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Abstract— This paper focuses on parameter identification for 
time-varying voltage-dependent polynomial load models in 
distribution systems—namely, the constant impedance (Z), 
constant current (I), and constant power (P). The paper assumes 
the presence of measurements at the distribution nodes from 
various sources, each at varying temporal resolutions. The least-
squares estimation method with bounded variables is used to 
convert the measurements into ZIP parameter estimations for 
loads at various locations on the feeder. The results and 
discussions focus on some of the estimation issues faced in a 
distribution system caused by varying voltage sensitivities of 
loads along a feeder, measurement resolution, impact of window 
size and sampling rate of measurement data. Finally, the paper 
uses dynamic simulations data (synthetic high-resolution 
measurements) to further improve the estimation results. 

Index Terms-- Least-squares estimation, load parameters, 
voltage measurements, dynamics, distribution systems. 

I. INTRODUCTION 
Static load models are typically represented by polynomial 

functions of node voltages and, at times, with additional terms 
capturing frequency dependence [1]. Typically, the most 
common polynomial relationships fall under three categories: 
constant impedance (Z), for which the power varies 
proportional to the square of voltage; constant current (I), for 
which power variations are directly proportional to the 
voltage; and constant power load (invariant to voltage 
changes). Every load component exhibits a mixture of such 
voltage-dependent behavior. Bokhari et. al. experimentally 
verified the coefficients of most commonly found residential, 
commercial, and industrial load types in [2]. Identifying the 
right load composition has a direct impact on system stability 
assessments and planning, and therefore a number of 
transmission-level planning studies have delved deeper into 
validating load models using utility surveys and phasor 
measurement unit (PMU) measurements at substations [3]. 
For transient stability assessment [4], it becomes essential to 
also capture the secondary effects of load types on voltages, 
and therefore the Western Electricity Coordinating Council 
developed a composite load model that captures the dynamic 
behavior of induction motors and electronic loads in addition 
to the static ZIP models [5]. Chassin et. al. developed a load 
modeling tool that can estimate the transmission-level 
aggregated load composition for various regions of the 
country subject to seasonal and time of the day variations [6]. 

With the rich background of work at the aggregated 
transmission level and studies needing higher fidelity models 
for distribution networks (either for coupled transmission-and-
distribution or distribution-only analysis), there is a challenge 
to develop accurate models for distribution networks. The 
increased customer activity and the ever-changing mixture of 
load compositions need to be captured. Moreover, given the 
need to control voltages within the ANSI limits, there is a high 
value for estimating the changing load composition and 
forecasting its impact on voltage in real time. Such a paradigm 
will include online load model estimation using real-time 
measurements and state estimation data. A sliding window of 
data (Fig. 2b) will be used for continuous estimation and 
update of load models [7]. To move toward an online 
paradigm, this paper focusses on the load model estimation 
methods for distribution systems considering different types of 
measurement data. 

In the open literature, genetic algorithm and nonlinear 
Levenberg–Marquardt methods have been combined to 
identify parameters for aggregated ZIP and induction motor 
loads [8]. For online applications, an event-driven estimation 
is applied, in which voltage excursion events are detected to 
estimate the composite load models with constant ZIP and 
dynamic loads; whereas without events, only ZIP static 
models are estimated. The least-squares estimation (LSE) 
method with adjustable sliding window is used for parameter 
identification in real time [1]. Banerjee et. al. [9] proposed 
estimating the confidence factor to quantify the uncertainties 
in the load model estimation. In all of these works, the 
estimation methods had performance issues under steady-state 
voltage measurements and required lower voltage phenomena 
to differentiate between load types. A relevant question for 
distribution systems is: Can such voltage dynamics come from 
phenomena such as sudden load changes, switching, and tap 
changing, in addition to fault scenarios? In the absence of 
sensor data from real distribution networks, can dynamic 
simulations [10] help synthesize high-resolution measurement 
data needed for online load model estimation? 

