

Reliability Assessment of Neural Networks in GPUs:

A Framework For Permanent Faults Injections

Juan-David Guerrero-Balaguera*, Luigi Galasso*, Robert Limas Sierra+, Matteo Sonza Reorda*
* Politecnico di Torino, Department of Control and Computer Engineering (DAUIN)

{juan.guerrero, luigi.galasso, matteo.sonzareorda}@polito.it
+ Universidad Pedagógica y Tecnologica de Colombia (UPTC), Electronics Engineering Scholl

{robert.limas}@uptc.edu.co

Abstract — Currently, Deep learning and especially

Convolutional Neural Networks (CNNs) have become a

fundamental computational approach applied in a wide range of

domains, including some safety-critical applications (e.g.,

automotive, robotics, and healthcare equipment). Therefore, the

reliability evaluation of those computational systems is

mandatory. The reliability evaluation of CNNs is performed by

fault injection campaigns at different levels of abstraction, from

the application level down to the hardware level. Many works

have focused their effort on evaluating the reliability of neural

networks in the presence of transient faults. However, the effects

of permanent faults have been investigated at the application

level, only, e.g., targeting the parameters of the network. This

paper intends to propose a framework, resorting to a binary

instrumentation tool to perform fault injection campaigns,

targeting different components inside the GPU, such as the

register files and the functional units. This environment allows

assessing the reliability of CNNs deployed on a GPU considering

the presence of permanent faults.

Keywords— Artificial Neural Networks, Convolutional

Neural Networks Graphics Processing Units (GPUs), Reliability

evaluation.

I. INTRODUCTION

Nowadays, Artificial Neural Networks (ANNs) are
bioinspired computational models widely deployed in multiple
application domains, such as multimedia, financial analysis,
robotics, and automotive [1]. Convolutional Neural Networks
(CNNs) represent a class of ANNs used to implement complex
image and video processing algorithms for object recognition
and path tracking [2]. These CNN-based algorithms are widely
used in safety-critical systems, such as self-driving vehicles [1],
[2]. Therefore, estimating the reliability of those systems is
crucial to meet the requirements of different safety standards
(e.g., ISO26262 for the automotive domain).

CNNs models are implemented on a wide range of
hardware accelerators [3], including Graphics Processing Units
(GPUs), Tensor Processing Units (TPUs) [4], FPGAs [5], and
ASICs. However, GPUs are the dominating devices among
these accelerators and are extensively adopted to implement
and accelerate CNNs. GPUs are the preferred accelerator in
many applications, mainly due to their architecture,
computational power, flexibility, and scalability. Also, some
GPU devices include custom hardware modules specially
designed to accelerate cutting-edge CNNs architectures (e.g.,
tensor cores).

In other cases, the GPUs are incorporated in specialized
hardware and software ecosystems, including Deep Learning
development environments, aiming for safety-critical
applications such as autonomous vehicles [6], which demand
high-reliability standards keeping low failures rates as much as
possible. However, the cutting-edge semiconductor
technologies used for GPUs' manufacturing are susceptible to
suffer faults, including permanent faults arising in the device
during its operational life (e.g., due to aging) [7]. Thus, faults in
the GPU device may affect a CNN model generating wrong
results or catastrophic events at the application level.

Historically, the ANNs have been considered as intrinsically
fault-tolerant due to the redundancy in their structure and
connections, allowing them to tolerate some noise generated by
the input data or during the computational process [8].
However, modern CNNs have high topological complexity,
including a deeper hierarchy of layers and more operations than
classical ANN architectures. Thus, the traditional methods
based on error propagation analysis cannot be applied to new
state-of-the-art CNNs. Instead, new studies about the reliability
of CNNs consider that the fault tolerance of those
computational models depends on the hardware that executes
the CNN and the topology of the network [8]. Therefore, the
reliability analysis of CNNs implemented on GPUs deserves
special attention, considering that both CNNs and GPUs are
popularly used to implement many safety-critical applications;
thus, any fault presence can jeopardize them.

