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VT-ADL: A Vision Transformer Network for Image
Anomaly Detection and Localization
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Abstract—We present a transformer-based image anomaly
detection and localization network. Qur proposed model is
a combination of a reconstruction-based approach and patch
embedding. The use of transformer networks helps preserving
the spatial information of the embedded patches, which is later
processed by a Gaussian mixture density network to localize the
anomalous areas. In addition, we also publish BTAD, a real-world
industrial anomaly dataset. Our results are compared with other
state-of-the-art algorithms using publicly available datasets like
MNIST and MVTec.

Index Terms—Anomaly Detection, Anomaly segmentation,
Vision transformer, Gaussian density approximation, Anomaly
dataset

I. INTRODUCTION

In computer vision, an anomaly is any image or image
portion which exhibits significant variation from the pre-
defined characteristics of normality. Anomaly Detection is thus
the task of identifying these novel samples in supervised or
unsupervised ways. A system which can perform this task in
an intelligent way is hugely in demand, as its applications
range from video surveillance [[1] to defect segmentation [2],
[3]], inspection [2], quality control [4], medical imagining [,
financial transactions [6] etc. As it can be seen from the
examples, anomaly detection is particularly significant in the
industrial field, where it can be used to automatically identify
defective products.

Recent efforts have been made to improve the anomaly
detection task in the field of deep learning. Most of the works
try to learn the manifold of a single class representing normal
datal[[7], using an encoding-decoding scheme, and their output
is a classification of the input image as either normal or
anomaly, while fewer works deal with the task to segment
the local anomalous region in an image[8]. Majorly, the
methods either use a reconstruction-based approach, or learn
the distribution of the latent features extracted by a pre-trained
network or trained in end-to-end fashion.

Motivated from the above facts and industrial needs, we
developed a Vision-Transformer-based image anomaly detec-
tion and localization network (VT-ADL), which learns the
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Fig. 1. The three products of BTAD dataset. First column shows an example of
normal images, second column shows anomalous images, third column shows
the anomalous image with pixel-level ground truth labels, fourth column
shows the predicted heat map by our proposed method.

manifold of normal class data in a semi-supervised way, thus
requiring only normal data in the training process. The vision
transformer network model, recently proposed by Dosovitskiy
et al. [9], is a network designed to work on image patches
trying to preserve their positional information. In our work
we show how an adapted transformer network can be used for
anomaly localization using Gaussian Approximation [[10]], [11]]
of the latent features and also how different configurations can
be tweaked to win some of the shortcomings of the vision
transformer network. In addition to this, we are also pub-
lishing a real-world industrial dataset (the beanTech Anomaly
Detection dataset — BTAD) for the anomaly detection task.
The dataset contains a total of 2830 real-world images of 3
industrial products showcasing body and surface defects.

II. RELATED WORK

Image-based anomaly detection is not a new topic in the
industrial use cases, as it has been used in many inspection and
quality control schemes, however is still under investigation
with modern deep learning techniques. Historically, several



classical image processing and machine learning methods
have been used to perform anomaly detection tasks, such as
Bayesian networks, rule-based systems, clustering algorithms
etc. However, in the recent years the trend has been shifted to
the use of deep learning methods, as the convolutional layers
have revolutionized this field. Most of the proposed approaches
are based on image reconstruction: in this case, the network is
trained to reconstruct the input image. If the network is trained
on normal data only, it is assumed it will fail at properly re-
constructing anomalies. Network architectures mostly consist
of various configuration of autoencoders [[12], [13]], [14], [L5],
[16] or Generative Adversarial Network (GAN) [[17]], [18]]. At
image level, the simplest way is to train using MSE loss, and
in turn expect higher reconstruction loss for the anomalous
images. Additional information of the latent space [19] are also
used for better classification. Yet for the anomaly localization,
pixel-wise reconstructed error is taken as the anomaly score.
Some methods also tried to use visual attention maps [20],
[13] from the latent space. Reconstruction based methods are
very intuitive and explainable, but their performance is limited
when it comes to capture small localized anomalies[21]].