This paper looks into some of these challenges in load 
model estimation for distribution networks. The paper initially 
uses synthetic measurement data from quasi-static time-series 
(QSTS) simulations on an IEEE 13-node feeder model, where 
the voltages are controlled within the ANSI limits. The LSE 
methods are applied for all time-varying loads in a distribution 
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feeder, thereby also capturing the mutual impacts between 
load variations. For online applications, the paper also 
investigates time-varying loads in a feeder and studies the 
effects of locations, window size, sampling rate, and time-
varying load profile on estimation results. Finally, the paper 
uses dynamic simulations of distribution networks to capture 
the lower voltage transients, thereby demonstrating the use of 
very high-resolution synthetic measurement data that can 
improve the accuracy of the load model estimation method. 

II. ZIP LOAD MODEL ESTIMATION: STEADY-STATE DATA 
The IEEE 13-node system (with phase imbalances), Fig. 1, 

was used, and 24-hour QSTS simulation was performed to 
create synthetic measurement data. Measurement errors were 
not considered. The loads (circled in Fig. 1) located in the 
middle (load 671 (Delta-ABC)) and edges of the feeder (loads 
611 (Wye-C), 652 (Wye-A), 675 (Wye-ABC), 634 (Wye-
ABC), and 645 (Wye-B)) were selected to illustrate the 
location effects on estimation results. A time-varying load 
profile, as shown in Fig. 2a, was considered. Simulation 
results (a proxy for sensor data) were used in a sliding window 
manner (i.e., a constant “window size” of sensor data moved 
by “move step,” as shown in Fig. 2b) for the online estimation 
(with “window size-move step” as data overlap between 
successive estimation windows). 

 
Fig. 1 Multiple time-varying loads in IEEE 13-bus system 

 
Fig. 2a 

 
Fig. 2b 

Fig. 2 (a) Load profile, (b) sliding windows for online estimation 

A. Static Load Models 
Eq. (1) and (2) indicate the modeling of constant 

impedance (Z), constant current (I), and constant power (P) 
loads, making up a polynomial function of power versus 
voltage. P0, Q0 are the base active and reactive power of the 
load at rated voltage (V0). ZP, IP, PP, ZQ, IQ, and PQ are the ZIP 
coefficients for the active and reactive power, respectively. 
The ZIP coefficients have two constraints: 1) Z + I + P =1, 
and 2) Z, I, P ≥ 0. 

 (1) 

 (2) 

B. Least-Squares Estimation 
The LSE method is a linear parameter estimation method 

to minimize errors between outputs of model estimation with 
measurements [11]. Eq. (3) and (4) illustrate the parameter 
estimation by using LSE. The parameter vectors [Z, I, P] 
contain ZIP coefficients. The A matrix is built with voltage 
measurements V1, V2, and V3 and the power measurements 
P1, P2, and P3, by phase. V0 and P0 are the rated voltage and 
power of a load. LSE with bounds on the variables are applied 
to meet the ZIP parameter constraints discussed here. 

     (3) 

      (4) 

The mean absolute percentage error (MAPE), Eq. (5), 
evaluates difference between estimation parameters and real 
values [12]. Ai is the actual value, Fi is the estimation, and N is 
the total number of estimation points in the process. 

   (5) 

C. Preliminary Online LSE Results and Sampling Rates 
The function ‘scipy.optimize.lsq_linear’ with optimization 

method setting as Trust Region Reflective algorithm is used in 
the parameter estimation in Python [13]. A sliding window of 
1.5 h (6 samples) was used, with data sampled at 15-min 
intervals. Between two sliding windows, a 15-min moving 
step was used. The 15-min interval depicts the current state-of 
the-art measurements from advanced metering infrastructure 
(AMI) that is deployed in the distribution systems. For each 
sampling window, the rated power (P0*LoadMult) and 
voltage (V0) are used as the base. Then, based on the sampled 
data in that window, the ZIP estimates are updated.  

