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Abstract—Many consumers in production plants like industrial
robots or tool machines perform repetitive movements, which
lead to a cyclic load demand. However, these load profiles can
usually only be roughly estimated at the planning stage. Hence, a
subsequent online adaptation of the energy distribution is useful
for cases, such as balancing between the charging and discharging
amount of energy storage systems to improve those lifetime and
usage. This paper presents a novel method of online adaptation
for the load distribution of production processes within industrial
direct current (DC) microgrids. The online load profile cycle
recognition was used to adapt the energy distribution among
the sources and loads in the DC microgrid. These sources can
be inverters, rectifiers, energy storage systems or decentralized
power supply units, such as photo voltaic systems. The approach
consists of three major points, the load profile cycle recognition,
the load profile analysis and the online adaptation of the energy
distribution. This solution was tested in simulation and in
experiment with a test rig, that contains an inverter and an
energy storage system. The results show, that the load profile will
be recognized latest from the third cycle and that the imbalance
between charging and discharging amounts of the energy storage
is less than 0.6% for each cycle after adaptation.

Index Terms—Cycle Recognition, Industrial DC Microgrid,
Energy Storage Systems, Voltage Droop Control, Online Adap-
tation

I. INTRODUCTION AND STATE OF THE ART

Due to an increasing awareness for reducing carbon diox-
ide emission, energy efficiency becomes continuously more
important for industry. In the last few years there has been a
growing interest in industrial direct current (DC) microgrids
as a new approach for more energy efficient production
processes [1]. DC microgrids have been already applied in
DC-powered ships or server data centers [2], [3]. In industrial
context DC microgrids are supposed to increase the usage
of recuperation energy and to reduce conversion losses. Im-
balances of the energy supply and demand can be better
compensated with DC microgrids than with state of the art
alternating current (AC) technology [4]. A crucial point for
DC microgrids is the use of energy storage systems (ESS),
which ensure a balance between energy supply and demand
within the microgrid [5], [6]. The challenge is to achieve a
cost-optimized energy distribution between energy suppliers
and energy storage systems. Tool and handling machines
such as robots mainly perform repetitive movements and
therefore, have cyclic power demand (cyclic load profiles) [7].
However, the load profiles of the consumers can usually
only be roughly estimated when designing the production

plant. Therefore a subsequent online adaptation of the energy
distribution depending on certain environmental influences can
achieve improvements to the usage of an energy storage. These
influences include the current contribution of the decentralized
energy supplier, the state of charge (SoC) of the energy storage
unit or the latest electricity price.
In order to perform a subsequent online adaptation of the
energy distribution within the grid, it is necessary to have
knowledge of the cyclic behavior of load profiles of the DC
microgrid participants. In this approach, a programmable logic
controller (PLC) collects the power consumption data of the
individual consumers. The data is then analyzed to identify a
cyclic load profile. If a load profile cycle has been detected, the
energy distribution is readjusted depending on the desired use
case. The use cases are defined by the plant operator and can
e.g. include peak shaving or optimization of own consumption.
It is also possible to adjust the energy distribution to the latest
electricity price. There are already electricity providers which
offer variable electricity tariffs for industries [8].

A. System Description

In Fig. 1 a typical scheme of an industrial DC microgrid is
illustrated. The DC microgrid is primarly supplied by the
AC grid through an unidirectional or bidirectional AC-DC

Consumers
DC Microgrid

AC Grid Supplier (sup)

Energy Storage System (ESS)

Photovoltaic System

Fig. 1. DC microgrid system with AC-Grid supplier (sup), energy storages
systems (ESS), PV System and consumers.
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converter (sup). Another important participant for DC mi-
crogrids are energy storage systems (ESS), such as lithium-
ion batteries or super capacitors. They are usually connected
with grid-interfacing DC-DC converters. Renewable energy
sources, such as photo voltaic systems (PV), become popular
for industries to reach carbon neutrality which is targeted by
an increasing number of nations [9]. These renewable energy
sources can be easily integrated into the DC microgrid with
DC-DC converters. Consumers, such as tool and handling
machines as well as robots are responsible for the production
process. They are driven by three-phase motors, that are
supplied by inverters connected to the DC microgrid. In Fig. 1
the consumers are indicated as four industrial robots.

