arXiv:2209.08329v1 [eess.SY] 17 Sep 2022

An Edge Architecture Oriented Model Predictive
Control Scheme for an Autonomous UAV Mission

Achilleas Santi Seisa, Sumeet Gajanan Satpute, Bjorn Lindqvist, and George Nikolakopoulos

Abstract—In this article the implementation of a controller and
specifically of a Model Predictive Controller (MPC) on an Edge
Computing device, for controlling the trajectory of an Unmanned
Aerial Vehicle (UAV) model, is examined. MPC requires more
computation power in comparison to other controllers, such as
PID or LQR, since it use cost functions, optimization methods
and iteratively predicts the output of the system and the control
commands for some determined steps in the future (prediction
horizon). Thus, the computation power required depends on the
prediction horizon, the complexity of the cost functions and the
optimization. The more steps determined for the horizon the more
efficient the controller can be, but also more computation power
is required. Since sometimes robots are not capable of managing
all the computing process locally, it is important to offload some
of the computing process from the robot to the cloud. But then
some disadvantages may occur, such as latency and safety issues.
Cloud computing may offer “infinity” computation power but
the whole system suffers in latency. A solution to this is the use
of Edge Computing, which will reduce time delays since the Edge
device is much closer to the source of data. Moreover, by using
the Edge we can offload the demanding controller from the UAV
and set a longer prediction horizon and try to get a more efficient
controller.

Index Terms—Edge Computing; UAV; Model Predictive Con-
trol

I. INTRODUCTION

In the future robots will have to complete more complex
tasks and the requirements for an autonomous capability will
increase. In that context, robots will need to have more com-
putational power that many times and based on the mission’s
complexity, this will not be possible to happen locally on-
board the robots’ processors. These cases are the exactly
ones where edge oriented control architectures are needed to
provide the desired high computation power and bandwidth,
while retaining an overall low latency. In this article, we
propose an edge computing architecture for offloading the
model predictive controller from an UAV to the Edge. By
offloading the MPC to the Edge we will be able to use Edge
resources and push MPC capabilities to the limits.

Edge Computing is an existing technology with tremendous
upcoming possibilities. The combination of Edge Computing
and 5G can revolutionize the world of robots. However, there
are some limitation and challenges which researchers try to
solve in order to use these technologies universally, while some

This work has been partially funded by the European Unions Horizon
2020 Research and Innovation Programme AERO-TRAIN under the Grant
Agreement No. 953454.

The Authors are with the Robotics and Al Team, Department of Computer,
Electrical and Space Engineering, Luled University of Technology, Lulea

Corresponding Author’s email: achsei@ltu. se

examples from the state of the art in the field can be mentioned
as in [9] where a 4 layer architecture consisted of Robot,
Edge, Fog and Cloud is used for offloading the localization
and mapping operations. A Search Planner algorithm using
Deep Learning is designed at the Edge for UAVs in [10].
In [11] the computational and storage resources are moved
to the Edge and the Cloud for Deep Robot Learning including
object recognition, grasp planning, localization etc. Finally,
in [[12] a Fog architecture is proposed for communicating and
controlling robots.

In all the articles mentioned above, the Edge is used mainly
for offloading the demanding Artificial Intelligence, Machine
or Deep Learning algorithms. On the other hand, there are
not many articles presenting attempts of offloading controllers
to the Edge from an automatic control systems approach.
In [7] it has been presented an application containing a remote
controller that it is able to run in a Mobile Edge server in a
form of Docker Container. These applications are controlling
two robotic arms for a cooperation task in an industrial envi-
ronment. In [8]] a switching multi-tier controller is presented.
The switcher is choosing between a local controller, which
operates as a safety controller and an Edge controller, which
runs more sophisticated algorithms with optimal performance.
In the works in [1]]-[6] researchers have suggested offloading
the MPC on the Edge. However, these articles focused mainly
on evaluating the related latency times, the time delays and
the related uncertainty for several cases. The controller in [4]]
and [3]] is composed with the combination of a LQR (locally)
and MPC (Edge) control, while in [2] and [5] two MPCs are
implemented, one on a local Edge and one on a Cloud. In [6] a
variable horizon strategy for a cloud-based MPC is presented
and in [1] a remote MPC is used to control a ball and bean
system.

The main contribution of this work is to establish an edge
architecture oriented Model Predictive Control scheme for
enabling a fully autonomous UAV mission. As the need of
autonomous capability increases, algorithms get more and
more complex and computational heavy, more hardware on
board may be required and UAVs need to be lighter in order to
operate longer and more efficient. Under these requirements,
we were motivated to implement a platform that will meet
some of these needs and will offer new capabilities. By using
the Edge not only we can offload the computational demanding
operations there and use lighter processors on UAVs, but
also we can use the great Edge resources for computational
and storage purposes. In this article we will present a novel
Edge architecture to offload the MPC to the Edge and to

evaluated this architecture’s capabilities in terms of latency and
computational power as well as overall tracking of the desired
trajectories for the UAV. Towards this novel implementation,
for the Edge we have used a local machine where the MPC
is deployed inside a Docker container and is sending the
command signals to the UAV model, the architecture of which
is shown in Fig. [I]

EDGE (Local Machine)

Docker Container

| RosMaster |

(MPC "'Optimizer)

(CN)

Fig. 1. System Architecture using Docker Image on the Edge

The rest of the article is structured as it follows. In Sec-
tion the Model Predictive Control scheme is presented
and in Section the overall system’s edge architecture is
established, while we also provide a detailed analysis through
the parameters of the controller and we explain the need of
offloading the controller to the Edge. In Section multiple
experimental results, with a hardware in the loop approach,
are presented that prove the overall efficacy of the proposed
scheme, while we analyse and evaluate the usage of the Edge
in matters of latency and computation capabilities. Finally, in
Section [V| the future research directions and the conclusions
are derived.

