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Abstract—This article proposes a novel Auto-encoder based
fault detection and isolation framework approach for supporting
the operation of a novel multi-sensorial distributed pose estima-
tions scheme. The proposed work detects weak and strong time-
dependent anomalies in a decentralised fusion approach from the
initial estimation layer. As it will be presented, at the end of the
learning phase, the neural network-based auto-encoders provide
synthetic actual position and orientation of the robotic system,
based on the statistics of the learning data. As a result, the square
error between the output and input signal of the auto-encoder
can yield the actual outlier with reasonable success. On the other
hand, an Extended Kalman Filter (EKF) based fault detection
method has been introduced in this article, which consists of a
set of judiciously designed EKF acts as filter assembly. Based on
innovation obtained from each of the EKF an innovative detection
logic is proposed to identify the outlier in sensor measurement
autonomously at the appropriate time samples. Based on the
degree of accuracy of detecting the anomaly, the estimated signal
is accepted or rejected for each time sample in the second
layer of the fusion architecture. Moreover, we will introduce
two outlier detection methods for the demonstration purposes
and outline a comparative study using experimental data from a
micro aerial vehicle. An extensive analysis with supporting results
demonstrate these two methods’ effectiveness and accuracy.

Index Terms—Auto encoder, Multi sensor fusion, Decentral-
ize fusion, Filter bank, Maximum likelihood function, Optimal
information filter.

I. INTRODUCTION

Robotic applications involving operations in changing land-
scapes present a variety of challenges, where in many cases the
systems may fail to provide accurate pose information depend-
ing on the sensors’ accuracy, failures and noise in the operating
environment. However, such corrupted sensor measurements,
for a temporary operating period, are often encountered in
reality as for example, in the absence of sufficient illumination
conditions for some part of the surrounding environments,
where the visual sensors fail to determine the robot’s pose
and thus further fusion with other sensorial onboard systems
is needed as in the case of a laser/infrared technology-based
sensors, or in general multiple redundant sensors for persistent
fused pose estimation, as an effort to elevate the accuracy of
the pose estimation and ensure resiliency simultaneously.

In most of the cases in the robotic community, the multi-
sensor based fusion algorithms rely on a centralized archi-
tecture, where a central node is used to process the infor-
mation by involving a Kalman filter from different sensor
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measurements [1], or distributed approaches as in [1], [2].
In centralized fusion architectures, a central node or a single
node is utilized, where direct measurement data or raw data
from multiple sensors are used to fuse by utilizing several
type of Kalman filters, depending upon the system whether
it is linear or nonlinear. In the centralised approaches, the
overall performance of the fusion scheme degrades in the
presence of sensor failure/inaccurate measurements, thus for
increasing the overall resiliency, towards avoiding inaccurate
sensor measurements, decentralized fusion architectures are
more suitable as in [3].

However, even in the case of fusion approaches based on
a decentralized architecture, it is not enough to overcome
such circumstances without incorporating the full integra-
tion of a fault detection and isolation framework. Thus,
approaches based on the Fault Resilient Optimal Information
Filter (FROIF) are introduced as in [4] to address the gap
where the failure detection is the most crucial task. The failure
scenario in the measurement signals can be considered as an
abnormal behaviour or deviation from the actual value and
in general can be considered as an outlier and in most of
the cases, the Kalman filter innovation can be utilized for
that outlier detection. In this direction, the Innovation based
Detection Filter Bank [5], the Robust Gaussian ESKF [6], and
the Iterated Kalman filter detection architecture [7] have been
proposed to overcome the anomalies from the estimated states
to incorporate the concept.

Towards the anomaly detection or outlier detection, many
approaches have been established e.g., signal processing [8],
state estimation [9], machine learning [10], statistics [11],
data mining [12]). In general, it has been found that anomaly
detection is a challenging task, with different paradigms of
detection schemes showing success on different types of data.
Therefore, one of the challenging jobs is to select one method
for addressing this kind of challenge faced in real-world
applications. The quality of a neural network for classifying
information has also been utilized to identify the anomaly
in time-series signals. The most popular training method for
neural networks is the back-propagation algorithm for feed-
forward Neural networks. A feed-forward, fully connected
neural network, consisting of three layers, is used for the
outlier detection. This configuration is known as Auto-encoder
that is able to provide synthetic reconstructed output and the
square error between the network output and input values,
which has been used to locate the deviation of the original
signal as presented in [13].

