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Abstract—Indoor localization systems play an important role to
track objects during their life-cycle in indoor environments, e.g.,
related to retail, logistics and mobile robotics. These positioning
systems use several techniques and technologies to estimate the
position of each object, and face several requirements such as
position accuracy, security, range of coverage, energy consump-
tion and cost. This paper describes a practical implementation
of a BLE (Bluetooth Low Energy) based localization system
that combines multilateration and Kalman filter techniques to
achieve a low cost solution, maintaining a good position accuracy.
The proposed approach was experimentally tested in an indoor
environment, with the achieved results showing a clear low cost
system presenting an increase of the estimated position accuracy
by 10% for an average error of 2.33 meters.

Keywords: Indoor Positioning System, Internet of Things, Blue-
tooth Low Energy, Kalman Filtering, Multilateration.

I. INTRODUCTION

Nowadays, the value of the data assumes a crucial role
in the digital transition era, being noticed a huge amount of
devices connected to Internet, aiming to exchange, share and
store data, using Internet of Things (IoT) technologies. In fact,
as estimated by Cisco, the number of connected objects to
Internet exceeds 50 billion in 2020 [1]. The data collection is
performed using a significant plethora of sensors that can make
measurements in different types of variables, and uses IoT
technologies to transmit data to Internet applications, usually
forming wireless sensor networks (WSN) [2]. The collected
data may be analysed through the use of Artificial Intelligence
algorithms to extract knowledge, e.g., related to monitoring,
diagnosis, prediction, optimization and planning, contributing
to improve the systems’ performance, decision-making tasks
and people’s life quality.

Several applications, e.g., logistics, retail and mobile
robotics, require the access to information related to the
localization of objects, e.g., materials, products, devices and
people, demanding an association of the object position in
the environment [3]. This localization process should consider
the use of a variety of sensors to track the position of the
objects and IoT technologies to transmit the acquired infor-
mation to other devices and applications. In such systems, the

localization accuracy depends on the application requirements,
ranging from centimeters on game apps to meters for indoor
geolocation [4].

The indoor positioning system (IPS) is a particular localiza-
tion system where the aim is to localize objects or living beings
inside an indoor environment. In such environments, the use
of Global Positioning System (GPS) techniques can not be
applied [5] since the satellites signal has a strong attenuation
when crossing obstacles like walls, which are common in
indoor environments. Additionally, these solutions present a
high energy consumption and economic cost, as well as a
weak accuracy, (usually presenting a position accuracy over
5 meters) [6].

An IPS consists in tracking an object inside a building by
applying techniques for estimating its localization, mainly us-
ing Trilateration, Triangulation, Scene Analysis and Proximity
methods [7], [8], providing a faster calculation of the position
and intending to get a better accuracy. The implementation of
an IPS faces some requirements and challenges, e.g., accuracy,
range of coverage, security, availability, energy consumption
and cost [7], [8]. However, indoor positioning systems are
dependent of the application context and it is not mandatory
to satisfy all of these requirements [8].

Having in mind to develop a low cost IPS solution while
presenting low power consumption and good accuracy, this
paper describes a Bluetooth Low Energy (BLE) based ap-
proach that combines Multilateration (MLT) and Kalman filter
(KF) techniques to smooth the statistical noise and reduce the
position error. This approach was experimentally implemented
and tested in a laboratory facility consisting of an environment
containing several obstacles such as walls, office desks, work-
benches, partitions and robot stations. The obtained results
are promising, with the low cost and low power consumption
approach presenting a position error of less than 2.33 meters.

