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Abstract — Currently, Deep learning and especially 

Convolutional Neural Networks (CNNs) have become a 

fundamental computational approach applied in a wide range of 

domains, including some safety-critical applications (e.g., 

automotive, robotics, and healthcare equipment). Therefore, the 

reliability evaluation of those computational systems is 

mandatory. The reliability evaluation of CNNs is performed by 

fault injection campaigns at different levels of abstraction, from 

the application level down to the hardware level. Many works 

have focused their effort on evaluating the reliability of neural 

networks in the presence of transient faults. However, the effects 

of permanent faults have been investigated at the application 

level, only, e.g., targeting the parameters of the network. This 

paper intends to propose a framework, resorting to a binary 

instrumentation tool to perform fault injection campaigns, 

targeting different components inside the GPU, such as the 

register files and the functional units. This environment allows 

assessing the reliability of CNNs deployed on a GPU considering 

the presence of permanent faults. 
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I. INTRODUCTION 

Nowadays, Artificial Neural Networks (ANNs) are 
bioinspired computational models widely deployed in multiple 
application domains, such as multimedia, financial analysis, 
robotics, and automotive [1]. Convolutional Neural Networks 
(CNNs) represent a class of ANNs used to implement complex 
image and video processing algorithms for object recognition 
and path tracking [2]. These CNN-based algorithms are widely 
used in safety-critical systems, such as self-driving vehicles [1], 
[2]. Therefore, estimating the reliability of those systems is 
crucial to meet the requirements of different safety standards 
(e.g.,  ISO26262 for the automotive domain).  

CNNs models are implemented on a wide range of 
hardware accelerators [3], including Graphics Processing Units 
(GPUs), Tensor Processing Units (TPUs) [4], FPGAs [5], and 
ASICs. However, GPUs are the dominating devices among 
these accelerators and are extensively adopted to implement 
and accelerate CNNs. GPUs are the preferred accelerator in 
many applications, mainly due to their architecture, 
computational power, flexibility, and scalability. Also, some 
GPU devices include custom hardware modules specially 
designed to accelerate cutting-edge CNNs architectures (e.g., 
tensor cores).  

In other cases, the GPUs are incorporated in specialized 
hardware and software ecosystems, including Deep Learning 
development environments, aiming for safety-critical 
applications such as autonomous vehicles [6], which demand 
high-reliability standards keeping low failures rates as much as 
possible. However, the cutting-edge semiconductor 
technologies used for GPUs' manufacturing are susceptible to 
suffer faults, including permanent faults arising in the device 
during its operational life (e.g., due to aging) [7]. Thus, faults in 
the GPU device may affect a CNN model generating wrong 
results or catastrophic events at the application level.  

Historically, the ANNs have been considered as intrinsically 
fault-tolerant due to the redundancy in their structure and 
connections, allowing them to tolerate some noise generated by 
the input data or during the computational process [8]. 
However, modern CNNs have high topological complexity, 
including a deeper hierarchy of layers and more operations than 
classical ANN architectures. Thus, the traditional methods 
based on error propagation analysis cannot be applied to new 
state-of-the-art CNNs. Instead, new studies about the reliability 
of CNNs consider that the fault tolerance of those 
computational models depends on the hardware that executes 
the CNN and the topology of the network [8]. Therefore, the 
reliability analysis of CNNs implemented on GPUs deserves 
special attention, considering that both CNNs and GPUs are 
popularly used to implement many safety-critical applications; 
thus, any fault presence can jeopardize them.   

According to the literature, the resilient evaluation of neural 
networks to faults is usually carried out by performing Fault 
Injection Campaigns (FICs) at different abstraction levels, from 
the application level down to the hardware level.  

So far, many works [9]–[11]  have focused their effort on 
evaluating the reliability of neural networks in the presence of 
transient faults models. However, permanent fault models have 
been addressed using application-level FICs, only targeting the 
parameters of the network (weights, activation values, etc.) 
[12]. Unfortunately, this fault injection approach differs from 
reality by far at this level. Since this approach allows only 
injecting faults in the system memory, generating a significant 
limitation when considering fault injection in other hardware 
components such as register files, functional units, and control 
units.  