According to the literature, the resilient evaluation of neural
networks to faults is usually carried out by performing Fault
Injection Campaigns (FICs) at different abstraction levels, from
the application level down to the hardware level.

So far, many works [9]–[11] have focused their effort on
evaluating the reliability of neural networks in the presence of
transient faults models. However, permanent fault models have
been addressed using application-level FICs, only targeting the
parameters of the network (weights, activation values, etc.)
[12]. Unfortunately, this fault injection approach differs from
reality by far at this level. Since this approach allows only
injecting faults in the system memory, generating a significant
limitation when considering fault injection in other hardware
components such as register files, functional units, and control
units.

On the other hand, hardware-level FIC resorts to injecting
faults in the circuit at the RTL or gate-level. However, the
lower the abstraction level, the higher the fault injection time
required [13]. This FIC approach is more realistic but imposes

serious limitations in terms of injection time due to the circuit
size (millions of gates for GPUs) plus the network architecture
(3M of weights and 9K of neurons for small CNN LeNet-5).
Therefore, the reliability analysis during the inference of a
CNN at the hardware level clearly requires an excessive amount
of time [13]] and computational resources. Consequently, an
alternate solution to be considered relies on the architectural-
level fault injections using Software Implemented Fault
Injections (SWIFI) [14], also known as Hardware Injection
Through Program Transformation (HIPT) [15] for GPUs
contexts. These approaches consist of modifying the
application's source code as ISA level to inject errors, and then
the program is issued in the real hardware device.

To the best of our knowledge so far, there are no reported
works in the literature considering frameworks HIPT-based for
FICs of permanent faults oriented to evaluate the reliability of
CNNs on GPUs. Therefore, this paper intends to propose a fault
injection framework, resorting to implementing FIC of
permanent faults on GPU devices by injecting errors at the
architectural level. The environment allows injecting errors in
the register files and the functional units (integers and floating-
point units). In particular, the proposed framework was built
using the NVIDIA NVBITFI tool. This tool was adapted and
customized, extending its capabilities to support the injection
and propagation of hard errors that mimic the presence of
permanent faults in a specific hardware component of the GPU.

The rest of the paper is organized as follows. Section II
introduces the essential background and related works in the
field. Section III presents the proposed framework, and Section
IV describes the study cases and the experimental setup.
Section V provides the experimental results. Finally, Section VI
draws some conclusions and future research directions.

II. BACKGROUND

A. Convolutional Neural Networks

A Convolutional Neural Network (ConvNet/CNN) is one
class of ANNs mainly applied to video and image processing to
pattern recognition and image classification. The architecture of
a CNN mimics the connection patterns of the neurons in the
visual cortex of the Human Brain. A CNN consists of an input
layer, hidden layers, and output layer. Unlike the multilayer
perceptron (MLP), the hidden layers in a CNN perform
convolutional operations between the convolution kernel
(weights) and the input matrix. Each layer also incorporates
activation functions to bound the output values of the neurons.
Additionally, each convolutional layer is followed by other
layers such as pooling, fully connected, and normalization
layers [8]. The well-known CNN architectures involve LeNet,
AlexNet, VGGNet, GoogLeNet, ResNet, and DenseNet.

B. GPU organization
Modern Graphics Processing Units (GPUs) are devices

composed of scalable arrays of parallel execution units known
as Streaming Multiprocessors (SMs). Each SM in a GPU uses
the Single-Instruction Multiple-Tread (SIMT) execution model,
where a single instruction executes multiple independent
threads concurrently.

A scheduler unit controls the execution of one SIMT
instruction, fetching, decoding, and distributing the workloads

to be executed in the parallel processing cores called Streaming
Processors (SPs) of the SM. One SM can contain between 8 and
128 SPs depending on the GPU model and the number of
parallel threads to be processed concurrently. Additionally,
Each SM includes one or more scheduler controllers to manage
and trace the assigned tasks. The parallel task is divided into
threads and groups of threads (32 Threads) (called Warps) and
submitted for execution on each SM. Internally, the SM also
includes local memories and register file banks to process each
thread in parallel. In modern SM architectures, the number of
available execution modules is proportional to the granularity
of a warp.