The rest of the paper is organized as follows: Section II
presents the related works and Section III describes the pro-
posed indoor positioning system model that combines Multi-
lateration and Kalman Filter techniques. Section IV presents
the experimental implementation and Section V discusses the
achieved experimental results. Finally, Section VI rounds up
the paper with the conclusions and points out the future work.978-1-7281-9023-5/21/$31.00 © 2021 IEEE
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II. RELATED WORKS

The indoor positioning goal is to locate objects in an
indoor environment, e.g., objects in a warehouse or people
in a hospital. The environment is usually complex, being
characterized by the existence of obstacles, floor layouts and
reflections, etc, that can affect the transmission of the signal
used to measure the object’s position [9]. In these indoor
environments, the traditional GPS systems do not have a good
performance, e.g., due to existence of walls that strongly
attenuates the signal [7], [10].

There are several techniques and models to estimate the
location through information obtained from wireless commu-
nication technologies signals transmitted and received between
the objects and the Access Points (APs). In such systems,
several techniques can be used to calculate the distance of an
object to an AP, namely the Angle of Arrival (AoA), Time
of Arrival (ToA), Time Difference of Arrival (TDoA) and
Received Signal Strength Indicator (RSSI) [9].

Systems that employ the AoA technique need to have
an antenna array that detects the angle of arrival, and the
receiver’s position is estimated by using the triangulation
method. However, the AoA method needs to have a complex
hardware with a high accuracy in order to obtain a good
estimation [7]. ToA is one of the most precise models and uses
the time synchronism between the transmitter and the receiver.
Using the transmission time, it is possible to calculate the
distance [10], but the need to employ synchronism increases
the implementation costs. TDoA is similar to ToA since it
also requires a synchronous behavior between devices, but
searches the absolute signal propagation time among multiple
receiver’s, being the distance computed through the time
difference in each receiver [8]. The distance of an object to
an AP can also be calculated according to the RSSI value,
which is an indication of the power level being received by
the antenna, being the most popular method since it does not
require extra hardware or need to synchronize the devices [11].
This method is susceptible to environment’s noise that affects
the accuracy in the positioning system [6].

In order to locate a target inside the environment, several
positioning methods can be used, namely Trilateration, Trian-
gulation, Scene Analysis and Proximity [8]. These position-
ing methods are employed in combination with the distance
calculation techniques, for example in the Scene Analysis
method it is necessary to build a database containing a specific
information (called fingerprint) about the environment, so the
RSSI value can be used as information to build a signal map
of the scenario.

In terms of connection between the objects and APs, sev-
eral wireless technologies can be used such as WiFi, Radio
Frequency Identification (RFID), Ultra Wide Band (UWB)
and Bluetooth Low Energy (BLE) [9]. Nevertheless, each
technology has advantages and drawbacks in the localization
process, e.g., WiFi is the simplest option since it does not
need an extra hardware for the localization system due to
wide availability of APs inside buildings. However, the WiFi’s

APs are employed to maximize the signal transmission and
not for indoor location [6]. Moreover, it presents a higher
energy consumption which is not recommended in localization
systems [12]. Among the wireless technologies, BLE is a
suitable and attractive approach for positioning applications
due to its beaconing mechanism, low power consumption and
affordability [10].

Aiming at a wide adoption, it is desirable that a localization
system is available to the users, cost efficient, little energy
consumption, wide reception range, high accuracy, low delay
and good scalability [8]. Nevertheless, a system can have
a good acceptance while not satisfying all of these factors,
depending on the application context.

In order to improve the system accuracy some alternatives
can be employed such as Probabilistics Methods (e.g., Kalman
Filtering and Bayesian Filtering), Artificial Neural Network
(ANN) and Machine Learning (e.g., Support Vector Machine
and Particle Swarm Optimization). As example, an indoor
localization simulation based on BLE using a hybrid approach
that combines the Fingerprint (FP) and MLT techniques was
proposed in [13]. An uniform motion is assumed and the
lowest error achieved is 2.46 m when considering 5 APs in
an environment of (60× 40) m [13].