On the other hand, hardware-level FIC resorts to injecting 
faults in the circuit at the RTL or gate-level. However, the 
lower the abstraction level, the higher the fault injection time 
required [13]. This FIC approach is more realistic but imposes 



 

serious limitations in terms of injection time due to the circuit 
size (millions of gates for GPUs) plus the network architecture 
(3M of weights and 9K of neurons for small CNN LeNet-5). 
Therefore, the reliability analysis during the inference of a 
CNN at the hardware level clearly requires an excessive amount 
of time [13]] and computational resources. Consequently, an 
alternate solution to be considered relies on the architectural-
level fault injections using Software Implemented Fault 
Injections (SWIFI) [14], also known as Hardware Injection 
Through Program Transformation (HIPT) [15] for GPUs 
contexts. These approaches consist of modifying the 
application's source code as ISA level to inject errors, and then 
the program is issued in the real hardware device.   

To the best of our knowledge so far, there are no reported 
works in the literature considering frameworks HIPT-based for 
FICs of permanent faults oriented to evaluate the reliability of 
CNNs on GPUs. Therefore, this paper intends to propose a fault 
injection framework, resorting to implementing FIC of 
permanent faults on GPU devices by injecting errors at the 
architectural level. The environment allows injecting errors in 
the register files and the functional units (integers and floating-
point units). In particular, the proposed framework was built 
using the NVIDIA NVBITFI tool. This tool was adapted and 
customized, extending its capabilities to support the injection 
and propagation of hard errors that mimic the presence of 
permanent faults in a specific hardware component of the GPU. 

The rest of the paper is organized as follows. Section II 
introduces the essential background and related works in the 
field. Section III presents the proposed framework, and Section 
IV describes the study cases and the experimental setup. 
Section V provides the experimental results. Finally, Section VI 
draws some conclusions and future research directions. 

II. BACKGROUND  

A. Convolutional Neural Networks  

A Convolutional Neural Network (ConvNet/CNN) is one 
class of ANNs mainly applied to video and image processing to 
pattern recognition and image classification. The architecture of 
a CNN mimics the connection patterns of the neurons in the 
visual cortex of the Human Brain. A CNN consists of an input 
layer, hidden layers, and output layer. Unlike the multilayer 
perceptron (MLP), the hidden layers in a CNN perform 
convolutional operations between the convolution kernel 
(weights) and the input matrix. Each layer also incorporates 
activation functions to bound the output values of the neurons. 
Additionally, each convolutional layer is followed by other 
layers such as pooling, fully connected, and normalization 
layers [8]. The well-known CNN architectures involve LeNet, 
AlexNet, VGGNet, GoogLeNet, ResNet, and DenseNet. 

B. GPU organization 
Modern Graphics Processing Units (GPUs) are devices 

composed of scalable arrays of parallel execution units known 
as Streaming Multiprocessors (SMs). Each SM in a GPU uses 
the Single-Instruction Multiple-Tread (SIMT) execution model, 
where a single instruction executes multiple independent 
threads concurrently.  

A scheduler unit controls the execution of one SIMT 
instruction, fetching, decoding, and distributing the workloads 

to be executed in the parallel processing cores called Streaming 
Processors (SPs) of the SM. One SM can contain between 8 and 
128 SPs depending on the GPU model and the number of 
parallel threads to be processed concurrently. Additionally, 
Each SM includes one or more scheduler controllers to manage 
and trace the assigned tasks. The parallel task is divided into 
threads and groups of threads (32 Threads) (called Warps) and 
submitted for execution on each SM. Internally, the SM also 
includes local memories and register file banks to process each 
thread in parallel. In modern SM architectures, the number of 
available execution modules is proportional to the granularity 
of a warp. 

