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Abstract—Battery technology is a major technical 
bottleneck with electric vehicles (EVs). It is necessary to 
perform state of charge (SoC) estimation in order to ensure 
battery safe usage and reduce its average lifecycle cost. Sliding 
mode observer (SMO) has been used widely in battery SoC 
estimation owing to its simplicity and robustness to both 
parameter variations and external disturbances. The SMO 
uses a switching function of the model error as feedback to 
drive estimated states to a hypersurface where there is no 
difference between measured and estimated output exactly. In 
this paper, three kinds of SMOs based on equivalent circuit 
model (ECM) for SoC estimation in the existing literatures are 
reviewed. Their difference in the structures and principles are 
discussed in the hope of providing some inspirations to the 
design of efficient SMO based SoC estimation methods. 

Keywords— battery, sliding mode observer, state of charge 
estimation, comparison 

I. INTRODUCTION 

Electric vehicles (EVs) have emerged as a viable 
environmentally friendly solution for global warming 
mitigation [1]. Battery as an important storage component in 
EVs has attracted more and more attention in the world. An 
effective battery management system (BMS) is compulsory 
so that battery can prevent any physical damages and handle 
cell unbalancing [2]. Among the various functions of a BMS, 
monitoring the SoC is critical in practical applications where 
it is necessary to determine how long the cell will last. This 
information is implemented in the BMS and is used to know 
when to stop charging and discharging, as over-charging or 
over-discharging may cause permanent internal damage [3]. 

Since batteries are complex electrochemical devices 
with a distinct nonlinear behavior depending on various 
internal and external conditions, their monitoring is a 
challenging task [4]. One of the most implemented methods 
is the Coulomb counting method. The necessity of an 
accurate initial SOC and the accumulation of the current 
measurement errors make the Coulomb counting method 
doubtful for a highly accurate SOC [5]. For open-circuit 

voltage estimation, a long time (up to hours) is needed for a 
battery to be relaxed to reach its equilibrium, which makes it 
merely suitable at the beginning or end of the entire process 
[6]. Another technique is the battery internal impedance 
measurement, which loads a series of small amplitude ac 
signals with a wide range of frequencies into the battery to 
detect the responses for internal impedance calculation. 
However, this is only suitable in lab research TABLE I. -[8]. 
The data-driven methods are based on artificial neural 
networks, support vector machine, extreme learning 
machine, and so on [9]-[12]. But the practicability of data-
driven methods is closely related to the data samples and 
computing burden is high in the BMS. 

Model-based methods have advantages of being 
insensitive to initial SOC, which seems to be a better 
tradeoff between accuracy and computing efficiency. 
Accordingly, Kalman filter [13], H-infinity filter [14], and 
particle filter [15] can achieve accurate SoC estimation. 
However, considering the performance of BMS when 
running the simulated algorithms, SMO is a good candidate 
in computational time, code complexity, and memory usage 
[16]. Because the ECM is easy to be established, the focus of 
this paper is the SMOs based on ECM. Three kinds of SMO 
methods including first-order constant-gain SMO, second-
order constant-gain SMO and first-order adaptive gain SMO 
are reviewed. Their difference in structures and principles 
are discussed in order to provide a reference for designing 
SMO based SoC estimation methods. 

II. BATTERY MODEL 

Among these model-based SMOs, there are two main 
differences: one is the sliding mode term of the observer, the 
other one is the used model. Moreover, an accurate model is 
a prerequisite for the accurate SoC estimation. Therefore, in 
this section, two commonly used battery models including 
Randle circuit model (RCM) and RC circuit model (RCCM) 
are firstly introduced. 
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A. Randle Circuit Model 

Various ECMs have been proposed to capture the 
dynamic characteristics of batteries [17]. One of the 
prevailing battery models is the RCM [18] and its nth-order 
structure is shown in Fig. 1. Voc is the open circuit voltage 
and it has a nonlinear function relationship with battery SoC 
represented by Z. R0 is the internal ohmic resistance 
characterizing the electrolyte and interphase resistance of the 
battery. N parallel-connected networks consist of R1, …, Rn 
and C1, …, Cn which reflect the charge transfer and diffusion 
effect. I and Vt denote the battery’s current and the terminal 
voltage, respectively. According to Fig. 1, the state equation 
of the nth-order RCM can be expressed as 
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where Qn is the battery capacity. The expression of the 
terminal voltage is given as 
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Considering the accuracy and the computational complexity, 
n always takes the value of 1 or 2. If the dimension of the 
circuit model is 1, the circuit model is the first-order RCM, 
and if the dimension is 2, it is the second-order RCM. 
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Fig. 1.  Battery nth-order Randle circuit model. 