A BLE approach that weights the Trilateration with a
Kalman filter combined with Channel Diversity is proposed
in [14]. The lowest achieved error is 1.82 m for a moving
device and 0.7 m for static devices in a room of approximately
(6.2× 8.7) m [14]. Other example is related to an adaptive
multilateration BLE-based method that presented an error of
3.02 m in a (32.5× 19.2) m environment [15]. In [10] the
fingerprinting technique is employed using WiFi, which leaded
to an error of 8.5 m whilst with BLE the error was decreased to
2.6 m in 95% of the time in a (45× 12) m environment [10].
In [16] BLE and WiFi were aggregated, and the error is
lower than 3.58 m in 90% of the time for a (40× 8) m
environment [16].

These solutions are based on commercial beacons device
and the majority of them used a high density of devices in
the environment to improve the precision, which increases
the implementation costs. Furthermore, the implementations
based on WiFi have a high power consumption due to the
high scan time of this technology decreasing the battery
lifetime. The majority of the proposals are based on the
RSSI technique and even though investing on good devices,
the signal will be affected by environment interference and
phenomena that compromises the precision, namely the fast
fading, that sometimes causes missing of data packets that can
be solved by using time based solutions like ToA. Moreover,
it is required to calibrate correctly the system and choose
the best configuration parameters when working with the
signal strength. However, RSSI solutions do not need to deal
with synchronism and extra hardware, which increase their
availability and decrease the device cost.



III. POSITION ESTIMATION MODEL

The proposed model for a low-cost and low power con-
sumption estimation of the object’s localization in indoor
environments, ensuring a low position error, is illustrated
Figure 1.

TN KFMLT

...

AP1 AP2 APn

RSSI1 RSSI2 ... RSSIn Multilateration

pMLT+KF
^

Distance Calculation

Position Estimation Improving Accuracy

Figure 1: Model to estimate the object’s localization in indoor
environments.

The proposed model considers the presence of receivers, i.e.
APs, and a transmitter, i.e. a target node (TN), that interact
with each other using BLE. Aiming to estimate the position
of the TN, the transmitter sends the signal to the APs in order
to track its position.

The determination of the object localization uses a fusion
of three methods: the path loss model that is responsible
to calculate the distance through the RSSI values, the mul-
tilateration localization technique that estimates the position
aiming to minimize the error between the real position and the
estimation, and the Kalman filter that intends to improve the
estimation accuracy, and consequently minimizing the position
error.

A. Distance Calculation

Being the TN the transmitter that is being tracked, it
periodically broadcasts a beacon signal, which is subjected
to phenomena such as path-loss, shadowing and fading. After
reading the signal values, a filter using the standard deviation
was applied aiming to smooth the readings. To mitigate the
fast fading effect, the considered RSSI is an average of 1000
readings [10]. The distance between each AP and the target
node is calculated through the log-normal propagation model
as [13]:

dn = d010
(RSSIn,d0

−RSSIn)/(10α), (1)

where the dn is the distance between the APn and the TN,
the RSSIn,d0 is the RSSI value (in dBm) at APn when the
target is at a reference distance d0, and the parameter α is
the path loss exponent. This parameter varies according to the
scenario [17].

B. Position Estimation

The Multilateration is a technique that estimates the posi-
tion based on the distance measurements when the number
of the non-collinear APs is greater than or equal to three
(i.e. N ≥ 3). The distance between the APn and the TN,

which has coordinates (x, y), is calculated through dn =√
(x− xn)2 + (y − yn)2.
From the equation (1), assuming d̂n ' dn, squaring and

subtracting the APN distance equation and the equation of a
generic point n which 1 ≤ n ≤ N , obtained a function of x
and y as illustrated in equation (2) [18]:

−x2n − y2n + x2N + y2N + (d̂n)
2 − (d̂N )2 =

x(−2xn + 2xN ) + y(−2yn + 2yN ). (2)

where the N equations are represented via b = Ap, with p
being the coordinate vector. As {d̂n}Nn=1 is subject to errors
because of the shadowing effect, a least-square estimate for p
is obtained as p̂MLT = p̂ = (ATA)−1ATb [13]. The coordi-
nates are the result of the minimization of

∑N
n=1(dn − d̂n)2.