Regarding the learning method, few works adopt a fully
supervised approach. It consist in training a binary classifier,
in which two classes represent the normal and the anomalous
data. However real-world anomaly datasets are extremely
imbalanced, since the number of anomalies is typically orders
of magnitude smaller than the number of normal data. This
requires specialized approaches to handle data imbalance [22],
[23]. The majority of the solutions however rely on a semi-
supervised approach, in which only normal data are available
in the training step. In this case the system tries to learn a “nor-
mality” model from the training data and thus subsequently
classify new samples as anomaly if they don’t fit the model [[1]],
[L6], [12], [24]. Recently P.Bergmann et.al [8] developed a
novel network and training scheme for both image anomaly
detection and localization. The approach uses a student-teacher
learning scheme and knowledge distillation for achieving state-
of-the-art results and a single network for both classification
and pixel level anomaly localization. The work achieves good
results, but it uses a complex training scheme with high num-
ber of student networks, which again demands high computing
resources for the industrial applications. Finally, some models
are based on unsupervised learning: in this case the most
common approach is to use the deep network only for feature
extraction and then later use some clustering algorithm, such
as one-class SVM or SVDD for the final classification. Some
of the works handled these two steps independently [25], [26],
while others achieved better results by doing the two steps
collectively, in order to extract the best features for subsequent
anomaly detection [27], [28].

III. PROPOSED MODEL

The proposed model combines the traditional
reconstruction-based methods with the benefits of a patch-
based approach. The input image is subdivided in patches
and encoded using a Vision Transformer. The resulting

features are then fed into a decoder to reconstruct the original
image, thus forcing the network to learn features that are
representative of the aspect of normal images (the only
data on which the network is trained). At the same time, a
Gaussian mixture density network models the distribution
of the transformer-encoded features in order to estimate
the distribution of the normal data in this latent space.
Detecting anomalies with this model automatically allows
their localization, since transformer-encoded features are
associated to positional information.

An overview of the model is depicted in Figure 2] To handle
a 2D image X € RHXWXC  we break the image into a
sequence of 2D patches X, € RVX(PXPXC) \where (H, W)
is the original image resolution, C' is the number of channels,
(P, P) is the patch dimensions and N is the resulting number
of patches N = HW/P?. These patches are then embedded
to a D-dimensional embedding space through a linear layer.
Positional embedding is added to the patch embedding to
preserve the positional information.

o Transformer Encoder: The transformer encoder layer
is based on the work by Vaswani et al [29] and its
application to images by Dosovitskiy et al [9]]. The input
patches are first mapped to the embedding space and
are augmented with positional information (eq. [I), then
passed to a Multi-headed Self-Attention block (eq [2)
and a MLP block (eq. [3). Layer normalization (LN) is
applied before the two blocks and residual connections
are added after the two blocks. We didn’t use the dropout
layer throughout the network, as this causes instability in
the Gaussian approximation network. MLP contains two
linear layers with a GELU activation function.

Zy = [ X E; XJE; ..; X)'E] 4 Ejpos, €]

E e RFP*OxD g e RN+1)xD

Zy = MSA(LN(Zi1)) + Zi_1,l=1.L (2

Z = MLP(LN(Z)))+ Z,,1 =1..L 3)

The final encoded patches are reshaped and projected in
to a reconstruction vector via learned projection matrix.

e Decoder: The decoder is used to decode the reconstruc-
tion vector back to the original image shape. It maps
R%12 — REXWXC Tn our experiments with the MV Tec
and BTAD dataset, we used 5 transposed convolutional
layers, with batch normalization and ReLU in-between,
except for the last layer, we use tanh as the final non-
linearity.

o Gaussian Mixture Density Network: This kind of net-
work estimates the conditional distribution p(y|x) [10] of
a mixture density model. In particular, the parameters of
the unconditional mixture distribution p(y) are estimated
by the neural network, which takes the image embedding
(conditional variable x) as the input. For our purpose we
employ the Gaussian Mixture Model (GMM) with full
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Fig. 2. Left image: model overview. Image is split into patches, which are augmented with positional embedding. The resulting sequence is fed to the
Transformer encoder. Then encoded features are summed into a reconstruction vector which is fed to decoder. The transformer encoded features are also fed
into an Gaussian approximation network [10]], which is later used to localize the anomaly. Right image: detailed structure of the tranformer encoder (image

from [9]).

co-variance matrix Xy as the density model. The density
estimate p(y|x) follows the weighted sum of K Gaussian
functions.

