMADE curves after reaching

the maximum, is due to limiting ESS charge to positive values,

hence negative power surpassing positive power implies that

more power is being drawn from the ESS thus reducing the

ESS energy requirements.

Finally, the ESS sizing strategy consists in selecting a

bi-directional power level and choosing an ESS maximum

accumulated daily energy curves from Fig. 3. As example

we have selected a bidirectional power rating of 200 kW and

selected curve Ca3s (Emade + 3 · σemade) as the compliance

criteria, hence ESS energy rating is 120 kWh. It must be noted

that most ESS power reference (Pess) is concentrated between

0 and 200 kW.

A. Wavelet selection

There are several wavelet families capable of filtering the

estimated PV power (Pmpp) and producing a peak-shaved

RR 10 % compliant power output, though each wavelet will

produce a different ESS requirement. In order to select the

best alternative the filtering capabilities of Wavelets Haar,

Daubechies 2 to 10, Symlets 2 to 8 and Coiflets 1 to 5 were

compared.
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Fig. 4. Wavelet filter analysis: a) Estimated PV power (Pmpp) and wavelet-
filtered output power applying Symlet 2 Wavelet (level 5) decomposition
(Pout) and b) Required ESS power (Pess) to store/release the power
difference between estimated PV power and wavelet-filtered output power.
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Fig. 5. Wavelet filter analysis: a) Estimated PV power (Pmpp) and wavelet-
filtered output power applying Daubechies 8 Wavelet (level 4) decomposition
(Pout) and b) Required ESS power (Pess) to store/release the power
difference between estimated PV power and wavelet-filtered output power.

ESS daily depletion was considered since solar cycle (dawn-

dusk) allows to inject the stored power within a day, reducing

energy losses associated to longer storage periods caused by

ESS self discharge. Therefore a day-oriented analysis was

performed, for this purpose a total of 1440 pairs of irradiance

and temperature measurements were taken every day, since

each wavelet level halves (down samples) the amount of

data samples, hence only 5 DWT levels are possible without

modifying the length of the data set.

As means to illustrate the effects of Wavelet filtering, to

obtain peak-shaved RR 10% compliant power, Figs. 4 and 5



TABLE II
WAVELET DECOMPOSITION LEVEL REQUIRED TO COMPLY WITH RR 10%

REGULATION

Wavelet Level Wavelet Level

Haar No compliance Symlets 2 No compliance
Daubechies 2 No compliance Symlets 3 4

Daubechies 3 4 Symlets 4 4

Daubechies 4 4 Symlets 5 4

Daubechies 5 4 Symlets 6 4

Daubechies 6 4 Symlets 7 4

Daubechies 7 4 Symlets 8 4

Daubechies 8 4 Coiflets 1 5

Daubechies 9 4 Coiflets 2 4

Daubechies 10 4 Coiflets 3 4

Coiflets 4 4

Coiflets 5 4
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Fig. 6. Maximum annual RR obtained for each wavelet decomposition level:
a) Positive RR and b) negative RR.

show respectively filtering of Pmpp through Wavelets Symlet

2 (decomposition level 5) and Daubechies 8 (decomposition

level 4), where the top plots present the wavelet-filtered output

power (Pout) compared to the estimated PV power (Pmpp)

and the bottom plot shows the required ESS power (Pess =
Pmpp − Pout).

A summary of the decomposition level each wavelet re-

quires to comply with RR 10% is presented in Table II. Note

that Haar, Daubechies 2 and Symlets 2 do not comply with

RR 10 %, despite of applying a 5 level decomposition.

Fig. 6 presents the annual maximum positive and negative

RRs obtained by filtering the PV power through the 3 worst

performing wavelets (Haar, Symlet 2 anc Coiflet 1) and best

performing Wavelets (Daubechies 8, Symlet 6 and Coiflet 2)

as function of the decomposition level (1 to 5).

Daubechies 8 level 4 was selected as the Wavelet to filter

the estimated PV powerb (Pmpp), since it complies with RR

10%, presents even and low positive and negative RRs. Lower

wavelet decomposition levels were preferred, since it requires

less computational effort to perform the decomposition.

V. CONCLUSION

This document presents an ESS sizing strategy based in

DWT. The strategy aims at providing peak-shaved PV power,

while complying with a Ramp Rate restriction of 10 % of

the PV plant nominal power. For this purpose annual power

generation was estimated based on empiric irradiance and

temperature measurements from the Atacama desert in Chile.

Ramp Rate restrictions limit the maximum power point

tracking of solar systems, thus forcing the PV plant to perform

in a non-optimal power point and causing non-estimated

annual energy losses. This work presents an annual energy

loss estimation due to complying several RR restrictions. From

the results complying with RR restrictions does not generate

meaningful annual losses (0.087% for RR 5%), though its

compliance is mandatory.

The presented ESS sizing strategy generates a peak-shaved

RR 10% compliant power export. The strategy is based in

DWT filtering, which generates a ESS power reference. ESS

power reference is analysed presenting a relation between ESS

bi-directional power and ESS maximum accumulated daily

energy, this latter result enables to size the ESS energy rating

from a selected bidirectional power rating. In this line, the

methodology applied to select a proper Wavelet and decom-

position level are presented. Moreover, the presented sizing

technique can be extrapolated to other renewable sources,

provided the proper modelling and relevant modifications, as

resource cyclic behaviours.
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APPENDIX

A. Wavelet Transform

Wavelet Transform is a time-frequency signal analysis tool

that allows to decompose simultaneously a time signal (x(t))
in time and frequency domains [27]–[29]. In order to perform

the decomposition a wavelet function (Ψj,n(t)) and a scaling

function (Φj,n(t)) are required. The inner product between the

scaling function with the signal generates an approximation

(Lx(j = 1, n), lower frequencies) of the signal x(t), while

the inner product between the wavelet function with the signal

x(t) keeps the details (Wx(j = 1, n), higher frequencies); thus

working respectively as a low-pass and high-pass filters. This

decomposition process can be repeated separating the obtained

approximation (Lx(j = 1, n)) into a following level of details

(Wx(j = 2, n)) and approximation (Lx(j = 2, n)), and so on

(as shown in eq. (3) and (4)).



Lx(j, n) =< x(t),Φj,n(t) >=

∫
∞

−∞

x(t) · Φ∗

j,n(t)dt (3)

Wx(j, n) =< x(t),Ψj,n(t) >=

∫
∞

−∞

x(t) ·Ψ∗

j,n(t)dt (4)

The algorithm applied in this work corresponds to a DWT

calculated through Fast Wavelet Transform (FWT) algorithm

introduced in [27]. FWT mathematical procedure is shown

in eqs. (5) and (6) [29], where aj[n] is decomposed into an

approximation (aj+1[n]) and details (dj+1[n]) by convoluting

aj [n] with a low-pass and high-pass conjugate mirror filters

(h and g). This procedure can be cascaded generating further

decomposition of the approximations obtained. The sub-index

j indicates the level of decomposition.

aj+1[t] =

∞∑
t=−∞

h[n− 2t] · aj [n] (5)

dj+1[t] =
∞∑

t=−∞

g[n− 2t] · aj [n] (6)

The re-composition of the signal is perform through the

Inverse Fast Wavelet Transform (IFWT) [29].

aj[t] =

∞∑
n=−∞

h[t−2n] ·aj+1[n]+

∞∑
n=−∞

g[t−2n] ·dj+1[n] (7)
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