C. Hardware Injection Through Program Transformation

(HIPT)

The HIPT architectural-level fault injector tools mimic the
hardware fault effect as an error by implementing
instrumentation functions in the target application's source
code. These errors are inserted, corrupting the output result of
an executed instruction on a selected core in the GPU. Once
instrumented the source code, the faulty application is executed
in the device, propagating the error at hardware speeds to the
output of the target application [15], [16]

NVBitFI is the state-of-the-art fault injection tool that
instruments a target program to inject errors into NVIDIA
GPUs. This tool performs the instrumentation at the SASS
(Stream Assembly). Unlike other tools such as SASSIFI,
NVBitFI allows to instrument unknown libraries during the
build time. NVBitFI offers a single interface to support the
recent NVIDIA architecture families, including Kepler,
Maxwell, Pascal, Volta, and Ampere GPUs [15]. NVBitFI
incorporates four bit-flip models for transient faults injection. 1)
single bit-flip, 2) two-adjacent bit-flip, 3) random value, 4) all
zero. Additionally, this tool incorporates a simplistic approach
for injecting permanent faults in the functional units, applying a
random bit-flip to the result of all instances of one selected
instruction opcode. Therefore, in this work, we propose to
extend the existent fault injection capabilities of the tool to
support permanent fault injection in CNN models.

III. PROPOSED FRAMEWORK FOR PERMANENT FAULTS INJECTION

The proposed environment uses the NVBitFI
instrumentation tool to perform permanent fault injection
campaigns in a GPU executing a CNN model. The framework
uses a global controller to manage the fault injection process. A
pre-trained CNN model is used during the fault injection
process performing the inference of a subset of images that are
not used during the training stages. The fault injection of
permanent faults is carried out as follows. First, the controller
initiates the inference of the CNN model under a fault-free
scenario in order to collect its outputs and create a golden
reference model. Then, one fault is injected at a time,
propagating it through all executed kernels in the GPU. Finally,
the results are collected and compared with the golden model
outcomes to decide the classification of the injected error in the
CNN algorithm.

The permanent faults can produce different effects on the
outputs of the neural network. Those effects can be classified
according to their impact in the CNN. Some propagated errors

can be considered Silent Data Corruption (SDCs) because they
are propagated to the output modifying the inference results.
This type o error sometimes is critical since the expected
classification changes at all. Other errors produce a critical
failure during the execution of the application causing a
Detected Unrecoverable Error (DEU). This type of error
suddenly stops the CNN computations, and the inference
process does not finish. Finally, an output error is considered
Masked when it does not produce any output effect or is
mitigated during the inference process. In this work, we
considered four error categories as follows:

SDC- Critical: The injected error propagates to the output
of the CNN, modifying the probabilities vector during the
inference calculation producing a misclassification result.

SDC-Safe: The injected error propagates to the output of
the CNN modifying the probabilities vector during the
inference calculation, but the classification output is still
correct.

DUE: The injected error produces a system hang or crash.
This error interrupts the execution of the CNN at any time. The
causes of this behavior can be memory access violation,
memory misalignment violation, or timeout (the error block the
CNN model in an infinite loop).

Masked: the injected error does not have any impact on the
output. In this case, the output is the same as the fault-free
scenario

The fault injection campaigns at the GPU level are issued
through the binary instrumentation tool mechanism by
NVBitFI. This tool is designed to intercept and instrument, with
errors, the launched kernels of the target application. Three
steps are used to perform this instrumentation process. i)
instructions inspection, ii) insertion of instrumentation function,
and ii) kernel execution. In the inspection instruction step, each
SASS instruction of the kernel is examined in order to extract
detailed information such as the instruction number, opcode
type, registers identifiers, and memory references. In the second
step, the extracted information of the instruction is compared
with the injection specifications given by the user according to
the selected error model (opcode, instruction number,
destination registers, etc.). Therefore, if the instruction matches
the target specifications, an error injector function is inserted
immediately after the matched instruction. The injector function
writes in the associated destination register the desired error by
inserting bit-flips or modifying the instrumented instruction
result entirely. When this process finishes, the instrumented
kernel is executed in the device to propagate the injected
error(s) to the next kernel. This mechanism is repeated for
every kernel of the application.