C. Hardware Injection Through Program Transformation 

(HIPT) 

The HIPT architectural-level fault injector tools mimic the 
hardware fault effect as an error by implementing 
instrumentation functions in the target application's source 
code. These errors are inserted, corrupting the output result of 
an executed instruction on a selected core in the GPU. Once 
instrumented the source code, the faulty application is executed 
in the device, propagating the error at hardware speeds to the 
output of the target application [15], [16]  

NVBitFI is the state-of-the-art fault injection tool that 
instruments a target program to inject errors into NVIDIA 
GPUs. This tool performs the instrumentation at the SASS 
(Stream Assembly). Unlike other tools such as SASSIFI, 
NVBitFI allows to instrument unknown libraries during the 
build time. NVBitFI offers a single interface to support the 
recent NVIDIA architecture families, including Kepler, 
Maxwell, Pascal, Volta, and Ampere GPUs [15]. NVBitFI 
incorporates four bit-flip models for transient faults injection. 1) 
single bit-flip, 2) two-adjacent bit-flip, 3) random value, 4) all 
zero. Additionally, this tool incorporates a simplistic approach 
for injecting permanent faults in the functional units, applying a 
random bit-flip to the result of all instances of one selected 
instruction opcode. Therefore, in this work, we propose to 
extend the existent fault injection capabilities of the tool to 
support permanent fault injection in CNN models.  

III. PROPOSED FRAMEWORK FOR PERMANENT FAULTS INJECTION 

The proposed environment uses the NVBitFI 
instrumentation tool to perform permanent fault injection 
campaigns in a GPU executing a CNN model. The framework 
uses a global controller to manage the fault injection process. A 
pre-trained CNN model is used during the fault injection 
process performing the inference of a subset of images that are 
not used during the training stages. The fault injection of 
permanent faults is carried out as follows. First, the controller 
initiates the inference of the CNN model under a fault-free 
scenario in order to collect its outputs and create a golden 
reference model. Then, one fault is injected at a time, 
propagating it through all executed kernels in the GPU. Finally, 
the results are collected and compared with the golden model 
outcomes to decide the classification of the injected error in the 
CNN algorithm.  

The permanent faults can produce different effects on the 
outputs of the neural network. Those effects can be classified 
according to their impact in the CNN. Some propagated errors 



 

can be considered Silent Data Corruption (SDCs) because they 
are propagated to the output modifying the inference results. 
This type o error sometimes is critical since the expected 
classification changes at all. Other errors produce a critical 
failure during the execution of the application causing a 
Detected Unrecoverable Error (DEU). This type of error 
suddenly stops the CNN computations, and the inference 
process does not finish. Finally, an output error is considered 
Masked when it does not produce any output effect or is 
mitigated during the inference process. In this work, we 
considered four error categories as follows: 

SDC- Critical: The injected error propagates to the output 
of the CNN, modifying the probabilities vector during the 
inference calculation producing a misclassification result.  

SDC-Safe: The injected error propagates to the output of 
the CNN modifying the probabilities vector during the 
inference calculation, but the classification output is still 
correct.  

DUE: The injected error produces a system hang or crash. 
This error interrupts the execution of the CNN at any time. The 
causes of this behavior can be memory access violation, 
memory misalignment violation, or timeout (the error block the 
CNN model in an infinite loop).  

Masked: the injected error does not have any impact on the 
output. In this case, the output is the same as the fault-free 
scenario 

The fault injection campaigns at the GPU level are issued 
through the binary instrumentation tool mechanism by 
NVBitFI. This tool is designed to intercept and instrument, with 
errors, the launched kernels of the target application. Three 
steps are used to perform this instrumentation process. i) 
instructions inspection, ii) insertion of instrumentation function, 
and ii) kernel execution. In the inspection instruction step, each 
SASS instruction of the kernel is examined in order to extract 
detailed information such as the instruction number, opcode 
type, registers identifiers, and memory references. In the second 
step, the extracted information of the instruction is compared 
with the injection specifications given by the user according to 
the selected error model (opcode, instruction number, 
destination registers, etc.). Therefore, if the instruction matches 
the target specifications, an error injector function is inserted 
immediately after the matched instruction. The injector function 
writes in the associated destination register the desired error by 
inserting bit-flips or modifying the instrumented instruction 
result entirely. When this process finishes, the instrumented 
kernel is executed in the device to propagate the injected 
error(s) to the next kernel. This mechanism is repeated for 
every kernel of the application. 