K
Plylz) = wi@; O)N (ylp(2:0), 07 (;0))  (4)
k=1

wherein, wy(z; 6) denotes the weight, px(x; 0) the mean,
o%(x;0) the variance of the k-th Gaussian. All the GMM
parameters are estimated using the neural network with
parameters 6 and input x. The mixing weights of the
. . . K

Gaussians must satisfy the constraints ) ,~ ; w(z;0) =
1 and wy(x;0) > 0 Vk. This is achieved using the
softmax function to the output of weight estimation:

exp(ay (x
W ( Jf) _ = ( k ( u)))
>i—1 €zp(ay’ (z))
wherein a}’(x) € R is the logit scores emitted by the
neural network. Additionally, standard deviation o (x)

must be positive. To satisfy this, a softplus non-linearity
is applied to the output of the neural network.

ok(x) = log(1 + exp( x x)); =1 (6)

Since, mean py(x;60) doesn’t have any constraint, we
used linear layer without any non-linearity for the re-
spective output neurons.

(&)

IV. OBJECTIVE AND LOSSES

Training the network has two objectives: on one side we
want the decoder output to resemble the network input, as
in reconstruction-based anomaly detection. This forces the
encoder to catch features that are relevant to describe the
normal data. On the other side, the goal is to train the
Gaussian mixture density network to model the manifold
where the encoded features of normal images reside. For the

reconstruction-based part we adopted a combination of two
losses:

e Mean Squared Error (MSE): it is a pixel-level loss, which
assumes independence between pixels. MSE loss is com-
puted as the average of the squared pixel-wise differences
of the two images, and can be formally defined in terms
of the Frobenius norm as w17 | X — X||%, where X is
the input and X is the output of the decoder network
(respectively the original and the reconstructed image),
and W, H are the image width and height respectively.

o Structural Similarity Index - The Structural Similarity
Index (SSIM) [30] is used to measure the image similarity
by considering visual properties that are lost in the
standard MSE approach:

(2papry + c1)(202y + C2)

SSIM (x,y) =
@) = a2 T a)ol+ 02 1 )

)

where, p., p,, are the average values of input and
reconstruction image, U?E, 05 are the variance of input and
reconstructed image, o, is their co-variance and cy, cp

are the two constants used for numerical stability.

For the Gaussian mixture density network training we
used the Log-Likelihood Loss (LL). The parameter 6 of the
Gaussian estimation network are fitted through maximum
likelihood estimation. We minimize the negative conditional
log-likelihood of the normal class training data.

K

0* = —argmin log po (Yn|xn 8

g} ; 800 (Yn7n) (8)

For the purpose of regularization, we also add Gaussian noise

N(0,0.2) to the transformer embedded features before feeding

it to the GMM model. Adding noise during training is seen

as a form of data augmentation and regularization that biases
towards smooth functions [10], [31].
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Fig. 3. Anomaly detection on MVTec dataset. First row shows the actual
anomalous image of bottle, cable, capsule, metal nut and brush. second row
shows the actual ground truth and third row shows the generated anomaly
score and anomaly localization by our method

Hence, the final objective function to minimize is the
weighted addition of the above three losses.

L(X) = —LL+MMSE(X,X) 4+ X\SSIM(X,X) (9)

wherein, A1 = 5 and Ay = 0.5 for all the datasets used in this
study.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
by our proposed network VT-ADL. We first describe the
used datasets, training and testing procedures and comparative
results. We also introduce the beanTech Anomaly Detection
Datasetﬂ (BTAD), a novel dataset of real-world, industry-
oriented images composed of both normal and defective
products. The defective images have been pixel-wise manually
labeled with a ground-truth anomaly localization mask.

A. Datasets

o« MNIST: MNIST dataset consists of 60K gray images
of hand written digits. Although this dataset was not
originally developed for anomaly detection tasks, it has
often been used as a baseline dataset, thus we used it
to compare with other state-of-the-art approaches. For
training, one class has been considered as normal, while
all others as anomaly.

e MVTec Dataset: It’s a real-world anomaly detection
dataset. It contains 5,354 high-resolution color images
of different textures and objects categories. It has normal
and anomalous images which showcase 70 different types
of anomalies of different real-world products. It contains
gray scale images as well as RGB images. Gray scale
images are quite common in industrial scenarios. With
this dataset, all the images were first scales to 550 x 550
pixels and then center cropped to 512 x 512pixels before
being passed to the model.

Uhttp://avires.dimi.uniud.it/papers/btad/btad.zip

« BTAD Dataset: It contains RGB images of three in-
dustrial products. Product 1 is of 1600 x 1600 pixels,
product 2 is of 600 x 600 and product 3 is of 800 x 600
pixels in size. Product 1, 2 and 3 have 400, 1000 and 399
train images respectively. While training all the images
were first scaled to 512 before passing to the model. For
each anomalous image, a pixel-wise ground truth mask
is given.