Based on the presented background, this article is aiming in
establishing a totally novel auto-encoder-based decentralized
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fusion scheme for estimating the pose of a robot. Thus,
the major contributions of this article stems from: a) the
establishment of a unique detection logic to automatically
identify the faulty sensors for each time instant by involving
a collection of judiciously designed Extended Kalman filter
(EKF), b) Introducing a generic AI based fault detection
scheme by applying several neural networks based Auto-
encoders, c) performance evaluation of the proposed Auto-
encoder based and extended Kalman filter based fault detection
over the FROIF framework with the help of actual sensor data,
along with a comparative study between these two detection
algorithms.

In the rest of the article, the platform based mathematical
framework is established in Section II, while the Kalman
filter based and Auto-encoder based fault resilient optimal
information filter are explained elaborately in Section III.
Section IV represents the experimental results that prove the
proposed scheme’s efficiency, while the conclusions are stated
in Section V.

II. PLATFORM BASED MATHEMATICAL FRAMEWORK
ESTABLISHMENT

For the problem formulation we will consider the realistic
use case of a Micro Aerial Vehicle (MAV) that carries a multi-
sensorial suit containing an IMU, a 3D Velodyne Puck LITE
lidar, a Real-sense camera T265 and an Ultra wide-band. In
this sensorial setup, the IMU provides the raw acceleration,
the angular velocity and the orientation. The Intel real-sense
camera T265 combined with an IMU from Pixhawk 4 flight
controller are used for providing a visual odometry [14], and
the collected point-clouds from the 3D-lidar are also integrated
with an IMU to provide a Lidar Inertial Odometry (LIO) [14].
The sensors mentioned above are mounted in the body-fixed
frame XB − YB − ZB of the MAV, as depicted in Fig. 1.
The conventional East-North-Up (ENU) based world frame is
considered in the present work, which is used to describe the
position of the MAV. Ultimately, the goal is to build a unique
and purely autonomous outlier detection system based on
the fault-resilient optimal information fusion architecture [4],
combining the information from multiple real-time sensors
and calculating the most accurate MAV pose. The following
nonlinear kinematic model for the MAVs is considered as
in [15], where the kinematic equations are given as:

ṗ = v

v̇ = RW
B (q) (am − ab − an) + g

q̇ =
1

2
q⊗ (ωm − ωb − ωn) (1)

ȧb = aω

ω̇b = ωω

ġ = 03×1

where p ∈ R3×1 indicates the position, v ∈ R3×1 denotes
the velocity, q ∈ R4×1 stands for the orientation quaternion
representation of the MAV. The acceleration and body rates
are characterized as the input to the kinematic model, which

Figure 1: The utilized MAV for the problem formulation and
the related utilized frame, where the subscript W indicates
the global frame and subscript B indicates the body frame.

are typically measured using an IMU denoted as am and
ωm. In general, measurements from the sensors are noisy,
which includes a sensor bias as well. ab ∈ R3×1 denotes the
accelerometer and ωb ∈ R3×1 represents the gyroscopic bias
terms, an and ωn signify the additive noise for the acceleration
and the angular rate noise respectively and g ∈ R3×1 denotes
the gravitational acceleration acting on the MAV. aω ∈ R3×1

and ωω ∈ R3×1 are the accelerometer and the gyroscopic pro-
cess noise respectively. The rotation matrix RW

B (q) ∈ SO(3)
is introduced to perform the frame transformation from the
body to the world frame. The equations of motion for the
MAV is expressed in a compact mathematical notation with
the following generalized form, provided as:

Ẋ = f(X,um, w) (2)
yt = [I7×7 | 07×12]Xt (3)

where, the state vector is denoted as X = [p, v, q, ab, ωb, g]
T ∈

R19×1, the noisy measured input based on IMU reading is
denoted as um ∈ R6×1 and the random process noise w ∈
R6×1.

III. OVERVIEW OF A FAULT RESILIENT OPTIMAL
INFORMATION FILTER

As presented in [4], the decentralized multi-sensor fusion
is a more suitable pose estimation method over the central-
ized fusion when all sensors are not working correctly or
the measured raw data signals can be inaccurate at anytime
sample. A brief overview of the Fault Resilient Optimal
Information Filter (FROIF) is presented in sequel for the sake
of completeness.