B. Control of DC Microgrids

Decentralized droop curve control is the most common
approach for controlling the converters within DC microgrids.
If the impedances of the transmission lines are neglected,
it can be assumed that the voltage is equal within the en-
tire grid. Thus, with the help of droop curves, the loads
of the consumers can be distributed proportionally to the
sources [10]. Therefore, droop curves can be considered as
the virtual impedance of the converters [10]. However, droop
curve control is inflexible regarding changing constraints, such
as the SoC of ESSs or volatile power sources (PV). Thus,
the droop curve control could lead to an uncontrolled SoC.
On the other hand, flexibility requirements for industrial DC
microgrids like connecting or disconnecting grid participants
at runtime [4] is also challenging. The different number of
participants can result in a wide range of workload situations
for the DC microgrid. For this reason, many works [3], [4],
[11], [12], propose adaptive droop curve controls with an
additional communication link to a superior control unit like
a PLC. Even though, this approach requires additional cabling
effort and increases complexity due to additional hard- and
software, many works use adaptive droop control due to
its flexibility [10], [13]–[16]. As the constraints within the
microgrid change, the control unit will adapt the droop curve
to a new more energy efficient state. For this reason, also this
work will be based on this approach.

C. Cycle Recognition

This paper is focused on optimizing charging and discharg-
ing of energy storages in production processes with cyclic
load profiles. In order to identify cyclic load profiles, an
algorithm for recognizing cycles is necessary. There are many
works in different research fields discussing cycle or pattern
recognition. These different applications are among others:
medical applications like brain activity, blood pressure or
body temperature of a human, economical applications like
exchange rates of currencies, or industrial applications [17]–
[20]. In terms of production processes Reger et al. [21]
consider cyclic load profile recognition for electric drives of
a multiaxial lathe. The recognition of cycles or patterns with
different lengths are still a problem [22], thus most existing
works finding a cycle require that the approximate length of

the time series is known in advance [23]. For example, gait
recognition applications use a pre-defined reference signal to
recognize a step, [24], [25]. However, the increasing data space
capacity makes it possible to analyze patterns with different
length [18]–[20]. All these approaches have in common that
the data is first generated and then subsequently analyzed
in a data exploration [19], [20], [26]. However, the online
adaptation of the DC microgrid must be done within in
a critical time range. As production processes are usually
controlled by PLCs, the online adaptation algorithm must
be simple enough for devices with limited computational
power and data capacity. This approach also allows to have
a reference signal with rough estimation of length and shape.
At the time of design, the reference load profile is determined
from the motion profile of the machine which is set by the
plant operator. However, to the authors best knowledge, few
publications [21] are available in the literature that address
cycle recognition in terms of production processes for time
critical online adjustments. For this reason, in this work a
novel method is introduced to adapt the energy distribution
of an industrial DC microgrid online, with a load profile
cycle recognition. The remainder of this paper is organized
as follows: In Sec. II the novel concept of cycle recognition
and online adaptation of the energy distribution is introduced.
The approach is investigated in simulation with a simple model
of a DC microgrid in Sec. III. The test rig for experiment is
described in Sec. IV. In Sec. V the simulation is validated and
the results are discussed. Sec. VI concludes with a summary.

II. CONCEPT OF CYCLE RECOGNITION AND ONLINE
ADAPTATION OF ENERGY DISTRIBUTION IN DC

MICROGRIDS

The basic concept of cycle recognition and online adaptation
to optimize the usage of the ESS within the DC microgrid fol-
lows in this section. For this concept a rough estimation of the
cyclic load profile is necessary. That is particular because, the
algorithm needs a reference point in which time scale Test it
has to look for a cycle period. While the machine is planned
by the plant operator, usually simulations or calculations
with engineering or sizing tools are carried out, to determine
sizes, temperature load or other important parameters of the
electrical drives [27]. In this planning state, a rough initial
load profile estimate for the machine can be carried out and
used for cycle recognition. In operating state, a programmable
logic controller or an industrial PC collects the data of the
consumer’s power consumption Prec(t) and stores it. On the
other hand, the length Test of the initial load profile estimation
is saved as well. With that, the further steps of the concept
can be divided into major points:

1) Cycle Recognition which compares the time signal of
a reference load profile Pref with the time signal of the
current load profile Prec.

2) Load profile analysis which evaluate the current load
profile according to the desired use case. It then de-
termines the power limits for all sources of the DC
microgrid (e.g. sup, ESS, PV, etc.).
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3) Online adaptation of droop curves follows according to
the power limits which were determined in the previous
step. With adapted droop curves the energy distribution
between the source is updated.