The permanent faults modeling using the NVBitFI tool can
be performed assuming that the presence of the fault in a
particular module of the GPU affects all instructions in the
application sharing the faulty module. Thus, this modeling
process requires different strategies for each hardware
component. In this work, we integrate two additional fault
injectors to NVBitFI. The first injector is specially designed to
model permanent faults in the GPU register files. The second

one targets the functional units using a realistic approach that
the one considered initially by NVBitFI.

A. Permanent Fault injection in the Register Files

During the parallel execution of an application on a GPU,
the block scheduler distributes on each SM several blocks of
threads to be executed in parallel. This distribution follows the
maximum occupancy of the device to maximize the GPU's
performance. Then, each block of threads is distributed in the
available warps. The GPU architecture defines the maximum
number of warps residents per SM simultaneously.
Additionally, each resident thread of each resident warp has
access to a private set of registers to perform the needed
operations of the application.

Therefore, to model a permanent fault in the registers of the
GPU, it is required to specify not only the instruction and the
register number, but also the warp identifier and the thread
inside the selected warp to maintain the fault effect into the
same location during the whole application execution.
Consequently, the permanent fault injection in any register of
the GPU can be modeled using the exact mechanism of
NVBitFI described before, targeting for instrumentation only
those instructions using the faulty target register as the
destination.

The fault definition is composed of the quintuple <SMID,
threadID, Register, Mask, stuck-at> where SMID represents the
SM where the injection should be performed out of the many
possibly available; threadID is the resident thread selected in
which to realize the injection; Register is the target destination
register to be injected; Mask is the single bitmask to be applied
to the target register value; stuck-at can be 1 or 0 depending on
the value to be forced in the defined bit.

B. Permanent Fault injection in the Functional Units

Similarly, the fault injection of permanent fault in the
functional units follows the same steps as the register files.
However, there is a slight difference when we consider a
permanent fault on an arithmetic unit. Those faults might affect
the results of several instructions opcodes sharing the same
operational unit. For example, suppose the floating-point unit is
considered affected by a permanent fault. In that case, the
instrumentation process shall consider the injection of errors
(bit-flips) in the output of each floating-point instruction issued
by each kernel of the CNN.

IV. EXPERIMENTAL RESULTS

The proposed fault simulation framework was evaluated
using the pre-trained LeNet and AlexNet CNNs models
available in the Darknet environment [17]. The trained LeNet
model can classify ten handwritten digits (0 to 9) using the
MNIST dataset. The AlexNet model classifies images from
1000 categories using the ImageNet dataset. A set of fault
simulation experiments was performed to evaluate the impact
of permanent fault on the selected CNNs. The fault simulation
campaigns were performed on a workstation HP Z2 G5 with
CPU Intel Core i9-10800 20 cores, 32 GB of RAM memory,
and equipped with an RTX 3060TI GPU platform including an
NVIDIA Ampere architecture with compute capability (CC)
8.6. On the other hand, the LeNet model was evaluated using

the embedded platform Jetson Nano, which has an NVIDIA
Maxwell architecture and CC 5.3.

For the experiments, the LeNet model was evaluated by
performing fault injections on the register file and the
functional units on one SM. In the case of the AlexNet model,
the fault injections were performed considering permanent
faults in the register file only. During the fault simulation
campaigns, 29000 faults were considered for the functional
units using a single-bit flip scenario, and 16000 for the register
files considering only the first ten registers (R0 to R9). The
register selection was made based on the analysis results using
the profiler tool present in NVBitFI, which allows us to
calculate the frequency of usage of each register during the
execution of the CNNs models.