The construction of the FROIF inherits a distributed nodal
architecture, which is introduced in the first layer of the
decentralized filter. In the context of the multi-sensorial fusion
based MAV pose estimation, position and orientation infor-
mation, obtained from any two distinct sensors (arbitrarily
selected) are utilized as the measurement information to the
EKF for constructing a node. By exploring all of these possible
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combinations of sensor measurements, collectively, a total
number of seven nodes are built in the current setup and
alphabetically denoted as node-l, and l ∈ {A, B, . . . , G}.
However, each node receives the IMU information as mea-
sured actuation/control input to the kinematic model associated
with the Kalman filter. A more detail description of the nodes
can be found in [4]

The kinematic model of the MAV in a continuous time form
was presented in Eq. (2). In order to describe the decentralized
nodes, associated with the first layer, in a compact mathemat-
ical form and in correlations to the EKF, an equivalent of
Eq. (2) in discrete time representation, by using Euler [16]
discretization, is given by:

xk = fk−1(xk−1, uk−1, ωk−1) (4)
yk = hk(xk, vk) = [I7×7 | 07×12]xk + vk (5)

where, k denotes the discrete time instants. Note that, in order
to account for the model inaccuracies we have considered
also the process noise ωk ∈ R19. Moreover, an additional
measurement noise vector vk ∈ R7 is introduced in the Eq. (5)
to represent a realistic output model, under the influence of
noisy measurements, appearing from the utilization of real
sensors. The process and measurement noises are assumed to
follow the Gaussian distribution as:

ωk ∼ N (0, Qk), , vk ∼ N (0, Rk) (6)

where Qk and Rk represent the process noise, the co-variance
matrix, and the measurement noise co-variance matrix respec-
tively. Starting with an initial guess of a posterior estimate
x̂+
l0
= E(xl0) and P+

l0
= E[(xl − x̂+

l0
)(xl − x̂+

l0
)T ], along with

the assumption in Eq. (6), the lth node is described as a local
EKF with the following prediction-correction formalism:

Prediction Steps:

x̂+
l0

= E(xl0), P
+
l0

= E[(xl − x̂+
l0
)(xl − x̂+

l0
)T ] (7a)

x̂−
lk

= flk−1
(x̂+

lk−1
, uk−1, 0) (7b)

Klk = P−
lk
HT

lk
(HlkP

−
lk
HT

lk
+RT

kl
)−1 (7c)

P−
lk

= FlkP
+
lk
FT
lk
+ LlkQlkLlk (7d)

where, the ‘+′ symbol is used to denote an a priory estimate,
the ‘−′ symbol is designated for an a posterior estimate, the
subscript l indicates the corresponding variable of the lth node,
where l ∈ {A, B, . . . , G}. The mathematical operator E
denotes the expectation and the superscript T indicates the
transpose. The Jacobian matrices are defined as:

Flk =
∂flk−1

∂xlk

, Llk =
∂flk
∂uk

, Hlk =
∂hlk

∂xlk
(8)

Correction Steps:

x̂+
lk

= x̂−
lk
+Klk [ylk − hlk(x

−
lk
, 0)] (9a)

P+
lk

= (I −KlkHlk)P
−
lk

(9b)

It is apparent that individually, each node is potentially capable
of proving the information regarding the pose of the MAV.
However, the accuracy of the pose information, obtained from

each decentralized node, varies depending on the accuracy of
the sensors that are involved to constitute the node. When the
sensor measurements fail to provide an accurate information
for a certain period, the FROIF [4] has the flexibility to
momentarily isolate the corresponding node to proceed for the
next layer fusion formalism, which combines the information
from the first layer in an weighted combination as follows:∑

l∈{A,...,G}

δlĀlk = I (10)

where Ālk denotes the weighting parameter and δl ∈ {0, 1}
is a scalar multiplying factor. FROIF imposes δl = 0 as
well the corresponding Ālk = 0 if the lth node is found
to be corrupted at kth time instant, otherwise δl = 1 and
the corresponding Ālk can be optimally constructed based on
the following constrained co-variance minimization problem
described as:

min
AA,...,AG

Jk =
1

2
tr(Pk) =

1

2
tr(WT

k ΣkW
T
k ) (11)

subjected to
(
WT

k eδk − I
)
= 0

where,

Wk = [ĀAk
, ĀBk

, . . . ĀGk
]T , (12)

eδk = [δAk
I, δBk

I, . . . , δGk
I]

T (13)
x̃L = [x̃Ak

, x̃Bk
, . . . , x̃Gk

] (14)

Solution of Eq. 15 provides the optimally constructed weight
matrices that are used for the inbuilt fault isolation.