While training, we fed our model using the normal class data
only. While testing, a combination of reconstruction losses and
the maximum of the log-likelihood loss are used to perform
global anomaly detection, while the log-likelihood loss alone
is used for anomaly localization. In this second case, we
stored the log-likelihood loss for all the patch positions and
then upsample it using 2D bilinear-upsampling, to input image
size, to obtain the heatmap. Then we employed the PRO (Per
Region Overlap) [8], as the evaluation metric for the
MVTec and BTAD datasets. For computing PRO, heatmaps
are first thresholded at a given anomaly score to make the
binary decision for each pixel. Then the percentage of overlap
with the ground truth (GT) is computed. We followed the same
approach as in [8], to find the PRO value for a large number of
increasing thresholds until an average per-pixel positive rate
of 30% is reached. For the MNIST dataset, we adopted AUC
(area under ROC curve) as a performance metric in order to
show comparative results.

The hyper-parameters used in the training are show in

table [II

Adams Ir rate 0.0001
Weight decay 0.0001
Batch Size 8
Epochs 400
No. of Gaussian’s | 150
Patch Dimension P =064

TABLE T
TRAINING HYPERPARAMETERS

B. Results

Before considering the problem of anomaly localization,
we tested our model on the MNIST dataset, which has been
widely used as a reference dataset for anomaly detection. In
this case, one class is selected as normal and anything else
is considered anomalous. The anomalies are thus defined at a
global level, rather than being localized in specific, possibly
small image patches as in the more challenging MVTec and
BTAD datasets. For this reason, anomaly detection is per-
formed only by using the global reconstruction losses, without
measuring the localization output. The results are reported in
table where they are compared with the performances of
other popular anomaly detection techniques (results taken from
[19], [14]). As it can be seen, the proposed method almost
always outperforms the competitors.

Table [l shows the results results for MVTec dataset. The
value shows the PRO curve up to an average false positive rate
per-pixel of 30% is reported. It measures the average overlap



cl OC | KDE | DAE | VAE lC)iléN Lsa | Deep | Pyr | gy apr
ass | gvMm GAN SVDD | AE .