Six different combinations of ZIP were simulated, and 
LSE was used to estimate the loads. As shown in Table I, the 
LSE method was able to estimate the constant Z and constant 
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P loads fairly accurately with active power and reactive power 
measurements; however, inaccuracy showed in estimating the 
constant I load model for the active or reactive portion of load. 
Figs. 3 and 4 show the estimation results for selected cases at 
load node 671 (hub node). The estimation results in the figures 
follow this convention: red lines are real ZIP parameters, and 
black lines are LSE estimation results (y-axis) updated at 
regular intervals. All x-axes show sliding windows. 

TABLE I PRELIMINARY CONSTANT ZIP LOAD ESTIMATION RESULTS 
Case No P Q Result P Result Q 

1 Z Z Good Good 
2 Z I Good Inaccurate 
3 Z P Good Good 
4 I Z Inaccurate Good 
5 P Z Good Good 
6 I I Inaccurate Inaccurate 

 
Fig. 3 Case 2 results: constant Z for P and constant I for Q load ( y-axis: ZIP 

proportion; x-axis: estimation windows) 

 

 

Fig. 4 Case 5 results: constant P for real power (P), constant Z for reactive 
power (Q) load (y-axis: ZIP proportion, x-axis: estimation windows) 

To confirm the performance in Table I (experimented for 
one hub location, 671), the loads at multiple feeder end 
locations (circled in Fig. 1) were modified to constant P/Power 

and Z/Impedance models for active (P) and reactive power 
(Q), respectively. Further, in the 24-hour simulation, an abrupt 
load model change was introduced in hour 6 to see the impact 
of an event on the estimation. The load model for the active 
power was changed from 100% constant P to 80% constant P 
and 20% constant Z, and for the reactive power changed from 
100% constant Z to 20% constant Z and 80% constant P.  

Fig. 5 shows the estimation results for all the selected 
feeder end loads (three phases, where applicable) for the ZP 
load combination. Despite the abrupt load model change, the 
online estimation settles very close to the correct values for all 
the loads. Further, note that the sampling rate in Fig. 5 is at 30 
s with a 75-min sample window (compared to the earlier 15-
min window), which enabled estimating the ZP proportions 
with better accuracy than lower sampling rates. 

 

 

 
Fig. 5 Time-varying online ZP model estimation: feeder end loads (y-axis: 

ZIP proportion, x-axis: estimation windows) 

The increased sampling rate signifies the importance of 
deploying high-resolution sensors in distribution systems, 
which can help improve the load model estimation accuracy. 
Through sensitivity studies on sampling rates (15 min, 60 s, 30 
s, 5 s), it was found that for the same sliding window size, the 
higher the sampling rate of measurements, the lower the 
MAPE (i.e., a higher estimation accuracy). This is because a 
higher sampling rate is able to capture higher time-varying 
information, especially when there is an event (such as the 
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load model change simulated at hour 6). For online 
applications, the sampling rates could be adjusted dynamically 
based on the voltage events detected. 

D. Constant I Load: Steady-State-Based LSE Improvement 
Table I shows that whenever the constant I is included in 

the ZIP combination, the estimation accuracy suffers. This 
section further investigates the constant I load. 

1) Higher Samping Rate 

Fig. 6 shows that with higher sampling rates of 
measurements (60 s vs. 5 s, during 240-min window), the LSE 
is able to better estimate the constant I load portion; however, 
much improvement is still desired (see phase 2/B for 5-s 
estimation). 

  
Fig. 6 LSE results for constant I: (left) 60-s and (right) 5-s sample rate (load 

671 with 90% I and 10% constant P for active power) ( y-axis: ZIP 
proportion; x-axis: estimation windows) 

2) Individual Component LSE Error Estimation 

In this subsection, we consider only the 100% constant I 
scenario (the last case in Table I) and perform two types of 
estimation: Type 1: conventional LSE, where all components 
are considered during estimation (aLSE), as shown in Eq. (3); 
and Type 2: LSE for each individual component (iLSE). As 
shown in (6), each iLSE equation will provide the respective 
component error with respect to actual measured values. The 
reciprocals of errors (7) will be used to estimate the ZIP 
proportions (subject to (8)). 