Due to the required flexibility of industrial DC microgrids [4]
the connecting or disconnecting of consumers change the
cyclic load profile slightly during operation. For this reason,
the cycle recognition and online adaptation have to be executed
repetitively, to respond on such changes. A state machine is
introduced for this approach and visualized in Fig. 2.

A. State Machine

The cycle recognition consists of the following five states.
In first state Record cycle I the loads of the consumers are
collected and recorded. This state starts with the operation
of the machine. The record data length Prec depends on the
estimated Test and must be a multiple of it, to ensure that
the cycle in the load profile is found. After the record time
Trec has reached a multiple of the estimated time for a cycle
period length Test, the state machine switches to the next state
Searching cycle to perform a cross-correlation in CycRec()
with Test and Prec. In Sec. II-B the cross-correlation function
CycRec() will be explained in detail. Depending on the result
of CycRec() the state machine either switches back to Record
cycle I if no cycle was found or it proceeds to Cycle found.

Fig. 2. State machine of the load profile cycle recognition.

In case of the cycle was not found, the algorithm continues
collecting load data from the consumers until the record time
Trec has reached the next multiple of the estimated time Test.
If CycRec() has found a cycle, the cycle will be used as a
reference signal Pref for the next steps. Then, the functions LP-
Analysis() and DroopAdaption() are performed to calculate
and implement the new power limits Ppeak and Pregen in the
Cycle found state. A detailed description of both functions and
the power limits can be found in Sec. II-C and Sec. II-D. After
the load profile analysis and the droop curve adaptation was
successful, the state machine turns into state Record cycle II.
This state behaves equal to state Record cycle I. However,
after Trec reached another multiple of Test the state machine
switches to the Check cycle state. In this state, it is checked
whether the cyclic load profile still remains or there is a new
cycle (e.g. due to a new consumer that is connected to the DC
microgrid). CycRec() is executed again, but this time with
Prec and with the additional input, the reference signal Pref
which was obtained in Searching cycle state. If CycRec() find
the remaining cycle, the state machines goes back to Record
cycle II. If the function hasn’t found a remaining cycle, the
load condition within the DC microgrid has changed. Thus
the whole algorithm needs to start over and the state machine
turns back to Record cycle I.

B. Cycle Recognition

The function CycRec() is the main point of the cycle
recognition. Input of the function is the recorded power data
Prec from all DC microgrid consumers and the estimated
profile length Test. According to the roughly estimated initial
load profile, the recorded power data will be separated into two
sections. The first section contains at least the latest occurred
cycle n with a length of Test, whereas the other section contains
the remaining cycles (n− k) with a length of k · Test. Then,
segments of latest occurred cycle n, are used as signal x and
compared with the section which contains the remaining cycles
(n− k) (indicated as signal y). The mechanism is visualized in
Fig. 3. In order to compare the signals x and y the normalized

Fig. 3. Segments which are chosen for cycle recognition.
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cross-correlation function as

Φxy{l} =

N∑

j=1

x[j] · y[j + l]

√√√√
N∑

j=1

(x[j])2 ·
N∑

j=1

(y[j + l])2

, (1)

is used [28]. In the next step, the algorithm searches for peaks
in the the result of Φxy{l}. The search for peaks is visualized
in Fig. 4. First the mean value and the standard deviation of
the cross-correlation result Φxy, is calculated as Φxy and σ.
Then, the distance of three times standard deviation 3 ·σ from
the mean Φxy is used as the threshold for the peak detection (is
indicated as orange line in Fig. 4). The time distance between
two peaks (e.g. peak 1 to peak 2 in Fig. 4) is the length Tref
of the cycle. Based on the length Tref reference cycle Pref can
be extracted from the record data Prec.

C. Load Profile Analysis

After the reference load profile cycle Pref has been obtained,
it can be used for analysis depending on the desired use case.
In this work, two use cases are considered and introduced in
the following:

Optimization of self-consumption (OSC): This means,
that all energies from braking events are absorbed by the
battery. To prevent an over-charging of the ESS, it has to
be discharged at certain times. In this algorithm the ESS is
discharged in case of peak loads to maintain a constant SoC
of the ESS. However, it must be determined at which power
limit Ppeak the ESS starts to be discharged in order to keep
a balanced SoC. For this reason an energy equilibrium will
be calculated by Algorithm 1. The inputs of Algorithm 1, are
the recognized load profile Pref and braking energy Eregen

obtained by a numerical integration of the load profile’s neg-
ative sections. Negative power means an energy flow entering
the DC microgrid and positive energy flow means leaving
the grid. Eregen is then multiplied by the charge efficiency
ηch of the ESS to yield the charging Energy Ech. Then, the
highest peak of the load profile Pmax and the length of Pref is
determined. After that the iterator a and ∆P are initialized.
Starting from the highest peak demand Pmax a loop scans
the entire load profile and integrating the sections of the load

Fig. 4. Determination of Tref through peak detection.

