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Abstract—The optimal power flow (OPF) problem is an im-
portant mathematical program that aims at obtaining the best
operating point of an electric power grid. The optimization
problem typically minimizes the total generation cost subject
to certain physical constraints of the system. The so-called
linearized distribution flow (LinDistFlow) model leverages a set
of linear equations to approximate the nonlinear AC power
flows. In this paper, we consider an OPF problem based on the
LinDistFlow model for a single-phase radial power network. We
derive closed-form solutions to the marginal values of both real
and reactive power demands. We also derive upper bounds on
the congestion price (a.k.a. ‘shadow price’), which denotes the
change in marginal demand prices when the apparent power flow
limits of certain lines are binding at optimum. Various cases of
our result are discussed while simulations are carried out on a
141-bus radial power network.

I. INTRODUCTION

Radially energized power networks are prevalent in grid-
scale power systems such as utility distribution networks
and microgrids [1]. They are defined as power distribution
networks wherein the energized section assumes a topol-
ogy of a connected tree. Traditionally, the only generation
source in a radial network is a sub-station as the upstream
to the network, which is interfaced with some high-voltage
transmission network using power conversion devices. With
the advent of consumer-level generation devices such as
photovoltaic panels, wind turbines, and microturbines, radial
networks can now accommodate prosumers, i.e. agents on
the network which can either inject/withdraw power in/from
the network. Desirable set points of generation power can be
determined by solving for set points which are optimal with
respect to some generation cost function, subject to physical
and operational constraints. This optimization problem, well
known as Optimal Power Flow (OPF) was first introduced
in literature by Carpentier [2], [3]. Depending on the nature
of constraints and the cost function, OPF can be variously
categorized as DC-OPF, AC-OPF, security constrained OPF,
etc [4]. The former two are different ways of modeling physics
of the network, while the latter adds security or contingency
constraints meant to ensure robust operation of the network.
It is important to note that in this article we only consider
OPF problems wherein the network operator and prosumers
seek to optimize the same cost function. This is as opposed to
scenarios wherein the prosumers may seek to optimize a cost
function different from that of the network operator [5], [6].

The DC-OPF, which models the physics of the network
using a set of linear equations, has been widely researched and
used in practice for transmission networks, where the topology
may be meshed. Combined with administrative constraints,
DC-OPF provides reasonably accurate set points vis-a-vis
the optimal AC-OPF solution [7]. However, the DC-OPF
linearization does not model reactive power injection, which
poses a problem in analyzing radial distribution networks with
devices such as PVs and WTs having controllable inverters.
To counter this drawback, there has been significant recent
research on the LinDistFlow equation [8]. First introduced
by Baran and Wu [9], this is a set of linearized equations
which describes the physics of the network (possibly multi-
phase with high R/X ratios). The underlying condition of
LinDistFlow is that there are no power line losses, which
allows for linearization of the non-convex DistFlow equations
from which LinDistFlow is derived [10].

Related Work: For a review of marginal demand costs in
traditional OPF models including DC-OPF, the reader may
consult the textbook [11]. Khatami et al. provide a detailed de-
scription of various components constituting nodal prices [12].
Biegel et al. consider congestion management through shadow
prices [13]. Bai et al. consider marginal pricing of real and
reactive power demand under various markets for the nonlinear
DistFlow model [14]. Xu et al. design a deregulated power
market mechanism, which uses the idea of marginal pricing at
its core [15]. A comprehensive review of pricing mechanisms
in transmission and distribution markets, including reserves,
may be found in [16]. Finally, similar in nature to the current
paper, Winnicki et al. consider marginal pricing in the Dist-
Flow model, but without consideration of congestion. [17]

Contribution: In this paper, we formulate an OPF problem
with the LinDistFlow model, named as LDF-OPF. We consider
load satisfaction, generation bounds, voltage bounds, and conic
branch flows. Our proposed framework can handle more
generalized formulations with linear and conic constraints. We
first show a closed-form expression for the marginal price
when there is no flow congestion at optimality of LDF-
OPF. Then, we derive an upper bound on the variation of
demand marginal costs. The proposed upper bound is function
of terms involving marginal costs associated with binding
of aforementioned conic constrains representing branch flow
limits, and network topology factors. This result provides a
useful tool for network operators to estimate the change in
demand marginal prices as a function of their choice of branch
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flow marginal costs.
Notation: R and N denote the set of real numbers and

integers, respectively. Vectors and matrices are denoted with
boldface. For a vector a ∈ Rn, a(j) is its jth element while
‖a‖2 denotes its 2-norm. 1n ∈ Rn is the all-ones vector. For a
positive n ∈ N, [n] denotes the set {1, · · · , n}. For a finite set
S, |S| denotes its cardinality. For a directed graph G = (N,L)
where N is the set of nodes and L the set of directed edges,
and for any node i ∈ N, Hi denotes the inclusive downstream
set of i, i.e. Hi

∆
= {j ∈ N|∃ directed path from i to j in L}∪

{i}.