(6) 

(7) 

  (8) 

Fig. 7 shows the comparison between the proposed iLSE 
and aLSE methods for real power load (with 15-min window 
data at 5-s intervals). Although aLSE (left-side figures) has 

trouble differentiating the I load (MAPE>70), the proposed 
iLSE method (right-side figures) is able to estimate the I load 
more accurately (MAPE<10). 

  
Fig. 7 Load 671, constant I: (left) conventional LSE (aLSE) and (right) 

individual component LSE (iLSE), with 5-s, 15-min window data ( y-axis: 
ZIP proportion; x-axis: estimation windows) 

The method discussed will work specifically for situations 
when a load has 100% Z or I or P load, thereby aiding the use 
of iLSE for each component and using their error reciprocals 
(a distance measure to actual data). A hybrid estimation model 
(with sLSE and iLSE) can be conceived, where iLSE might be 
used when aLSE results are highly fluctuating. Nevertheless, 
this hybrid model does not solve the estimation issue when a 
combination of ZIP (or ZI or PI) load model is available. 

III. ZIP LOAD MODEL ESTIMATION: DYNAMIC DATA 
Section II used steady-state data (i.e., simulated 15-min 

AMI or 5-s SCADA data) for estimations and discussed the 
extent to which the LSE-based estimations could be improved. 
This section investigates the use of dynamic simulation data 
(<1 s) to mimic the data availability from the proliferation of 
microPMUs and digital disturbance recorders under grid 
modernization futures. Fig. 8, which shows the power-voltage 
relationship as portrayed by the ZIP load model ((1) and (2)), 
illustrates why capturing voltage dynamics will be important 
to improve the estimation, even for static load models, 
specifically for the constant I load. Under normal steady-state 
conditions, the voltages of the loads vary between ANSI limits 
of 0.95 p.u. and 1.05 p.u., which are tightly controlled by 
regulators and capacitors in distribution feeders. In that range, 
the constant impedance load shows nearly linear relation to 
voltage, which is similar to the constant current load. Given 
that LSE minimizes the estimation error, the constant I load 
could be used to substitute for the combination of constant P 
and Z (i.e., average of P and Z, because all three loads seem to 
behave linearly in the band of 0.95–1.05 p.u.), and vice versa. 
For instance, in the scenario with 100% constant I load, the 
MAPE from LSE is 10e-7 for a combination of ZIP 
parameters, whereas the actual constant I estimate is 10e-4 
MAPE. In other words, even though the actual load is 100% 
constant I, the LSE tends to use a combination of ZIP to attain 
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a lower MAPE. As discussed, increasing the sampling 
resolution and using iLSE improved the estimates to a certain 
extent, but to further improve them, it will be necessary to 
capture lower voltage phenomena where the ZIP components 
might be well differentiated, as seen in Fig. 8 (e.g., 0.4–0.9 V).  

 
Fig. 8 Voltage and power relation for ideal static load model 

A. Dynamic simulation for high-resolution measurements 
The delta mode capability in the GridLAB-D tool is used 

to simulate distribution system models with time steps less 
than 1 s, thereby capturing the impact of machine dynamics 
and generator controls [14]. GridLAB-D is capable of making 
the transition from quasi-steady-state simulation (QSTS) to 
delta mode for dynamic simulations. To use voltage dynamics 
for better estimations in this paper, a Woodward diesel 
governor (DEGOV1) with a simplified exciter system has 
been added to a 1.67-MW diesel generator at node 692 [10], 
[15]. The simulation time step is 10 ms, and a step load 
change at node 671 is the event that will initiate a voltage 
transient (a typical event in distribution networks). Fig. 9 
shows the post-event simulation response (P, Q, and V), which 
captures lower voltage oscillations at the load node. 