TABLE I. RELATIVE OCCURRENCE OF ERROR FOR PERMANENT

FAULTS IN THE REGISTER FILE OF A GPU

CNN
Model

GPU
arch

DEU (%)
SDC safe
(%)

SDC Critical
(%)

Masked
(%)

LeNet
Maxwell 74.76 10.01 2.73 12.48
Ampere 64.07 16.51 0.51 18.90

AlexNet Ampere 63.36 15.26 2.70 18.68

TABLE II. RELATIVE OCCURRENCE OF ERROR FOR PERMANENT

FAULTS IN THE FUNCTIONAL UNITS

CNN
Model

Funct unit DEU (%)
SDC safe
(%)

SDC
Critical
(%)

Masked (%)

LeNet
INT core 24.82 6.38 2.21 66.58
FP core 3.96 3.92 0.56 91.56
SFU cores 16.93 2.98 10.37 69.71

Tables I and II report the results of the fault injection
campaigns performed for the register files and functional units
targeting one SM of the GPU. Both tables report the occurrence
of errors according to the categories mentioned before DEUs,
SDCs, and Masked. Moreover, the tables present the result for
different GPUs in the case of the register file.

The reported results in table I show that permanent faults in
the registers can produce a significant number of DUEs
occurrences exceeding 60% of the cases. Even for the LeNet
CNN, the percentage of occurrence reached 74.76% when a
Jetson Nano GPU was considered. Interestingly, regardless of
the CNN evaluated, the occurrences of DEUs are lower by
approximately 10% when an Ampere GPU is used instead of
the Maxwell one. Similarly, SDC safe and masked occurrences
are around 6% lower on an Ampere GPU than in a Maxwell.
The SDC critical for LeNet differs drastically from 2.73%
considering Maxwell GPU to 0.51% on Ampere.

These results linked to the GPU architecture can be
explained considering the hardware details of each GPU used in
the experiments. In the case of Maxwell architecture, on the
Jetson Nano board, the embedded GPU only disposes of one
SM to execute all the kernel blocks issued by the CNN
application. Therefore, one permanent fault in the registers has
more probability of corrupting many threads, increasing the
occurrences of DEUs and SDCs. On the other hand, the
Ampere GPU has 38 SMs. Therefore, one permanent fault
affecting only one SM generates propagation of the results in a
few cases. It's worth noticing that the DEUs in one SM affect

the complete application regardless of the number of SMs
available in the GPU device.

Table II shows that permanent faults in the integer cores and
SFU cores produce up to 24% of DEU occurrences. Only the
Floating-point unit has a low DUE rate occurrence, less than
4%. It is worth noticing that the SDC safe occurrence is lower
than 6% for all the evaluated units. Interestingly, the SDC
critical reaches around 10% for the SFU cores. Surprisingly, the
occurrence rate of Masked faults is greater than 60% for all the
cases. The reason for those results in the functional units is due
to the fact that we only use the single-bit flip injection;
therefore, the results show a more optimistic scenario than the
register file experiments.

V. CONCLUSIONS

In this work, we extend the capabilities of the NVBitFI tool,
developed by NVIDIA, to inject permanent faults in order to
support the reliability evaluation of CNNs implemented on
GPU devices. For the experiments, two pre-trained CNN
models were considered LeNet and AlexNet. The fault injection
campaigns considered permanent faults in the register file of
one SM of the GPU and permanent faults in the functional
units. The results show that permanent faults on a GPU produce
a high rate of critical failures, generating a high rate of
occurrence of DUEs up to 74.76%. Similarly, for the functional
units, the DUE rate reaches 24%. Regarding misclassification
results due to permanent faults, in the case of the register file,
the results show a maximum of 2.73%; however, for SFU core,
these results increase up to 10.30%. Therefore, as stated before,
when considering permanent faults at lower levels, closer to the
actual device, the propagated effect of those faults to the
outputs shows a more realistic scenario considering occurrences
of critical errors such as DUEs and SDC critical.