II. PROBLEM FORMULATION

A. Background
Consider a radial power network with a slack bus. The

buses are labeled as N
∆
= {0, 1, · · · , n}, with 0 denoting the

slack bus. The network topology is represented by a directed
graph G

∆
= (N,L), where L denotes the set of branches.

Without loss of generality, L can be constructed such that
the directed branches point away from the slack bus. All non-
slack buses are classified as the set of load buses Nl and the
set of generator buses Ng such that N = {0} ∪Ng ∪Nl. Let
ng

∆
= |Ng| and nl

∆
= |Nl| denote the number of generator and

load buses, respectively. Noting that the number of branches
equals that of non-slack buses, each branch may be uniquely
assigned the index of the bus to which it is upstream.

A concrete way of analyzing the physics of power flows is
through the DistFlow equations. For i ∈ N, let si

∆
= pi + iqi

be the complex power injection at bus i, Si
∆
= Pi + iQi be

the complex power flow on branch i, and vi and li denote
the squared voltage magnitude at bus i, and squared current
magnitude of branch i, respectively. The DistFlow equations
that hold for all i ∈ N are given as [18]

si =
∑

j∈child(i)

Sj − Si + lizi, (1a)

vi = vparent(i) − 2Re[z∗i Si] + li|zi|2, (1b)

|Si|2 = vparent(i)li. (1c)

Assuming no power line losses in the network the DistFlow
equations 1 can be linearized into the so-called LinDistFlow
model whose compact form is given as [18]

v = Rp + Xq + v01n, (2)

where p
∆
= [p(1), · · · ,p(n)], q

∆
= [q(1), · · · ,q(n)], and

v
∆
= [v(1), · · · ,v(n)] denote the real and reactive power

injections and squared voltage magnitude of all non-slack
buses, respectively. v0 is the fixed voltage of the slack bus.
Positive semi-definite matrices R,X ∈ Rn×n encode branch
resistance and reactance, as well as the topology of G. Since
the vector p (similarly q and v) contains various indices
corresponding to generators and loads, we define the matrices
Ag ∈ {0, 1}ng×n and Al ∈ {0, 1}nl×n which help us separate
generation and load indices from p as

pg = Agp, qg = Agq, pl = Alp, ql = Alq.

Thanks to zero line losses, the slack bus real and reactive
injections become ps = −1>np and qs = −1>nq, respectively.

Let fp ∆
= [fp(1), · · · , fp(n)] and fq

∆
= [fp(1), · · · , fq(n)].

The branch flows are given as fp = Fp and fq = Fq, where
F is derived from the signed branch-bus incidence matrix Ã ∈
Rn×n+1 by deleting its first column, and invert-transposing it.

Lemma 1 (Properties of matrix Ã). The matrix Ã is defined
as

Ã(i, j) =


1, if branch i starts at bus j − 1

−1, if branch i terminates at bus j − 1

0, otherwise.

Let A be the square matrix derived by deleting the first column
of Ã. A−1 exists [18], and F

∆
= A−>.

B. Optimal Power Flow Problem

A general OPF problem based on the described power
network characteristics is given as follows.

min
p,q,v,ps,qs

c>g (Agp) + csps (3)

s.t. v = Rp + Xq + v01n (3a)
v ≤ v ≤ v̄ (3b)
Alp = p̂l, Alq = q̂l (3c)
p
g
≤ Agp ≤ p̄g, q

g
≤ Agq ≤ q̄g (3d)

ps = −1>np, qs = −1>nq (3e)
p
s
≤ ps ≤ p̄s, q

s
≤ qs ≤ q̄s (3f)

fp = Fp, fq = Fq (3g)∥∥[fp(i), fq(i)]>
∥∥

2
≤ f̄i, ∀i ∈ [n] (3h)

The objective function calculates the cost of generation at
generator buses (given by c>g (Agp) = c>g pg , where cg ∈ Rng

is the generation cost vector) and at the slack bus (given by
csps, where cs is the slack generation cost). (3a) is the LinDis-
tFlow equation, while (3b) limits voltage values to within
operational limits. (3c) stipulates that the demanded real and
reactive power amounts are p̂l and q̂l respectively. (3d), (3e),
and (3f) place limits on generation. Finally, (3g) and (3h)
together describe the conic line flow for each branch.