The multilateration technique was selected since it does
not require signal map and a database as the fingerprint
technique. Furthermore, it does not need an external hardware
or synchronism mechanism, reducing the cost and power
consumption.

C. Improving Accuracy

The third step of the proposed model aims at reducing
the noise in order to improve the position accuracy. The
Kalman filter is a statistics method that was selected due
to its ability to reduce the overall uncertainty. It employs
a series of measurements observed over time, containing a
statistical noise and produces estimations that tend to be more
accurate by the fact of taking into account the past states
and the covariance error. Furthermore, the Kalman filter is
usually employed in navigation and trajectory optimization
applications.

In this way, the estimated position p̂ from the multilateration
stage is used as an input to the Kalman filter that considers
an uniformly variable movement model to smooth the random
behavior on the RSSI measures and consequently improves
the accuracy. The uniformly variable movement model as-
sumes that the TN moves in the environment with a constant
acceleration in both axis, so the velocity varies linearly and
the position has a quadratic pattern. Thus, the state vector xk
is defined as a vector containing the true values of the state
variables at the moment k, as represented in equation (3) [14]:

xk =
[
x(k) y(k) ẋ(k) ẏ(k) ẍ(k) ÿ(k)

]T
, (3)

where x(k), y(k), ẋ(k), ẏ(k), ẍ(k), ÿ(k) are respectively
the location coordinates, velocity and acceleration in x and
y directions.

The measurement function is governed by the linear stochas-
tic difference equation [19]:

zk = Hkxk + vk, (4)

where Hk ∈ R2×6 is the measurement model that is related
to the state with the estimation and vk ∈ R2×1 ∼ N (0,R)
represents the measurement noise, being R ∈ R2×2 the



covariance matrix. The Kalman filter estimates a process
using the feedback control, where the filter estimates the
process state in a moment, getting the feedback through the
measurements [19]. The Kalman filter process can be separated
in two groups, namely the time update (which is responsible
for the prediction) and measurement update (i.e. related to the
correction or maintenance) [20] as presented in Figure 2.

Measurement Update (correction)

1) Compute the Kalman Gain

^ ^ ^

2) Update estimate with measument zk

3) Update the error covariance

Time Update (prediction)

1) Estimates the next state

^ ^

2) Estimates the next error covariance

^Initial estimates ;

= pMLT
^

^p̂MLT+KF = ;

Figure 2: Application of the Kalman filter technique to reduce
the noise.

1) Time update: The state variables from equation (3) are
updated projecting forward the current state and estimating
the error covariance to obtain the next state [19], [20]. In this
model, x̂−k+1 is the a priori estimation at the moment k + 1,
given the a posteriori estimation at the moment k, Ak ∈ R6×6

is the state transition model following the uniformly variable
movement (relating to states k and k + 1), P−

k+1 ∈ R6×6

is a priori error covariance matrix that collects the deviation
in the estimations at the instant k + 1 given the posteriori
error covariance matrix at the instant k, Qk ∈ R6×6 is the
covariance matrix of the transition model.

2) Measurement update: This stage adjusts the prediction
projected via the measurement at the current moment, that is
a combination from the prediction and observation in order
to refine the estimation [19], [20]. In this model, Kk ∈ R6×2

is the Kalman Gain that is responsible to adjust the balance
between the prediction and the current measurement, x̂k
represents a posteriori state estimation given the measurements
up to time k, zk ∈ R2×1 is the real measurement at moment k
and Pk is the a posteriori error covariance matrix at moment
k.

IV. EXPERIMENTAL IMPLEMENTATION

The proposed indoor position system was implemented
and experimentally tested in a laboratory facility that hosts
the development of R&D activities, aiming at estimating the
position of static objects. This environment, illustrated in
Figure 3, comprises walls, tables, office desks, partitions, a
high number of people circulating, workbenches and robot

stations, making an environment with many obstacles and
distinct objects that may interfere with the signal transmission.