The permanent faults modeling using the NVBitFI tool can 
be performed assuming that the presence of the fault in a 
particular module of the GPU affects all instructions in the 
application sharing the faulty module. Thus, this modeling 
process requires different strategies for each hardware 
component. In this work, we integrate two additional fault 
injectors to NVBitFI. The first injector is specially designed to 
model permanent faults in the GPU register files. The second 

one targets the functional units using a realistic approach that 
the one considered initially by NVBitFI. 

A. Permanent Fault injection in the Register Files 

During the parallel execution of an application on a GPU, 
the block scheduler distributes on each SM several blocks of 
threads to be executed in parallel. This distribution follows the 
maximum occupancy of the device to maximize the GPU's 
performance. Then, each block of threads is distributed in the 
available warps. The GPU architecture defines the maximum 
number of warps residents per SM simultaneously. 
Additionally, each resident thread of each resident warp has 
access to a private set of registers to perform the needed 
operations of the application.  

Therefore, to model a permanent fault in the registers of the 
GPU, it is required to specify not only the instruction and the 
register number, but also the warp identifier and the thread 
inside the selected warp to maintain the fault effect into the 
same location during the whole application execution. 
Consequently, the permanent fault injection in any register of 
the GPU can be modeled using the exact mechanism of 
NVBitFI described before, targeting for instrumentation only 
those instructions using the faulty target register as the 
destination.  

The fault definition is composed of the quintuple <SMID, 
threadID, Register, Mask, stuck-at> where SMID represents the 
SM where the injection should be performed out of the many 
possibly available; threadID is the resident thread selected in 
which to realize the injection; Register is the target destination 
register to be injected; Mask is the single bitmask to be applied 
to the target register value; stuck-at can be 1 or 0 depending on 
the value to be forced in the defined bit.  

B. Permanent Fault injection in the Functional Units 

Similarly, the fault injection of permanent fault in the 
functional units follows the same steps as the register files. 
However, there is a slight difference when we consider a 
permanent fault on an arithmetic unit. Those faults might affect 
the results of several instructions opcodes sharing the same 
operational unit. For example, suppose the floating-point unit is 
considered affected by a permanent fault. In that case, the 
instrumentation process shall consider the injection of errors 
(bit-flips) in the output of each floating-point instruction issued 
by each kernel of the CNN.  

IV. EXPERIMENTAL RESULTS 

The proposed fault simulation framework was evaluated 
using the pre-trained LeNet and AlexNet CNNs models 
available in the Darknet environment [17]. The trained LeNet 
model can classify ten handwritten digits (0 to 9) using the 
MNIST dataset. The AlexNet model classifies images from 
1000 categories using the ImageNet dataset. A set of fault 
simulation experiments was performed to evaluate the impact 
of permanent fault on the selected CNNs. The fault simulation 
campaigns were performed on a workstation HP Z2 G5 with 
CPU Intel Core i9-10800 20 cores, 32 GB of RAM memory, 
and equipped with an RTX 3060TI GPU platform including an 
NVIDIA Ampere architecture with compute capability (CC) 
8.6. On the other hand, the LeNet model was evaluated using 



 

the embedded platform Jetson Nano, which has an NVIDIA 
Maxwell architecture and CC 5.3.  

For the experiments, the LeNet model was evaluated by 
performing fault injections on the register file and the 
functional units on one SM. In the case of the AlexNet model, 
the fault injections were performed considering permanent 
faults in the register file only. During the fault simulation 
campaigns, 29000 faults were considered for the functional 
units using a single-bit flip scenario, and 16000 for the register 
files considering only the first ten registers (R0 to R9). The 
register selection was made based on the analysis results using 
the profiler tool present in NVBitFI, which allows us to 
calculate the frequency of usage of each register during the 
execution of the CNNs models.  