The OPF (3) contains redundancy in its decision variables
and constraints. To that end, a much simplified and operator-
ized version of (3) may be written as follows.

J(`, f̄)
∆
= min

pg,qg

c̃>g pg (4)

Mppg + Mqqg ≤ G` + h (4a)
p
g
≤ pg ≤ p̄g, q

g
≤ qg ≤ q̄g (4b)∥∥∥∥[r>i pg + s>i `

r>i qg + t>i `

]∥∥∥∥
2

≤ f̄i, ∀i ∈ [n] (4c)

In the above, c̃g
∆
= cg − cs1ng

, `
∆
= [p̂>l , q̂

>
l ]>, and f̄

∆
=

[f̄1, · · · , f̄n]>. The OPF operator J(`, f̄) maps real & reactive
power demands and line flow limits to the optimum generation
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Bus 3

Bus 2
v(2) ∈ [0.95, 1.05] pu

Gen 1

v0 = 1.05 pu

v(1) = 1.05 pu

v(3) ∈ [0.95, 1.05] pu

Fig. 1: Illustrative example of a 4-bus radial network.

cost, which is a scalar. It can be shown that J(`, f̄) is jointly
convex in ` and f̄ ; see [19].

Remark 1 (Equivalence of (3) and (4)). To establish the
equivalence of (3) and (4), first v, ps, and qs can be
eliminated as decision variables from (3) by replacing all of
their occurrences with Rp + Xq + v01n, −1>np, and −1>nq
respectively. Further, the indices of p and q corresponding to
load buses may be written as linear combinations of elements
of ` using (3c). Thus, the only effective decision variables
in (3) are pg,qg ∈ Rng . Further, any expression in (3)
which contains any of the decision variables v,p,q, ps, or
qs is linear in pg , qg or `. Therefore, the objective of (3) is
equivalent to the objective of (4). Constraints (3a)-(3e) are
equivalent to (4a), (3f) and (4b), and finally (3g)-(3h) are
equivalent to (4c).

C. Illustrative Example

Consider a 4-bus system shown in Figure 1, which is
derived from case4ba in MATPOWER [20]. The buses are
indexed such that the slack bus has index 0, the generator bus
has index 1, and the two load buses have indices 2 and 3,
respectively. Each branch is uniquely numbered based on its
downstream bus. The impedance (in p.u.) of each branch is
0.003 + j0.006 Ω. Thus, equation (3a) then becomesv(1)

v(2)
v(3)

 =

0.012 0.006 0
0.006 0.006 0

0 0 0.006

p(1)
p(2)
p(3)


+

0.024 0.012 0
0.012 0.012 0

0 0 0.012

q(1)
q(2)
q(3)

+

v0

v0

v0

 .
The voltage of the generator bus and slack bus is
fixed at 1.05 p.u., while the voltage levels of the load
buses vary in [0.95, 1.05] p.u.. Recognizing that ` =
[p(2),p(3),q(2),q(3)], pg = p(1) and qg = q(1), the above
equation may be written as

v(1) = 0.012pg + 0.024qg +
[
0.006 0 0.012 0

]
` + v0[

v(2)
v(3)

]
=

[
0.006

0

]
pg +

[
0.012

0

]
qg+

[
0.006 0 0.012 0

0 0.006 0 0.012

]
` +

[
v0

v0

]
Letting v(1) = 1.05 (or equivalently, 1.05 ≤ v(1) ≤ 1.05) and
0.95 ≤ v(i) ≤ 1.05 for i = 2, 3 recovers (4a). Now suppose
the slack bus provides a maximum of 1 p.u. real power to
the system; i.e., ps ≤ 1. This can be equivalently written in
the form of (4a) as −pg −

[
1 1 0 0

]
` ≤ 1 Finally, we

demonstrate a branch flow. The matrix F is given as

F =

−1 0 0
−1 −1 0
0 0 −1

 ,
and correspondingly

fp(1) = −p(1), fp(2) = −p(1)− p(2), fp(3) = −p(3)

fq(1) = −q(1), fq(2) = −q(1)− q(2), fq(3) = −q(3).