Algorithm 1: Optimization of Own Consumption (OSC).
Data: Pref (Load profile),
Eregen (Energy from braking events)
Result: Ppeak

1 Ech := ηch · Eregen // Charge efficiency
2 Pmax := max (Pref) // Find max. of load profile
3 M := length (Pref) // Length of load profile
4 a := 1 // Iterator
5 ∆P := 1 // Step-wise Power of 1W

6 while Edch < Ech do
7 Ppeak := Pmax − a · ∆P
8 for b := 1 to M do
9 if Pref (b) > (Pmax − a · ∆P ) then

10 Edch := Edch + ηdis · ∆P · ∆t
11 end
12 end
13 a := a+ 1
14 end

profile which are higher than the current value Pmax−a ·∆P .
Taking into account the discharge efficiency ηdis, this results
in the discharge energy Edch of the ESS. This is repeated until
the energy equilibrium Edch = Ech has been reached - then
Ppeak is determined. For a better understanding, the result of
Algorithm 1 is visualized in Fig. 5 (a). The energy amounts
Epeak and Eregen above Ppeak and below Pregen, are now
covered by the ESS, whereas the amount between Ppeak and
Pregen is contributed by the supplier.

Peak shaving (PS): The maximum load of the supplier
must be limited. If the load demand exceeds the maximum
load Ppeak of the supplier, the ESS starts to support the DC
microgrid. The maximum load of the supplier is defined by the
plant operator. In order to keep the SoC of the ESS constant
over the long-term, the ESS has to be charged whenever the
load demand is low. Algorithm 2 computes the point when
the ESS must be charged. The energy needed by peak shaving
Epeak can be obtained by numerical integration. In most cases
the energy needed by peak shaving will exceed the amount of
energy which is given by braking processes. Thus, there is still
a need to additional charge the battery at low power demand.
Algorithm 2 calculates the charging power limit Pregen for the
additional charge of the ESS. First, the discharging efficiencies

Fig. 5. Use cases for online adaptation: (a) Alg.1: Optimization of Own
Consumption (OSC); (b) Alg. 2: Peak shaving (PS).

This is the author’s version of an article that has been published in the ISIE 2020 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/ISIE45063.2020.9152432

Copyright (c) 2020 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Algorithm 2: Peak shaving (PS).
Data: Pref (Load profile),
Epeak (Energy need for peak shaving)
Result: Pregen

1 Edch := Epeak/ηdis // Discharge efficiency
2 M := length (Pref) // Length of load profile
3 Pregen := 0 // Initialize Pregen at 0
4 ∆P := 1 // Step-wise Power of 1W

5 while Ech < Edch do
6 Ech = 0
7 for b := 1 to M do
8 if Pref (b) < Pregen then
9 Ech := Ech + ηch · (Pregen − Pref (b)) · ∆t

10 end
11 end
12 Pregen := Pregen + ∆P
13 end

ηdis will be taken into account to calculate the discharging
amount Edch. Then the iterator ∆P and the length of the load
profile M will be initialized. The algorithm iterates Pregen

with ∆P until the the energy equilibrium Ech = Edch is
reached. Within that, the algorithm scans the load profile
values, which are below the current Pregen. If yes, the energy
amount ηch · (Pregen − Pref (b)) · ∆t will be added to the
charging amount Ech. For a better understanding, the result of
Algorithm 2 is visualized in Fig. 5 (b). The energy amounts
Epeak and Eregen above Ppeak and below Pregen, are now
covered by the ESS, whereas the amount between Ppeak and
Pregen is contributed by the supplier.

D. Online Adaptation of Droop Curves

In the last step, after Pregen and Ppeak were determined as
described in Sec. II-C, the droop curves can be adapted. An
example of a droop curve sizing for the supplier (blue) and
for an ESS (orange) is visualized in Fig. 6. The droop curves
have to be sized according to the use case, OSC or PS. In
case of a DC microgrid with one supplier and one ESS, the
authors suggest the droop curve sizing according to Table I
for OSC and Table II for PS. The droop curve of the ESS
is set to min(Pref) between Uhigh and Usafe,high in a way,

Fig. 6. Droop Curve adaptation for OSC with the use of Ppeak and Pregen.