Wk = Σ−1
k eδk(e

T
δk
Σ−1

k eδk)
−1 (15)

However, the formulation presented in [4], is not explicitly
capable to autonomously identify the faulty measurements.
Its fault detection mechanism solely relies on the assistance
from a Vicon based accurate motion capture system. In typical
field robotic application, where such accurate external support
is unavailable, an autonomous fault recognition based on
the onboard multi-sensorial unit is mandatory, which is the
primary contribution of the present work ans will be described
in the next Section.

IV. NOVEL FAULT DETECTION APPROACHES

Identifying the incorrect measurement at the appropriate
time instant is a crucial task for accurate localization. The
presence of faulty measurements can be considered as an
abnormal pattern in the entire motion or a deviation from
the actual value and in general it is regarded as an outlier.
However, accurately detecting the outlier is challenging in
the multi-sensor pose estimation paradigm, while this article
presents two types of novel outlier detection algorithms.

A. Kalman based Fault Detection Formulation

In order to locate the inaccurate measurements, from the
first layer fused nodes, the novel automatic fault detection
mechanism (as described in Fig. 2) is proposed. In general,
when a fault occurs, the innovation vector (y− ŷ), associated
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with the classical EKF, is unable to locate the fault, while it
is only capable of detecting the distortion instantaneously [5]
by identifying a small glitch, which is mostly insignificant
in typical applications. Thus, a filter bank that consists of
multiple modules to detect the faulty sensors appropriately is
introduced in this Section.

Typically, in a multi-sensor framework, consisting of a total
number of n sensors, n number of modules are required as
depicted in Fig. 2. In the present context, the output from the
ith sensor is denoted as yi, ∀i = 1, 2, . . . n. Each module is
constructed using a judiciously designed EKF, which consists
of three sensors measurements as its input. The EKF of
the ith module considers the measurements yi, except the
ith measurement, where i = 1, .....n. One can consider the
associated EKF in each module as an equivalent centralized
filter and estimate the MAV pose individually. In the sequel,
a series of residues (Rj = x1 − x̂j ,∀j = 2, 3, . . . n) are
constructed by subtracting the estimated pose obtained from
the first module (x̂1) to ith module (x̂i). Afterwards, and by
comparing all the residues with an arbitrarily chosen threshold
(∆) of the filter bank, the detection observation table, as
depicted in Fig.2, is provided.

Figure 2: Kalman filter based detection architecture

In this case, the detection logic is presented as follows:{
if |Rj | ⩾ ∆ : oi = 1,

else oi = 0,∀i = 1, . . . , n, j = 2, . . . , n
(16)

|.| is denoted for the absolute value operator and ∆ is the
threshold that can be chosen arbitrary. If an entire column of
the observation table matches with the residue comparison,
it will be convicted that the corresponding sensor is faulty.
According to the aforementioned condition in Eq. (16), the
observation table is constructed. Once the table is constructed,
the pattern in the column are used for the detection. The
observation table in Fig. 2 follows such a pattern of numbers
and depends on that pattern, and thus it has the ability to detect
which sensor is faulty at a specific time instant. For example,
a pattern (o3 = (0, 1, 0)) denotes the UWB is erroneous, while
this detection method is only applicable if the fault occurs at
a particular time instant. The limitation of this method is that
it can’t recognize a fault if two sensors are giving inaccurate

measurements simultaneously. Once the fault detection unit
identifies a sensor to be faulty, the scalar multiplying factor
δlk , for the corresponding nodes, are set as δlk = 0.

B. Auto-encoder based Fault Detection Formulation

Auto encoders are based on three layers of feed-forward
neural networks, and the networks consists of an encoder, code
and a decoder. The encoder compresses the N -dimensional
input (a frame of sensor data) into an x-dimensional code
(where x < N ), which contains most of the information
carried in the input but with less data. Hence, the encoder
is similar to the principal component analysis framework, but
auto-encoders can capture non-linear relationships. On the
other hand, the decoder tries to regenerate the input from the
lower-dimensional code or latent representation. Fig. 3 repre-
sents the fundamental single auto-encoder configuration. Each

Figure 3: Auto-encoder based fault detection

auto-encoder is utilized in Eq. 17 and Eq. 18 to reconstruct the
input signal(x). In Eq. 17 input(x) is multiplied by the optimal
weight z(1) by using a back-propagation learning algorithm
and added with the bias b(1). These two terms provide the
function h(1) and the output variable z(1) is sent to the second
layer of activation function, which is denoted as h(2) in Eq. 18.
Hence, The reconstructed estimated signal x̂ is produced with
the help of the second layer of the activation function h(2). In
general, there are many ways to perform an anomaly detection,
while some methods regard the nature of the data used for
the training of the algorithm. Three such possibilities are the
supervised, weakly supervised and unsupervised methods.