Suppose the branch flow limit of branch 2 is 3 p.u. It can be
expressed as

∥∥∥[fp(2) fq(2)
]>∥∥∥

2
≤ 3, equivalently,∥∥∥∥[(−pg +

[
−1 0 0 0

]
`)

(−qg +
[
0 0 −1 0

]
`)

]∥∥∥∥
2

≤ 3.

In other words, in the form of (4c) we have

r2 = [−1], s>2 =
[
−1 0 0 0

]
, t>2 =

[
0 0 −1 0

]
.

For a generalized j, we provide the following closed form
expressions on the norm values of rj , sj and tj .

Lemma 2 (Norm values of rj , sj and tj). We have, for all
branches j,

‖rj‖2 =
√
|Hj ∩Ng|, ‖sj‖2 =

√
|Hj ∩Nl|,

‖tj‖2 =
√
|Hj ∩Nl|.

Proof. Recall that branch j shares its index with its down-
stream bus j. We use the properties of matrix F in this proof.
From Lemma 1, F = A−>. It is known [21] that the (i, j)

th

element of matrix A−1 is +1 if branch j is directed along
path from i to slack bus, -1 if it is directed against, and 0
otherwise. By the construction of G, A−1 only has entries -1
and 0. Thus, A−> has (i, j)

th element -1 if branch i is falls in
the path from bus j to the origin and 0 otherwise. Therefore,
the ith row of A−> collects all buses in Hi. The result follows
by separating generator buses and placing their coefficients in
rj , and load buses in sj and tj .

III. MARGINAL ANALYSIS

The analysis of marginal pricing starts from the dual prob-
lem of (4) that is given as follows.

Lemma 3. The dual problem of (4) is given as

max
λλλ,αααlb,αααub,βββlb,
βββub,θi,φi,µi

− (G` + h)>λλλ+ααα>lbpg −ααα
>
ubp̄g + βββ>lbqg

− βββ>ubq̄g +

n∑
i=1

[
−(θisi + φiti)

>`− µif̄i
]
(5)



s.t. c̃g+M>p λλλ+αααub −αααlb −
n∑
i=1

θiri = 0 (5a)

M>q λλλ+ βββub − βββlb −
n∑
i=1

φiti = 0 (5b)∥∥[θi, φi]
>∥∥

2
≤ µi, ∀i ∈ [n] (5c)

λλλ,αααlb,αααub,βββlb,βββub, {µi} ≥ 0 (5d)

Proof. We augment problem (4) by adding auxiliary variables
yi

∆
= r>i pg + s>i `̀̀ and zi

∆
= r>i qg + t>i `̀̀, and letting θi and

φi denote the dual variables for the same. Constraint (5c) can
then be written as

∥∥[yi, zi]
>
∥∥

2
≤ f̄i,∀i ∈ [n]. The Lagrangian

of the augmented problem is given as

L
∆
=c̃>g pg + λλλ>(Mppg + Mqqg −G`− h) +ααα>lb(pg − pg)

+ααα>ub(pg − p̄g) + βββ>lb(qg − qg) + βββ>ub(qg − q̄g)+

+

n∑
i=1

[
θi(yi − r>i pg − s>i `̀̀) + φi(zi − r>i qg − t>i `̀̀)

+ µi
(∥∥yi, zi]>∥∥2

− f̄i
) ]
.

The dual objective function consists of all the terms in L which
are not functions of any primal variables. Since L is linear in
pg and qg , their respective coefficients must be zero such that
L is bounded from below. This gives rise to (5a) and (5b).
Finally, that for any y, z, θ, φ ∈ R and µ > 0, it holds that

inf
y,z

[θ, φ]

[
y
z

]
+ µ

∥∥∥∥[yz
]∥∥∥∥

2

=

{
0, if

∥∥[θ, φ]>
∥∥

2
≤ µ,

−∞, if
∥∥[θ, φ]>

∥∥
2
> µ.

Applying this property to find the infimum of all terms
consisting of yi and zi in L, we recover (5c). Finally, non-
negativity of dual variables yields (5d).

We assume that there exist optimal primal and dual solu-
tions for (4) and (5) such that Kahrush-Kuhn-Tucker (KKT)
conditions hold [22, Section 5.5.3].