0 0.988 | 0.885 | 0.991 | 0.994 | 0.531 | 0.993 | 0.98 0.995 | 0.99

1 0.999 | 0.996 | 0.999 | 0.999 | 0.995 | 0.999 | 0.997 | 0.999 | 1

2 0.902 | 071 | 089 | 096 | 0.478 | 0.959 | 0.017 | 0.941 | 0.976

3 0.950 | 0.693 | 0.935 | 0.947 | 0.517 | 0.966 | 0.019 | 0.966 | 0.976

4 0.955 | 0.844 | 0.921 | 0.965 | 0.739 | 0.956 | 0.949 | 0.960 | 0.984

3 0.968 | 0.776 | 0.937 | 0.963 | 0.542 | 0.964 | 0.885 | 0.972 | 0.971

6 0.978 | 0.861 | 0.981 | 0.995 | 0.592 | 0.994 | 0.083 | 0.993 | 0.995

7 0.965 | 0.884 | 0.964 | 0.974 | 0.789 | 0.980 | 0.946 | 0.993 | 0.9

8 0.853 | 0.669 | 0.841 | 0.905 | 0340 | 0.953 | 0.930 | 0.895 | 0.974

9 0.995 | 0.825 | 096 | 0.978 | 0.662 | 0.981 | 0.965 | 0.989 | 0.9

Mean | 0.95 | 081 | 094 | 097 | 062 | 097 | 0.048 | 097 | 0.984

TABLE 1I
AUC RESULTS OF ANOMALY CLASSIFICATION USING MNIST, EACH ROW SHOWS THE NORMAL CLASS OF THE TRAINED MODEL. COMPARATIVE
RESULTS ARE TAKEN FROM [19]], [[14]
CNN .
oc | K AE AE Ano Uni. | VI-ADL
Category | 1NN | qynt | Means | MSE | YAE | ssiM | GAN FDeiz" Stud. | (Ours)
Carpet 0512 | 0355 | 0253 | 0456 | 0501 | 0.647 | 0.204 | 0.469 | 0.695 | 0.773
Grid 0228 | 0.125 | 0.107 | 0582 | 0.224 | 0.840 | 0.226 | 0.183 | 0.819 | 0.871
Leather 0.446 | 0.306 | 0.308 | 0.819 | 0.635 | 0.561 | 0.378 | 0.641 | 0.819 | 0.728
Tile 0822 | 0722 | 0779 | 0.897 | 0.87 | 0.175 | 0.177 | 0.797 | 0.912 | 0.796
Wood 0502 | 0336 | 0411 | 0.727 | 0.628 | 0.605 | 0.386 | 0.621 | 0.725 | 0.781
Bottle 0898 | 0.85 | 0495 | 001 | 0.897 | 0.834 | 0.62 | 0.742 | 0.018 | 0.949
Cable 0.806 | 0431 | 0513 | 0.825 | 0.654 | 0478 | 0383 | 0558 | 0.865 | 0.776
Capsule 0.631 | 0554 | 0387 | 0.862 | 0526 | 0.86 | 0.306 | 0.306 | 0.916 | 0.672
Hazelnut 0.861 | 0.616 | 0.698 | 0.017 | 0.878 | 0.916 | 0.698 | 0.844 | 0.937 | 0.897
Metal Nut | 0.705 | 0319 | 0351 | 0.83 | 0576 | 0.603 | 032 | 0.358 | 0.895 | 0.726
Pill 0725 | 0544 | 0514 | 0.893 | 0.769 | 0.83 | 0.776 | 046 | 0.935 | 0.705
Screw 0.604 | 0.644 | 0.55 0754 | 0559 | 0.887 | 0466 | 0277 | 0.928 | 0.928
Toothbrush | 0.675 | 0.538 | 0.337 | 0.822 | 0.693 | 0.784 | 0.749 | 0.151 | 0.863 | 0.901
Transistor | 0.68 | 0.496 | 0.399 | 0.728 | 0.626 | 0.725 | 0.549 | 0.628 | 0.701 | 0.796
Zipper 0512 | 0355 | 0.253 | 0.839 | 0.549 | 0.665 | 0.467 | 0.703 | 0.933 | 0.808
Means 064 | 0479 | 0423 | 0.79 | 0.639 | 0.694 | 0.443 | 0515 | 0.857 | 0.807
TABLE TIT

COMPARATIVE RESULTS ON MVTEC DATASET. COMPARATIVE RESULTS TAKEN FROM [8§]].

PRO PR

AE AE
Prdt Score | AUC MSE | MSE+SSIM
ours ours
0 0.92 0.99 0.49 0.53
1 0.89 0.94 0.92 0.96
2 0.86 0.77 0.95 0.89
Mean | 0.89 0.90 0.78 0.79
TABLE TV

RESULTS ON BTAD DATASET. WE ALSO COMPARE OUR PR-AUC WITH
THE RESULTS OF CONVOLUTIONAL AUTOENCODERS TRAINED WITH MSE
LOSS AND MSE+SSIM LOSS.

of each ground truth region with the predicted anomaly region
for multiple thresholds. Our proposed methods performed at
par with the most recent state of the art algorithms (results
taken from [8]]), and even outperformed them in 7 product
categories. for our newly published BTAD dataset, we are also
reporting the first results in table with the similar model
configuration as of MVTec. For comparison we also report
PR-AUC of a basic convolutional autoencoder on BTAD with
MSE and MSE+SSIM loss.
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Fig. 4. Plot shows the PRO score for the different no of Gaussians used in
the Gaussian approximation.

C. Gaussian mixture model tuning

Here we justify the choice of number of Gaussians for our
mixture model. For this we trained on MVTec dataset with
increasing number of Gaussians and calculated the PRO-score
(figl). we found that with increasing number of Gaussians,
PRO-score increases and then becomes constant. We also tried



to see effect of noise addition in the transformer encoded
features for generalisation. With noise added, PRO score
with 150 Gaussians is 0.897 in contrast to 0.807 without
noise. Hence, noise addition actually helps in generalizing the
learning procedure.

VI. CONCLUSIONS

We proposed a transformer-based framework which uses
reconstruction and patch-based learning for image anomaly
detection and localization. The anomalies can be detected at
a global level using a reconstruction-based approach, and can
be localized with the application of a Gaussian mixture model
applied to the encoded image patches. The achieved results
are at par with or outperform other state-of-the-art techniques.
We also published BTAD, a real world industrial dataset for
the anomaly detection task.
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