z(1) = h(1)(w(1)x+ b(1)) (17)

x̂ = h(2)(w(2)z(1) + b(2)) (18)

Unsupervised anomaly detection uses a data set without labels
and statistical techniques to label samples anomalous. Under
the assumption that the majority of the data set comes from the
same distribution, the probability of a data sample belonging
to the same distribution can be calculated using the mean
and standard deviation of the data set. Supervised anomaly
detection uses labelled data. This data is used to train a
classifier to find a decision boundary, such that it separates
anomalous and normal samples.
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Figure 4: AE-based Decentralized Fusion

Weakly supervised anomaly detection uses a piece of infor-
mation set for which imprecise labelling methods have been
used. When using a weakly supervised annotation scheme, the
information has been labelled using a set of rules or functions
determined by the user. This means that there is no proof that
the label of each sample is correct, but the labelling process
can be done automatically. What data labelling scheme to use
depends on the problem domain, while using a supervised
labelling scheme may not be the best option for a task where
the amount of labelled data is insufficient concerning the
project’s goals. A better option, under these circumstances,
could be a weakly supervised or unsupervised scheme. In turn,
in a situation where the margin for error is minimal, it would
be inadvisable to use a weakly supervised labelling scheme. In
this article, we demonstrate the supervised auto-encoder based
detection, and isolation framework 4, where the poses coming
from a Vicon motion camera system are considered as the
ground truth, and based on this information the auto-encoders
are trained once as depicted in Fig. 5, where the neural network
of the auto-encoders has adopted the behaviours of the actual
signal pattern. As a result, it will provide the exact error
between the corrupted signal and the reconstructed output
signal. If it is possible to find the precise deviation, then in the
second layer of the decentralized fusion, corrupted estimated
measurements can be easily eliminated by the logical concept.

Figure 5: Train the autoencoder’s three-layer structure with
accurate position (p) and orientation (q)

V. PERFORMANCE EVALUATION

For the evaluation of the novel proposed scheme, a MAV
is considered that it is manually flown in an approximate

rectangular trajectory. The vehicle is equipped with a multiple
pose sensor suite. The effectiveness of the Auto-encoder based
detection and EKF based detection in the FROIF method are
evaluated and compared using measured data collected from
the sensors. To assess its effectiveness, the fused poses, from
the two different proposed detection techniques, are compared
with the pose from a highly accurate VICON based motion
capture system, consisting of 19-cameras, which yields an
accuracy in the sub-millimetre range, hence considered as
the ground truth. A faulty measurement is introduced by
artificially introducing a momentary fault in the measured data
from Visual Inertial Odometry (VIO) in between (20-30)s. The
measurements from other sensors remain unchanged. A com-
parative study with the EKF based multi-sensor fusion and the
Auto-encoder based decentralized FROIF are presented in this
article. Fig. 6 depicts the comparative clear analysis between
the estimated trajectory, yields from the fusion methods as
mentioned earlier.

Figure 6: An estimation of the MAV trajectory based on
FROIF and AE-FROIF and ground truth

Performance evaluation of Auto-encoder-based Fault Detec-
tion and Isolation

In this article, the Auto-encoder based Fault Detection and
Isolation is performed with the help of on feed-forward neural
network-based auto-encoder. In this experiment, each position
and orientation measurement signal passes through the auto-
encoder structure to reconstruct the signal through a modified
back-propagation learning algorithm. The principal objective
of reconstructing those signals is to recognize the outlier
among samples of regular patterns. Initially, for the training of
a three-layered neural network, we have used the ground truth
poses. Once the training is completed, the auto-encoder circuit
eventually copes with the nature of those signals that can pro-
vide the reconstructed signal almost similar to the ground truth
signals. Effectively, the proposed scheme is able to identify
the abnormal behaviour from the patterns. Consequently, the
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Figure 7: Variation of individual position components