Assumption 1 (KKT conditions). Let Γ
∆
=

{λλλ,αααlb,αααub,βββlb,βββub, θi, φi, µi} denote the set of dual
variables in (5). Then, there exist optimal solutions p∗g and
q∗g for primal problem (4) and Γ∗ for dual problem (5) which
satisfy the following KKT conditions:

1) stationarity of L in primal variables pg and qg .
2) constraints (4a)–(4c) hold for primal variables.
3) constraints (5a)–(5d) hold for dual variables.

λλλ>(Mppg + Mqqg −G`− h) = 0

ααα>lb(pg − pg) = 0, ααα>ub(pg − p̄g) = 0

βββ>lb(qg − qg) = 0, βββ>ub(qg − q̄g) = 0.

We now introduce the dual value function D(Γ, `, f̄), which
is defined as the objective function of dual problem (5) as a
function of any values of dual variables Γ, demands `, and flow
limits f̄ . Assumption 1 allows us to exploit duality theory in
order to equate the dual value function to the operator J(`, f̄).

Remark 2 (Strong duality). Since the primal problem (4)
is convex in the decision variables, Assumption 1 ensures
that strong duality holds [22, Section 5.5.3], i.e. J(`, f̄) =
D(Γ∗, `, f̄).

We now provide a closed form of the flow marginal costs
as a function of the optimum dual variables.

Lemma 4. The flow marginal cost for line flow limits f̄ ,
denoted as Cflow

f̄
is given as

Cflow
f̄

(j)
∆
= ∇f̄(j)J(`, f̄) = −µ∗j , ∀j ∈ [n] (6)

Moreover, if p∗g1 is the optimum real generation with flow
limits f̄1 and p∗g2 with f̄2 where f̄1 � f̄2, then c̃g

>p∗g1 ≤
c̃g
>p∗g2.

Proof. Due to strong duality, it follows that J(`, f̄) =
D(Γ∗, `, f̄). Taking derivative of D(Γ∗, `, f̄) with respect to
each of the elements in f̄ recovers the closed form of Cflow

f̄
.

The second part of the result follows from observing that the
feasible space of (4) is smaller under f̄2 than f̄1, leading to
same or higher objective value.

To this end, we present the main result as follows.

Theorem 1 (Bounding marginal prices). Suppose at optimality
of problem (4), I(f̄1) ⊆ [n] is the nonempty index set collecting
the binding constraints in (4c) for flow limits f̄1. Then, the
congested marginal cost of load demand is given as

C load
f̄1

∆
= ∇`J(`, f̄1) = −λλλ∗>G−

∑
i∈I(f̄1)

(θ∗i si + φ∗i ti)
>. (7)

Furthermore, let I(f̄2) be empty for flow limits f̄2, denoting
the case wherein the network is uncongested. We have,

|C load
f̄1

(i)− C load
f̄2

(i)| ≤ Kf̄1

∑
j∈I(f̄1)

|Cflow
f̄1

(j)|, (real)

|C load
f̄1

(nl + i)− C load
f̄2

(nl + i)| ≤ Kf̄1

∑
j∈I(f̄1)

|Cflow
f̄1

(j)|

(reactive)

for all i ∈ [n], Kf̄1 > 0 is a constant defined as Kf̄1

∆
=

(n
(j)
nz )

1
2

max
j∈I(f̄1)

∥∥[s>j , t
>
j ]>

∥∥
2
, where n

(j)
nz is the number of

nonzeros in sj (same as tj).

Proof. The closed form of C load
f̄1

may be derived similar
to the proof of Lemma 4. Note that C load

f̄1
− C load

f̄2
=

−
∑
i∈I(f̄1)(θ

∗
i si + φ∗i ti)

>. Thus,∣∣∣C load
f̄1

(i)− C load
f̄2

(i)
∣∣∣

=

∣∣∣∣∣∣−
∑

j∈I(f̄1)

θ∗j sj + φ∗jtj

∣∣∣∣∣∣ ≤
∑

j∈I(f̄1)

∣∣∣∣∣
[
sj
tj

]> [
θ∗j z

s
j

φ∗jz
t
j

]∣∣∣∣∣
[a]

≤
∑

j∈I(f̄1)

(∥∥∥∥[sjtj
]∥∥∥∥

2

×
∥∥∥∥[θ∗j zsjφ∗jz

t
j

]∥∥∥∥
2

)
[b]

≤
∑

j∈I(f̄1)

µ∗jKf̄1 ,



Fig. 2: 141-bus distribution system, adapted from MATPOWER case141. We retain the topology and real/reactive load
demands from case141, but randomly add 25 distributed generation buses. The real power generation of each distributed
generator is limited to pg ∈ [0, 0.0654]pu, while the reactive power generation follows limits qg ∈ [−0.0270, 0.0270]pu.