Entrance Door

D1

D2

AP5

AP4

TN

AP3

AP2 AP1

POS1

POS2

POS3

POS4

POS5

Figure 3: Overview of the case study environment layout.

In this experimental testing system, the target is a transmitter
which sends BLE advertisements acting as a BLE beacon
device. Five APs were located in the environment, acting as
receivers, each one implemented in a Raspberry Pi (RPi) that
is listening the BLE advertisements sent by the TN.

The BLE device is an ESP32, that is a low cost and low
power consumption computational platform. For this purpose,
the board was configured in a non-connectable mode just
to transmit the data packets. For each time interval (i.e.,
the configurable time between advertisements), this device
transmits sequentially the beacon messages (non-connectable
advertisements), originally through three channels (37, 38 and
39). In this implementation, the messages are posted using a
single channel due to the BLE’s characteristics that occupies
the same bandwidth of WiFi (i.e. 2.4 GHz), which causes
interference. Thus, the adopted solution sends the beacons
through channel 39 since its central frequency is not affected
by the WiFi channels [10] as presented in Figure 4.

Regarding the receivers, the APs are placed in positions
that have the maximum signal comprehension inside the room
environment and easy access to electrical outlets. Four APs
were fixed in the bounds of the environment and one AP was
fixed near the middle of the laboratory space (all of them
placed approximately at the same height). The coordinates of
these APs are illustrated in Table I.

Each RPi representing the receivers have been programmed
using the Python language, mainly related to the scheduling
scripts via CRON in order to evaluate the signal strength vari-
ation along the day. It was chosen to perform measurements at
three different times of the day, namely 10:00 AM, 3:00 PM
and 11:00 PM, being possible to analyze the variation of RSSI



Figure 4: 40 BLE channels and the three commonly WiFi
channels that cause interference. The BLE advertising only
occurs on channels 37, 38 and 39. Adapted from [10].

Table I: Coordinates of access points and test points

x [m] y [m] x [m] y [m]

AP 1 0.20 1.32 POS 1 2.38 5.68
AP 2 9.62 1.64 POS 2 2.17 2.30
AP 3 5.44 6.07 POS 3 3.81 9.10
AP 4 0.48 12.77 POS 4 3.81 10.31
AP 5 9.77 10.89 POS 5 2.60 6.86

values acquired from the target in several situations, such as
when there were high people circulation in the laboratory and
at the end of the day with a lower number of people, with
each position being measured for three consecutive days.

In terms of the measurements, the APs scanned the ESP32
transmitter through the MAC address setting a window interval
of 100 ms similar to the advertisement interval in order
to avoid missing packets. In order to compute the distance
between each AP and the TN through the RSSI read values,
it is necessary to proceed initially with a calibration of the
signal strength at 1 m from each AP. For this purpose, it was
measured and calculated the average value, determining the
RSSIn,d0 parameter used in the path loss model equation (1)
as presented in Table II. For each static test position, after
calibrating the RSSIn,d0 and collecting the target’s position
data, it was also calculated the average value from the 1, 000
packets to mitigate the effects of fast fading as described
in [10]. In order to estimate the position, the system parameters
presented in Table II were adopted following the literature [8],
[17].

Table II: system parameters

Parameter Value

Path loss exponent (α) 3.0
Room length (l) 9.77 m
Room width (w) 13.45 m

Reference distance (d0) 1 m
RSSI1,d0 -51.93 dBm
RSSI2,d0 -53.33 dBm
RSSI3,d0 -64.58 dBm
RSSI4,d0 -51.92 dBm
RSSI5,d0 -56.02 dBm

Samples from each position 1000

After collecting the RSSI values, a statistical filter is applied

over these measurements, which filters 5% of them using two
standard deviations to mitigate the fast fading, and allowing
to estimate the positions through multilateration. From the
calculated positions, it was obtained the covariance for both
coordinates (x and y) and experimented some Qk and Pk
values aiming at tuning the Kalman filter resulting the best
adjustment in all testing positions. This process contributes
to improve the system accuracy and smoothing the statistical
noise. Figure 5 shows an example of filtering the RSSI raw
values, illustrating the signal strength (in dBm) by the number
of samples.