B. RC Circuit Model 

The structure of RCCM [19] is shown in Fig. 2, where Re 
is the propagation resistor, Cp and Rp are the polarization 
capacitance and diffused resistor, Vp is the polarized 
voltage, R0 is the ohmic resistance, I is the input current and 
Vt is the battery terminal voltage. The state equation of 
RCCM and output voltage can be expressed as 
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Fig. 2.  Battery RC circuit model. 
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III. SMOS FOR SOC ESTIMATION 

The SoC indicates the ratio of available capacity to the 
nominal capacity in the battery whose value changes 
between 0% and 100% [20]. According to the definition, the 
expression of SoC can be obtained through the current-time 
integral approach and it is given as 
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where Z(0) is the initial SoC, I(τ) is the instantaneous current 
which is assumed to be positive for discharging and the 
opposite for charging. The η is the columbic efficiency, 
which usually satisfies η=1 for discharging, and η≤1 for 
charging for the batteries in the wide range of current and 
temperature [21]. The SMO has been widely used in the 
state estimation for its robustness and simplicity. The 
principle of SMO is that it feeds back the output estimated 
error via a switching function with a gain, the sliding mode 
term, which makes the system states move across the sliding 
mode surface and converges to the sliding mode surface 
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gradually [22]. The SMO has a common structure is shown 

in Fig. 3. n nA R ×∈ , 1nB R ×∈ , 1 nC R ×∈ , and 1 1D R ×∈  are 
coefficient matrixes which are composed of parameters of 

the battery. 1 1( )u t R ×∈  is a control variable, and 1 1y R ×∈  is 
the output voltage. The states estimation error is defined as 

ˆ( ) ( ) ( )e t x t x t= −  and the output error is ˆ( ) ( )ye y t y t= − . 

The main difference in structures of SMO lies in the sliding 
mode term. The switching gain of the sliding mode term can 
be designed as a constant or as a variable related to the 
output error. According to the different designing of the 
switching gain, SMOs are classified into constant-gain SMO 
and adaptive-gain SMO. Then on the basis of order of the 
state equations, these methods are refined into first-order 
constant-gain SMO, second-order constant-gain SMO, and 
first-order adaptive-gain SMO. 

 

Fig. 3.  General block diagram of the SMO method. 

A. First-order Constant-Gain SMO 

For the first-order constant-gain SMO, it can be 
expressed by first-order derivative equations of the state 
variable. [19], [23]-[25] designed the SMO based on three 
above ECMs respectively. They all have the same structure 
without Luenberger term: 
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where the switching gain L are positive constants, the value 
of L depends on the design of the observer. The sign 
function is: 
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In the sliding mode term, independent variable e of the sign 
function is a vector containing different state errors. Taking 

[19] as an example, the RCCM is selected and the states are 
terminal voltage Vt, the state of charge Z and the voltage 
across the capacitance Vp. All elements of state error 

vectors
T

t z pe e e e =   are ˆ
t t te V V= − , ˆ

ze Z Z= −  and 

ˆ
p p pe V V= − , respectively. According to the equivalent 

control method [19], the error system in sliding mode 
behaves as if sign( )L e  is replaced by its equivalent value 

{ }sign( )
eq

L e , which can be calculated assuming 

0ye = and 0ye = . Using the same SMO structure as (6), 

[23] and [24] choose a first-order RCM while [25] a 
second-order RCM to establish the state-space function. On 
the other hand, a first-order RCM is employed and a 
Luenberger term is introduced to the sliding mode 
designing [26]. The structure of SMO is  
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where [ ]1 2 3
T

K k k k=  is the Luenberger feedback gain, 

which is chosen so that the stability of the observer system is 
preserved. The error variable ˆ( ) ( )ye y t y t= −  is used as a 

feedback of each state function in the SMO. 

In a control system which has any physical sense, high-
frequency control switching may easily cause chattering 
effect. A possible solution is using continuous control to 
reduce the chattering effect [22]. Various kinds of anti-
chattering functions are chosen in [27], [28] and [29] to 
substitute the sign function in [26]. An equivalent sign 
function sign( )Eqv ⋅  is defined to reduce chattering levels 
[27] and it is defined as 
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where µ is used to adjust the slope. Similarly, a saturation 
function ( )Sat ⋅  is chosen in [28] and it is: 
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In [29], the continuous anti-chattering function is 

implemented through the arc-tangent function 1tan ( )ye− . A 

continuous hyperbolic tangent function is utilized in [21] and 

the function has the form of tanh
a a

y y

a a
y y

e e
a

e e

−

−

−
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+
. 

B. Second-order Constant-Gain SMO 

The structure of second-order SMO [30] for SoC 
estimation is: 

1967



 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( )) ( )

ˆ( ) ( )
( )

ˆ ˆ( ) ( )

d y

d y

x t Ax t Bu t K y t y t v e

y t y t
v e LSat

y t Cx t

φ

= + + − +

 −=  
 

=



  (11) 

The sliding mode term not only consists of a Luenberger 
term with constant gain K, but also an integral term of the 
saturation function where φ  determines the boundary layer. 
This kind of SMO has better performance in suppress 
switching ripple because the integral part can be regarded as 
a low pass filter and the saturation can suppress the ripple 
further. Hence it can drive to zero not only the sliding 
variable but also its derivative [22]. Another kind of second-
order SMO is the super-twisting algorithm and it is applied 
to estimate SoC of the battery in [31]. The structure  of 
super-twisting algorithms is 
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The super-twisting switching function is composed of 
two parts: one is a continuous function 1( )yv e  and it 

guarantee that the system has quick response to reduce the 
error. The other is the time integral of sign function and it 
helps to eliminate the system error for the observed system. 