TABLE I. RELATIVE OCCURRENCE OF ERROR FOR PERMANENT 

FAULTS IN THE REGISTER FILE OF A GPU 

CNN 
Model 

GPU 
arch 

DEU (%) 
SDC safe 
(%) 

SDC Critical 
(%) 

Masked 
(%) 

LeNet 
Maxwell 74.76 10.01 2.73 12.48 
Ampere 64.07 16.51 0.51 18.90 

AlexNet Ampere 63.36 15.26 2.70 18.68 
 

TABLE II. RELATIVE OCCURRENCE OF ERROR FOR PERMANENT 

FAULTS IN THE FUNCTIONAL UNITS 

CNN 
Model 

Funct unit DEU (%) 
SDC safe 
(%) 

SDC 
Critical 
(%) 

Masked (%) 

LeNet 
INT core 24.82 6.38 2.21 66.58 
FP core 3.96 3.92 0.56 91.56 
SFU cores 16.93 2.98 10.37 69.71 

 

Tables I and II report the results of the fault injection 
campaigns performed for the register files and functional units 
targeting one SM of the GPU. Both tables report the occurrence 
of errors according to the categories mentioned before DEUs, 
SDCs, and Masked. Moreover, the tables present the result for 
different GPUs in the case of the register file.  

The reported results in table I show that permanent faults in 
the registers can produce a significant number of DUEs 
occurrences exceeding 60% of the cases. Even for the LeNet 
CNN, the percentage of occurrence reached 74.76% when a 
Jetson Nano GPU was considered. Interestingly, regardless of 
the CNN evaluated, the occurrences of DEUs are lower by 
approximately 10% when an Ampere GPU is used instead of 
the Maxwell one. Similarly, SDC safe and masked occurrences 
are around 6% lower on an Ampere GPU than in a Maxwell. 
The SDC critical for LeNet differs drastically from 2.73% 
considering Maxwell GPU to 0.51% on Ampere.  

These results linked to the GPU architecture can be 
explained considering the hardware details of each GPU used in 
the experiments. In the case of Maxwell architecture, on the 
Jetson Nano board, the embedded GPU only disposes of one 
SM to execute all the kernel blocks issued by the CNN 
application. Therefore, one permanent fault in the registers has 
more probability of corrupting many threads, increasing the 
occurrences of DEUs and SDCs. On the other hand, the 
Ampere GPU has 38 SMs. Therefore, one permanent fault 
affecting only one SM generates propagation of the results in a 
few cases. It's worth noticing that the DEUs in one SM affect 

the complete application regardless of the number of SMs 
available in the GPU device.  

Table II shows that permanent faults in the integer cores and 
SFU cores produce up to 24% of DEU occurrences. Only the 
Floating-point unit has a low DUE rate occurrence, less than 
4%. It is worth noticing that the SDC safe occurrence is lower 
than 6% for all the evaluated units. Interestingly, the SDC 
critical reaches around 10% for the SFU cores. Surprisingly, the 
occurrence rate of Masked faults is greater than 60% for all the 
cases. The reason for those results in the functional units is due 
to the fact that we only use the single-bit flip injection; 
therefore, the results show a more optimistic scenario than the 
register file experiments. 

V. CONCLUSIONS 

In this work, we extend the capabilities of the NVBitFI tool, 
developed by NVIDIA, to inject permanent faults in order to 
support the reliability evaluation of CNNs implemented on 
GPU devices. For the experiments, two pre-trained CNN 
models were considered LeNet and AlexNet. The fault injection 
campaigns considered permanent faults in the register file of 
one SM of the GPU and permanent faults in the functional 
units. The results show that permanent faults on a GPU produce 
a high rate of critical failures, generating a high rate of 
occurrence of DUEs up to 74.76%. Similarly, for the functional 
units, the DUE rate reaches 24%. Regarding misclassification 
results due to permanent faults, in the case of the register file, 
the results show a maximum of 2.73%; however, for SFU core, 
these results increase up to 10.30%. Therefore, as stated before, 
when considering permanent faults at lower levels, closer to the 
actual device, the propagated effect of those faults to the 
outputs shows a more realistic scenario considering occurrences 
of critical errors such as DUEs and SDC critical. 

Future activities aim to evaluate more CNN architecture 
models and propose hardening techniques to counteract the 
vulnerabilities caused by permanent faults in CNN architectures 
using GPUs. 
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