input layer signal is coded and decoded using the encoder and
code layer of the neural network structure, and the decoder
provides the reconstructed states x̂N . We have considered three
nodes in the first layer of fusion, where node A and node
B are the pure estimations of the information coming from
LIO and VIO. Using an extended Kalman filter, the third
or Node C fused the information (position from UWB and
orientation from IMU). The estimated and fused states pass
through the auto-encoder architecture in Fig. 4 to generate
the reconstructed estimated states x̂N . Taking the difference
between the reconstructed states coming from the auto-encoder
and estimated/fused states from the first layer nodes provide
the error El. Errors El = [EAN , EBN , EBN ]T are observed
by the threshold ∆ and passes through the logic circuit. The
value of the threshold is taken as 0.4 in this experiment. Once
the outlier is identified properly and observed through the logic
circuit, the faulty part of the measurement is straight forward
eliminated through the second layer fault resilient optimal
information fusion structure. Fig. 7 and Fig. 8 show the esti-
mated position and orientation comparison during the failure
between (20 − 30) seconds of operation period, respectively.
The translation motion is more dominant than the rotational
one in this experiment, due to which deviation is not evident
in Fig. 10 and in comparison to Fig. 9.

Performance Evaluation of Kalman Filter based Fault Detec-
tion and Isolation

The FROIF fusion framework works in three different
stages to find an exact pose of the MAV in the presence

Figure 8: Variation of MAV’s orientation with time

of inaccurate measurements. Firstly, multiple nodes denoted
as l = A, . . . , G generate their equivalent estimate of fused
states and the associated error co-variances for the whole
time period. The process and measurement noise co-variance

Table I: RMSE comparison of estimated orientation in Eular
Angles

Euler Angles FROIF AE-FROIF
Roll 0.4844 0.4998
Pitch 1.9820 2.0190
Yaw 2.0131 2.0007

Table II: RMSE for position estimation along X ,Y ,Z axis
(in meter)

Position FROIF AE-FROIF
X 0.1278 0.2162
Y 0.0803 0.0695
Z 0.0620 0.1080

for the EKF associated with each node are given as Qlk =
1000 × I19×19, Rlk = 10 × I18×18 respectively. Xl0 =
[01×6, 1, 01×10, 9.81]

T , where as the initial error co-variance
is set as Pl0 = I19×19∀l ∈ (A, . . . , G) respectively. Secondly,
the estimated state from the various nodes is processed by the
auto-detection logic described in Section IV-A. The threshold
associated with the detection logic is considered as ∆ = 0.4,
which is used to construct the observation patterns from
sequence (R2, R3, R4). Based on the observation patterns, the
faulty sensor is detected and the associated δlk are nullified.
Finally, the isolation algorithm (FROIF) eliminates the faulty
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Figure 9: Variation of logarithmic sliding window RMSE for
position

nodes for the time being and utilizes the other node’s co-
variances for the second layer of fusion to yield a resilient
pose estimation. The Fig. 9 and Fig. 10 provide the Root
Mean Square Error comparison in logarithmic scale between
the estimated positions and orientations, respectively. The
obtained simulation results and the single value Root Mean
Square Error (RMSE) for the position are depicted in Table II,
while the orientation is presented in Table I that clearly show
that the Kalman filter based FROIF has a reduced performance
when compared to the Auto-encoder based FROIF, especially
when the induced errors are of bigger time duration and more
intense, while the AE-FROIF was giving better results in cases
of errors during more intense rotations.

VI. CONCLUSION

A novel EKF and Auto-encoder based decentralized multi-
sensor fault detection and isolation scheme for MAV pose
estimation was presented in this article. The estimated and
fused nodes are created using the extended Kalman filter to
estimate the poses in the first layer. The EKF and Auto-
encoder based fault detection methods are introduced between
the first and the second layers to select the most accurate
pose for each instant. The collected correct poses are merged
into the second layer. Furthermore, both fault detection and
isolation framework are performed very well with the second
layer FROIF formulation that yields resiliency in the presence
of inaccurate measurements.It was found that the classical
OIF’s performance closely resembles that of centralized EKF
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Figure 10: Variation of logarithmic sliding window RMSE
for orientation

based multi-sensor fusion, without the use of external fault iso-
lation mechanisms and the classical OIF’s performance closely
resembles that of centralized EKF based multi-sensor fusion
without external fault isolation mechanisms. Therefore, these
two detection methods are added significant value to accurately
eliminating the erroneous measurement from the estimated
pose of MAV. In conclusion, the proposed comparative study
for both the FROIF framework is fairly generic. Based on
simulation results, it can be observed that auto-encoder-based
FROIF detection and Kalman filter-based FROIF detection are
more effective in sensor failure scenarios.
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