Future activities aim to evaluate more CNN architecture
models and propose hardening techniques to counteract the
vulnerabilities caused by permanent faults in CNN architectures
using GPUs.

REFERENCES

[1] H. Mun, S. Seo, and J. Yun, "Recycling of Adversarial Attacks on the

DNN of Autonomous Cars," International Conference on Information
Networking, vol. 2021-January, pp. 814–817, Jan. 2021,

[2] R. Ravindran, M. J. Santora, and M. M. Jamali, "Multi-Object Detection

and Tracking, Based on DNN, for Autonomous Vehicles: A Review,"
IEEE Sensors Journal, vol. 21, no. 5, pp. 5668–5677, Mar. 2021

[3] W. G. Hatcher and W. Yu, "A Survey of Deep Learning: Platforms,

Applications and Emerging Research Trends," IEEE Access, vol. 6, pp.
24411–24432, Apr. 2018

[4] N. Jouppi, C. Young, N. Patil, and D. Patterson, "Motivation for and

Evaluation of the First Tensor Processing Unit," IEEE Micro, vol. 38, no.
3, pp. 10–19, May 2018

[5] A. Shawahna, S. M. Sait, and A. El-Maleh, "FPGA-Based accelerators of

deep learning networks for learning and classification: A review," IEEE
Access, vol. 7, pp. 7823–7859, 2019

[6] "NVIDIA DRIVE - Autonomous Vehicle Development Platforms |

NVIDIA Developer." https://developer.nvidia.com/drive (accessed Feb.
12, 2022).

[7] B. Du, J. E. Rodriguez Condia, M. Sonza Reorda, and L. Sterpone,

"About the functional test of the GPGPU scheduler," 2018 IEEE 24th
International Symposium on On-Line Testing and Robust System Design,

IOLTS 2018, pp. 85–90, Sep. 2018

[8] C. Torres-Huitzil and B. Girau, "Fault and Error Tolerance in Neural
Networks: A Review," IEEE Access, vol. 5, pp. 17322–17341, Aug. 2017

[9] Y. Ibrahim et al., "Soft Error Resilience of Deep Residual Networks for
Object Recognition," IEEE Access, vol. 8, pp. 19490–19503, 2020

[10] T. Garrett and A. D. George, "Improving dependability of onboard deep

learning with resilient tensorflow," Proceedings - 2021 IEEE Space
Computing Conference, SCC 2021, pp. 134–142, Aug. 2021

[11] K. Adam, I. I. Mohd, and Y. Ibrahim, "Analyzing the Resilience of

Convolutional Neural Networks Implemented on GPUs: Alexnet as a
Case Study," International journal of electrical and computer engineering

systems, vol. 12, no. 2, pp. 91–103, Jun. 2021

[12] A. Ruospo, E. Sanchez, M. Traiola, I. O'Connor, and A. Bosio,
"Investigating data representation for efficient and reliable Convolutional

Neural Networks," Microprocessors and Microsystems, vol. 86, p.

104318, Oct. 2021
[13] A. Ruospo, A. Balaara, A. Bosio, and E. Sanchez, "A Pipelined Multi-

Level Fault Injector for Deep Neural Networks," 33rd IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, DFT 2020, Oct. 2020

[14] S. K. Bukasa, L. Claudepierre, R. Lashermes, and J. L. Lanet, "When

Fault Injection Collides with Hardware Complexity," Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 11358 LNCS, pp.

243–256, Nov. 2018
[15] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler,

"NVBitFI: Dynamic Fault Injection for GPUs," Proceedings - 51st

Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2021, pp. 284–291, Jun. 2021

[16] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
"SASSIFI: An architecture-level fault injection tool for GPU application

resilience evaluation," ISPASS 2017 - IEEE International Symposium on

Performance Analysis of Systems and Software, pp. 249–258, Jul. 2017
[17] J. Redmon, "Darknet: Open-Source Neural Networks in C."

https://pjreddie.com/darknet/ (accessed Feb. 14, 2022).