Fig. 3: Results from simultaneously perturbing two branch flow limits from Figure 2. We choose branches 16 and 18 to perturb
since branch 18 is downstream to branch 16, making for easier interpretability of results. The first two figures indicate marginal
costs of real and reactive power respectively, while the third figure is the proposed upper bound on the quantities derived in
both the first and second figure. As we see, the upper bound is valid for both the quantities.

where zsj and ztj are vectors which have value 1 at indices
where sj and tj are nonzero respectively, and 0 otherwise. [a]
is due to the Cauchy-Schwartz inequality while [b] follows
from dual (5c) and uniformly upper bounding the term∥∥[s>j , t

>
j ]>

∥∥
2

for all j ∈ I(f̄1). Observing that ∇f̄jJ(`, f̄) =
−µ∗j and µ∗j ≥ 0 concludes the proof.

Lemma (2) may be used to find the closed form of Kf̄ for
different f̄ . In the following remark, we highlight some use
cases of Theorem 1.

Remark 3 (Use cases of Theorem 1). Note that system
operators often possess datasets of the form {Cflow

f̄ k
, f̄k, pk},

where pk ∈ [0, 1] is the probability of sample k being
representative of a desired scenario. Such a probability may be
derived empirically by observing frequencies of similar data
points in the dataset

• The bounds may be used to quickly approximate the
worst-case changes in power tariffs as a function of
implemented line flow limits f̄ using existing datasets,
without re-running the full OPF problem for different
values of f̄ .

• The capability to compute the marginal prices Cflow and
C load as a function of ` and f̄ may be used to train novel
sensitivity informed deep learning architectures [23].
Bounds based on sensitivity of the OPF solution to input
parameters can also be used to construct triggering
conditions in distributed optimization using the principle
of event-triggered communication [24].

• If the power demand ` is a random variable drawn from a
known distribution, then Theorem 1 can provide a method
to quantify the statistical properties of demand marginal
costs. Such analyses generally fall under the domain of
probabilistic (optimal) power flow, which is a topic of sig-
nificant research due to its possible applications in deep-
learning based architectures for power systems [25].

IV. SIMULATION RESULT

In this section, we experimentally validate the bounds
derived in Theorem 1 by carrying out simulations on a 141-bus
single-phase radial power network derived from case141 in
MATPOWER [20], as shown in Figure 2. Due to case141
originally containing only a single generator at the slack bus,



we modify the same to add distributed generation. This is done
according to the following steps.
• First, 25 buses are randomly selected to host distributed

generation. Then per generator bounds are chosen such
that the total upper bound of real power generation
approximately equals the total real power demand at the
load buses. The real power cost of distributed generator
buses are chosen uniformly-at-random in the range [0, 1],
while the slack bus generation is chosen to be more
expensive than any distributed generator.

• Following introduction of distributed generators, we run
the OPF without any branch flow limits to generate
optimal generation and branch flow setpoints. This is
done using CVX [26] and MATLAB. Once the optimal
flow setpoints are generated, the branch flow limit of the
line upstream to any distributed generator is set to its
corresponding flow setpoint.

• Two branches, viz. 16 and 18 are selected, and their
branch flow limits are simultaneously reduced upto 75%
of their original values. For each step in the reduction,
the perturbation of real and reactive marginal cost of load
demand at bus 20 (a load bus) is recorded, and presented
in Figure 3. The proposed upper bound is also presented
in the same figure.

As seen in Figure 3, the proposed bounds are respected
by the actual perturbation in marginal costs. Here, both the
marginal cost perturbations and the upper bound are derived
from the formulations presented in Theorem 1. It should be
noted that the results in Theorem 1 use optimal dual variables
in its formulation, which are generated in most modern opti-
mization solvers. Another interesting observation in Figure 3
is that the marginal cost of reactive power is within some
numerical error of zero. This is because the objective function
of OPF 3 does not penalize generation/consumption of reactive
power. Were an objective term concering reactive power to be
added to the OPF, we would observe non-zero marginal costs
for reactive power alongside real power demand.

V. CONCLUSION

In this paper, we formulated the LDF-OPF problem and
derived upper bounds on the marginal prices of real and
reactive power demand for all load buses. We also presented
certain approaches showing how the main result in Theorem 1
can be utilized for OPF-based planning problems. Future work
will develop results in this paper to accelerate solve times of
LDF-OPF.
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