 
Fig. 9 Dynamic simulation response: 100% constant I load 

Note the use of a step load change event instead of the 
typical load model estimation practices (at the transmission 
level) of using post-fault dynamics. Use of the load change-
related transient data in distribution systems will become more 
relevant under grid modernization futures with higher 
penetrations of behind-the-meter distributed energy resources, 
which will cause more frequent random net load changes. 

B. LSE-Based ZIP Estimation Using Dynamic Data 
To perform load model estimation using dynamic data, the 

data shown in Fig 9 was sampled with the time interval of 10 
ms during a window of 0.3 s (i.e., 30 samples), with an 
overlap of 50 ms (5 samples) across successive sliding 
windows. Fig. 10 shows the estimation results for the 100% 
constant I scenario during a period of 1.2 s. The estimation 
accuracies are higher periodically when 100% constant I is 
being correctly estimated, whereas at other times a 
combination of ZP is approximated for the constant I load. 
The dynamic simulation data seem to improve the estimation 
of the ZIP combinations during certain intervals compared to 
the estimation from steady-state measurements alone. By 
exploiting this periodicity of improved estimation results, the 
LSE was improved by using only those portions of lower 
voltage data that produce increased accuracy. Fig. 11 shows 
the updated estimation results for the 100% constant I scenario 
(corresponding to Fig. 10), where the estimation results are 
significantly improved by exploiting the periodicity (and 
letting the estimations be at the previous estimated values in 
between the periodic voltage fluctuations). 

 
Fig. 10 100% constant I real power: load 671 estimation results 

 

 
Fig. 11 100% constant I real power: load 671 estimation with periodic 

sampling of dynamics (y-axis: ZIP proportion, x-axis: estimation windows) 
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Similarly, Fig. 12 shows the estimation results for a ZIP 
combination scenario of [0.3, 0.1, 0.6] ratio. Again, the 
estimation is better during the first few estimation windows 
because the lower voltage phenomena is captured (see Fig. 9) 
when the voltage is less than 0.9 p.u. By capturing lower 
voltage excursions (as one might see during fault conditions), 
the load estimations will improve. The exercises in this paper, 
however, indicate that even during normal load disturbance 
events (and possibly other switching and tap changing events 
that could produce lower voltage phenomena), the sliding 
window of power-voltage data can be used to estimate the 
load components using online algorithms. 

 
Fig. 12 ZIP combination [0.3, 0.1, 0.6]: load 671 real power estimation 

(y-axis: ZIP proportion, x-axis: estimation windows) 

IV. CONCLUSION 
This paper investigated the LSE method’s performance for 

static ZIP load model estimation in distribution systems in an 
online manner using the sliding window technique of synthetic 
measurement data. The study was done using the IEEE 13-
node system. Synthetic measurement data at varying time 
intervals (namely, 15-min, 5 s, and intra-seconds resolution) 
were generated to mimic different sensor characteristics 
(namely, AMI, SCADA, and microPMUs). The highest time 
resolution data were produced using the dynamic simulation 
of distribution networks (Gridlab-D delta mode), and QSTS 
simulation in OpenDSS was used to generate steady-state data 
(lower time resolution data). 

The LSE method was able to differentiate Z and P load 
characteristics well; however, the performance for the I load 
was not good (in 100% of the I and combinations of ZI, IP, 
ZIP scenarios). The 100% I load estimated was improved with 
a revised version of the LSE method (called individual 
component LSE, iLSE). It was also found that a larger window 
size of data with a higher sampling rate (i.e., higher resolution 
sensor data) generally helped to improve the estimation results 
(because they can capture finer voltage variations); however, 
the LSE results using steady-state data indicated the need for 
lower voltage phenomena data to better differentiate between 
ZIP load characteristics. Therefore, dynamic simulation data 

subject to load disturbances were used, and the LSE 
estimation improved. Capturing such lower voltage 
phenomena (from fault events and other normal condition 
events, such as switching, tap changing, and abrupt load 
changes) in distribution systems offers a viable means of 
performing online static load modeling estimation. In future 
work, these methods will be validated by using real micro 
PMU data from power distribution networks and further 
extending the methods to composite load modeling. 
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