Figure 5: Example of filtering the RSSI value for the AP1.

The filtered value affects the multilateration and Kalman
filtering stages, consequently directly the estimation and the
accuracy of the position.

V. ANALYSIS OF EXPERIMENTAL RESULTS

The experimental tests considered an offline framework
containing five target points that allowed to test and evaluate
the system performance (the coordinates of these points are
illustrated in Table I). Although, the developed system can
work with an online framework in a similar or in a different
testbed.

Table III summarizes the results for the position error
comparing the MLT technique applied standalone and the
proposed "MLT+KF" approach that considers the Kalman filter
stage to improve the accuracy and smoothing the statistical
noise of the measurements. In the Kalman filter tuning, the
covariance on the both axis (x and y) are calculated resulting
in RK and the parameters Qk = 0.1 × I, Pk = 10 × I and
dt = 0.1s are resorted, being these parameters the same for
all of the test points.

Table III: system position average error (in meters)

POS1 POS2 POS3 POS4 POS5 Mean

MLT 2.83 3.27 1.90 1.95 2.92 2.57
MLT+KF 2.50 2.97 1.85 1.61 2.72 2.33

Briefly, the achieved results show that the proposed ap-
proach presents an improvement of approximately 10% in
terms of position error. In terms of accuracy, when employed



this approach, the maximum error is maintained below 3 m
while using the multilateration standalone the maximum error
can reach 3.27 m as presented in Table III. The proposed
system obtained an average error value of 2.33 m.

In terms of power consumption, the use of BLE for the
signal transmission ensures a power consumption of approxi-
mately 0.367 mW according to [6], which considered tested
devices with a transmitted power of -10 dBm and a transmis-
sion interval of 0.5 s. Moreover, the developed IPS is a low-
cost solution because it employs the ESP32 as beacons, that
costs approximately 10 C while a commercial beacon device,
e.g., the iBKS 105, costs approximately 20 C.

Comparing with the solutions described in [13], [14],
the proposed approach was based on the [13] simulation
results and reached a position accuracy that is 5.28% less
than their solution. On the other hand, [13] proposed for a
bigger environment. However, comparing with the approach
described in [14], our results are approximately 70% greater
than they reached, although [14] employed a solution in a
smaller scenario than the environment considered in this work
and has applied a method that considers the diversity of BLE
channels.

VI. CONCLUSION AND FUTURE WORK

The IPS aims to locate an object inside a building, with
the solutions being usually based on applying techniques to
calculate the distance between the object and several APs,
combined with optimization algorithms that allow a faster
positioning estimation and improve the accurate system. The
main challenges addressed in this field are related to combine
low cost implementations with low energy consumption and
good position accuracy.

This paper describes a low cost and low power consump-
tion indoor positioning system, that combines the use of
multilateration RSSI based-technique and the Kalman filter
in a BLE beaconing scenario. The proposed approach was
implemented in an indoor environment comprising significant
radio interferences due to the physical structure (walls, office
desks and workbenches) and circulation of people.

The achieved experimental results showed an improvement
of the position estimation accuracy combining the two meth-
ods when compared with the use of multilateration standalone,
reaching an average error of 2.33 m (corresponding to an
improvement of 10%). Moreover, the proposed IPS is a
low-cost BLE-based solution, with the beacon device being
performed with an ESP32.

Future work will be devoted to use other techniques, namely
Fingerprinting, to implement a fusion with MLT through track-
to-track fusion and Kalman Filtering, proposing a hybrid
indoor positioning system which will get the estimation from
both techniques and merge to produce a third estimation
providing a better accuracy. Moreover, new test scenarios
will be employed as tracking a moving target node, e.g., a
mobile and autonomous robot, in order to evaluate the system
performance in a dynamic situation.
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