TABLE I
DETAILED SIZING OF DROOP CURVES, OSC.

Power sup ESS Voltage in V

P (Umin) P sup
max max(Pref)− Ppeak 530

P (Usafe,low) Ppeak max(Pref)− Ppeak 570

P (Ulow) Ppeak 0 635

P (Unom) 0 0 650

P (Uhigh) Pregen 0 675

P (Usafe,high) Pregen min(Pref) 750

P (Umax) P sup
max,recup min(Pref) 775

TABLE II
DETAILED SIZING OF DROOP CURVES, PS.

Power sup ESS Voltage in V

P (Umin) P sup
max max(Pref)− Ppeak 530

P (Usafe,low) Ppeak max(Pref)− Ppeak 570

P (Ulow) Ppeak 0 635

P (Unom) −Pregen 0 650

P (Uhigh) 0 min(Pref) 675

P (Usafe,high) 0 min(Pref) 750

P (Umax) P sup
max,recup min(Pref) 775

that all energy from regeneration Eregen charges the ESS. As
the supplier droop curve provides the base load, it is set to
Ppeak between Ulow and Usafe,low. Only in case of load peaks
the ESS will be activated. Consequently, the ESS droop curve
is set to max(Pref) − Ppeak. The maximum powers from the
supplier are P sup

max, P sup
max,recup. The idea is to keep a safety

margin within the droop curve between Umin and Usafe,low,
Usafe,high and Umax, respectively. Due to the safety margin,
the DC microgrid stays stable if the load is higher because of
a sudden cyclic load profile change. The voltages in Table I
and Table II were used for the experiment.

III. SYSTEM MODELING AND SIMULATION

A. DC-Grid Modeling

In this work the DC microgrid model, based on [29] and
[30], is simplified to an electric network with one capacity CDC
between the DC terminals. If we neglect the transmission line
impedances, the sum of the participants’ currents in of the DC
microgrid are equal to zero. Then current at the terminals of
the capacity CDC, is

iCDC − iSUP − iESS − iPV − iLoad = 0, (2)

where iSUP is the AC-grid tied supplier’s current, iESS and
iPV are the current outputs from the DC-DC converters which
control the load flow from the ESS and the PV system,
respectively. iLoad is the current of all loads demanded by the
consumers within the DC microgrid. Since this model neglects
the impedances of the transmission lines, it can be assumed
that the DC grid voltage uDC is equal to the capacitance voltage
uc and results to

uDC (t) = uC (t) = u0 +
1

CDC

∫ t

t0

ic (τ) dτ, (3)
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with u0 as the initial voltage and t0 = 0 as the start time and t
as the current time. In the next step, Eq. (3) is transferred from
continuous to discrete time integration approximation with the
time sample ∆t, which yields

ui+1 = ui +
1

CDC
ii ∆t, (4)

with ii as the current and ui as the voltage at discrete time
step i.

IV. EXPERIMENT

For model validation, a DC microgrid test rig (Fig. 7) was
set up which has already been used in [29]–[32]. The test
rig contains mains supply (sup) with adaptive droop curve
control which is the main supplier to the DC microgrid.
The ESS and the DC microgrid are connected via a DC-
DC converter with adaptive droop curve control. As ESS, a
Lithium-ion Battery with 21 kWh energy capacity is used [33].
The total capacity of the DC microgrid is CDC = 14.2 mF,
which is the default configuration of the device, that was
also used for simulation, [34], [35]. For the complete load
representation Pref a motor inverter with the drive D1 in
Fig. 7 is used. In order to absorb the energy which is released
through the load representation by drive D1 a second drive
D2 supplied by another motor inverter is attached. D1 and D2

are mechanically connected through a drive shaft. To perform
different load profiles, D1 is torque controlled and D2 is
controlled at a constant rotational speed. Both drives were set
to a rotational speed of nD = 1800 min−1, as this is the
most efficient speed for these types of drives.

Fig. 7. DC microgrid test rig.

TABLE III
DETAILED ENERGY STORAGE SYSTEM.