C. First-order Adaptive-Gain SMO  

Compared with the traditional first-order constant-gain 
SMO, the adaptive-gain SMO is able to dynamically adjust 
the switching gains in response to the tracking errors. It can 
guarantee the reachability of sliding mode surface and 
improve the SOC estimation accuracy further. Because of 
the good performance, this kind of SMO increasingly 
attracts researchers’ attention. Based on the first-order RCM, 
the adaptive observer is designed as follows [32]: 

 ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))x t Ax t Bu t K y t y t Bv= + + − +  (13) 

The control variable v is defined as 
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The design for the sliding mode surface is 

 ˆ ˆ( ( ) ( )) ( ( ) ( )) ( ) 0S F y t y t FC x t x t Me t= − = − = =  (15) 

where F is the designed matrix, which makes the state 
variables in the surface slide to the zero equilibrium point, 
and M FC= . A similar observer is designed in [18] and 
there is another part added to the control variable v which is 
expressed as 
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where 1 S MBρΔ = , 
2

2
1

( )
2

S
ββηΔ = , 0 1η≤ ≤  and 

0β ≥ . Furthermore, [33] makes an improvement for the 
control variable v as follows: 
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where 1
ˆ S MψΔ = Γ , 

2
2

1
( )
2

S
ββηΔ = , 0 1η≤ ≤  and 

0β ≥ , ψ̂  is the upper bound of the system uncertainty. In 
[33], a radial basis function neural network is employed to 
adaptively learn an upper bound of system uncertainty. The 
switching gain is adjusted to adequate levels based on the 
learned upper bound to achieve asymptotic error 
convergence of the SOC estimation. [34]-[38] introduces 
another kind of adaptive sliding mode term and the 
switching gain is a function of ye . The switching gain of 

SMO in [34] is the absolute value of ye  and the structure is 

as follows 

 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

sign( ) ( ) 0

0 ( ) 0

y y y

y

x t Ax t Bu t K y t y t Lv

e e e t
v

e t

= + + − +

 ≠= 
=



 (18) 

In addition, [35] uses ye  to substitute the ye in the 

above control variable v. Similarly, a linear function of 

ye  is adopted in [36] where the sliding mode term was 

designed as: 

 ( )sign( ( ) ( ) 0
sign( )

0 ( ) 0

i i y i i
i i

i

k e e t e t
L e

e t

δ + ≠= 
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where ei is the i-th state estimation error. Integral of output 
error ey is used to be the sliding mode gain, which makes the 
gain auto-turning in [37]. 
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By means of the equivalent control method [19], sign( )L e  

can be replaced by its equivalent value { }sign( )
eq

L e . For 

simplification, adaptive switching gain was designed as the 
integral of ey in [38], therefore the following adaptive sliding 
mode term was obtained. 
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D. Comparison 

In order to compare the performance of above SMOs, 
the simplicity of design, estimation accuracy, anti-
chattering are considered, forming a performance 
comparison table I. Each cell in this table contains symbols 
+ or ++, indicating that the performance related to that 
column is good or better among these SMO methods. As 
shown in Table I, the design process of conventional first-
order constant-gain SMO is simple, but the estimation 
accuracy is comparative low. Because the high frequency 
switching ripple is introduced into the feedback loop as a 
result of switching function. Second-order constant-gain 
SMO is a desired choice to suppress ripple, because it adds 
an integral term of the sign function behaving as a low-pass 
filter. Under this condition, both the error and its derivative 
between the actual state and estimated state can converge to 
zero. As a result, the accuracy is improved but the design of 
sliding mode gain is more difficult than the former SMO. 
The principle of the first-order adaptive-gain SMO is to 
adaptively tune the sliding mode gain online, and therefore 
the chattering is suppressed. Similarly, the design process is 
also complex. According to existing literatures, there is not 
a comparative study between the latter two SMOs. In this 
paper, the performance of them is considered temporarily 
same and the problem that which kind of SMO is better is 
still worth to be researched. 

 

IV. CONCLUSION 

This paper investigates various SMO methods based on 
ECM for battery SoC estimation and classifies them into 
first-order constant gain SMO, second-order constant gain 

SMO, and first-order adaptive gain SMO. By discussing the 
principles of different SMO algorithms, the pros and cons of 
these methods are compared. Conventional first-order 
constant gain SMO is simply designed and easy to 
implement, however, the switching functions will cause high 
frequency chattering phenomenon. Continuous control is a 
possible solution to reduce the chattering effect, therefore 
various anti-chattering functions are chosen to substitute the 
sign function. Second-order SMO is also an important 
technique to achieve continuous control. It introduces an 
integral term into switching function which can guarantee 
the sliding variable and its derivative converge to zero in 
finite time. As a consequence, the chattering effect can be 
significantly reduced. In addition, first-order adaptive SMO 
also can suppress the switching ripple and guarantee good 
estimation accuracy. But it is not sure which case of 
observer is better for second-order SMO and first-order 
adaptive SMO. 
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