Scenario Load profile Mode Ppeak (only PS) Test

I 1 OSC - 115 s

II 2 PS 7 kW 135 s

V. RESULTS

For experiment, two scenarios were performed with two
different load profiles, artificially generated by a validated
model for computing the power consumption of industrial
robots [36]. Load profile 1 consists of two different cycles to
show that the algorithm can adapt to different load profiles and
small changes of the length (Fig. 8 upper plot). The first cycle
has a length of T1 = 122 s and is repeated ten times until
t2 = 1200 s. The second cycle has a length of T2 = 135 s
and is repeated ten times until the end of the experiment.
On the right-upper side of Fig. 8 is a zoom, for a better
visibility of a single cycle T2. The change is also indicated
as a black dashed line in Fig. 8. Load profile 2 with a cycle
length T3 = 133 s and repeated 15 times is demonstrated with
peak shaving (Fig. 10 upper plot). Table III shows the details
including the peak shaving limit.

A. Scenario I

Fig. 8 shows the results of Scenario I. The center plot of
Fig. 8 shows the power of the ESS, whereas Fig. 9 shows the
adapted droop curves of supplier and ESS, at certain points of

Fig. 8. Scenario I - Upper: Load profile 1; Center: Power ESS; Lower: Energy
ESS.
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Fig. 9. Droop curve adaptation in Scenario I

time. Fig 9 also shows a good coverage between the algorithm
tested in simulation and in experiment with an maximum error
of ε = 0.88 %. At t0 = 0 s of Scenario I an initial droop
curve, which tendentially charges the ESS, was applied (Fig. 9,
’Adaptation t0’). The initial droop curve is not calculated
by any load profile analysis, but was sized by a first rough
estimation. At t1 = 500 s the algorithm recognized the cyclic
load profile and the droop curve ’Adaptation t1’ in Fig. 9,
sized according Sec. II-D, was set. Later on, at t2 = 1200 s
the load profile changes to second cyclic profile. This will
not be immediately recognized by the algorithm as it takes at
least Test. Thus the droop curve ’Adaptation t1’ still remains.
At t3 = 1450 s, the state machine went through CheckCycle
recognized that a cycle has changed. However, the new cycle
was not yet long enough recorded to recognize the second
cyclic profile. As a consequence, algorithm resets to the initial
droop curve (Fig. 9, ’Adaptation t3’) which was also set at t0.
At t4 = 1650 s the algorithm recognizes the second cyclic load
profile and sets the corresponding droop curve ’Adaptation t4’
according Sec. II-D, visualized as in Fig. 9. The lower plot
of Fig. 8 shows the energy consumption of the ESS. It shows
that the amount of charging and discharging of the ESS is
balanced, after a cycle was recognized (between t1 < t < t2,
and t > t4). The imbalance between charging and discharging
for one cycle is significantly low: it is δ = 0.60 % for the
first cyclic profile and second cyclic profile δ = 0.10 %. This
imbalance comes from uncertainties of the charging ηch and
discharging efficiencies ηdis of the ESS.

B. Scenario II

Scenario II with Load profile 2 and PS as use case is
shown in Fig. 10. The maximum peak load Ppeak of the
supplier was set to 7 kW. The initial droop curve at t0 was
set so that Ppeak is not exceeded by the supplier and that

the ESS is tendentially discharged (’Adaptation t0’ Fig. 11).
At t1 = 580 s the algorithm recognized the cycle, the droop
curve is set to ’Adaptation t1’ (Fig. 11). It can be seen that the
supplier still not exceeds the Ppeak limit, while the ESS energy
consumption is balanced. The imbalance between charging and
discharging amounts is merely δ = 0.40 %. The error between
droop curve estimation between simulation and experiments
is ε = 0.69 %

VI. CONCLUSION

This paper has shown that a cycle recognition with subse-
quent online adaptation of the energy distribution can keep
balance between charging and discharging amounts of an en-
ergy storage system. Experiments showed, that the imbalance
error is less than δ = 0.6 % for a cycle period. Thus, the
online adaptation improves the balance of the charging and dis-
charging control of the energy storage system. However, due

Fig. 10. Scenario II - Upper: Load profile 2; Center: Power sup; Lower:
Energy ESS.

Fig. 11. Droop curve Adaptation in Scenario II.
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to the small imbalance which is still left, the energy storage
will eventually discharge or charge completely. A combination
with a state of charge-based droop curve adaptation which was
suggested in [29] and [30] can solve this problem, and will
be considered in future work. Furthermore, the algorithm was
not tested with break in production or with errors of single
consumers. This can be also considered in a future work.
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