II. MODEL PREDICTIVE CONTROL
A. UAV Kinematics

Model Predictive Control has been widely used in both
research and industrial environments. In this article MPC is
implemented for following the desired trajectory of a UAYV,
where the platform is considered as a six Degree of Freedom
robot with a fixed body frame and its kinematic model can be
described by Eq. [l| in body frame as in [[13]], [[14].

p(t) = v:()
0 0 A, 0 0
0(t) =Ry y(0,0) |0+ 0| -0 A, 0]u)
T —g 0 0 A,
(L
. 1
o(t) = E(quﬁbd(t) —o(t))
. 1
00 = L aa(t) 000
In Eq. [l| p = [ps,py,p.]" is the position and v =

[vg, vy, v,]" is the linear velocity referenced in the global

frame. R(¢(t),0(t)) € SO(3) is the rotation matrix that
describes the attitude in Euler form. ¢ and € [—x, 7| are the
roll and pitch angles along the 2"V and y" axes respectively,
while ¢4 and 6; € R and T' > 0 are the desired inputs values
to the system in roll, pitch and the total thrust. The above
model assumes that the acceleration is only dependant on the
magnitude and angle of the thrust vector, produced by the
motors, as well as the linear damping terms A, A,, A, € R
and the gravity of earth g. The attitude terms are modeled as
a first-order system between the attitude (roll/pitch) and the
desired ¢4 and 0, € R, with gains K4 and Ky € R and time
constants 74 and 79 € R. It is also assumed that the UAV is
equipped with a lower-level attitude controller that takes thrust,
roll and pitch commands and provides motor commands for
the UAV.

B. Cost Function

For the cost function, the UAV’s state vector is represented
as x = [p,v, ¢, 0]" and the control input as u = [T, ¢4, 04)7 .
The system has a sampling time of d; € Z* using forward
Euler method for each time instance (k + 1|k), while this
discrete model is used as the prediction model of the MPC.
The prediction considers the specified number of steps into the
future, which is called prediction horizon and it is represented
as N. An related optimizer is tasked with finding an optimal
set of control actions, defined by the cost minimum of this
cost function, by associating a cost to a configuration of states
and inputs at the current time and in the prediction. The
predicted states at the time step k + j, produced at the time
step k are represented as xy, ;. The corresponding control
actions are represented as uy ;5. Also xy and uy represent
the full predicted states and corresponding control inputs along
the prediction horizon correspondingly. The objective of the
controller is to navigate to the desired position and deliver
smooth control inputs. The cost function is presented in Eq.[2]

N
J = Z (a = Trpjin)" Qu(Ta — Tr i)

i=1 state cost
+ (ua — wppjip)” Qulua — uppjix) 2

input cost

+ Upyjik — Uk+j71\k)TQ6u(uk+j\k - Uk+j71|k)

control actions smoothness cost

where Q, € R38 is the matrix for the state weights, Q,, is
the matrix for the input weights and Qs,, € R3%3 is the matrix
for the input rate weights. In Eq. [2] the first term describes the
state cost, which is the cost associated with deviating from a
certain desired state x4. The second term describes the input
cost that penalizes a deviation from the steady-state input ug =
[9,0,0] and represent the inputs that describe hovering. The
final term is added to guarantee that the control actions are
smooth. That is achieved by comparing the input at (k + j —
1|k) with the input at (k + j|k) and penalizing the changing
of the input from one time step to the next one, with N € N+

EDGE

\ -

x(k-d) Container
. ufk-ds) R O b Ot
ik} yik)
} ufk-a) fk-dds)) :
T * » UAV Dynamics
¥ £ 1wk { Container "\ L
MPC RosMaster L Port) xmeay (¥ |
F A 'y e <
B ~ r :kJ x(k-d;
Optimizer " e

P

Fig. 2. Block Diagram of the Edge Architecture for the UAV-MPC System

to denote the control Horizon of the MPC. In this case, we
evaluate the overall behavior of the MPC scheme by changing
the values of the horizon and the execution rate and measuring
the overall latency times from the proposed edge architecture.
while the motivation of experimenting with these parameters
is described in Sections and

1) MPC Horizon: MPC is optimizing a finite prediction
horizon but is using only the next time-slot, while this process
is executed again, repeatedly at every step. By utilizing the
MPC, we optimize the current step, while keeping the future
time-slots in account. By increasing the finite number of the
prediction horizons the process becomes more computational
heavy, thus more resources are required. On the other hand,
since MPC can predict the change of dependent variables, an
increased prediction horizon can make better predictions and
predict changes faster. The limited computational capability
of UAVs’ on-board processors are setting some boundaries
on how much we can increase the number of steps for the
prediction horizon. To overcome this constrains, we use the
computational power of the Edge, where we are able to
increase the horizon and evaluate the results in Section

2) MPC Rate: Another parameter’s value that we were
able to increase on the Edge was the value of the MPC
Rate. That is how fast the MPC is executed. A faster MPC
means a faster control system that can generate commands,
to be send to the UAV rotors, faster. This would be handful
in situations where we want the system to respond rapidly.
This characteristic is of great importance especially in the
case of aerial vehicle systems. As in the previous cases, the
computational capabilities of the UAVs’ processors set some
limits that we were able to overcome since we used the Edge
for these processes. The processors of some UAVs that we
use have the capability to run the MPC at 20Hz, but by using
the Edge we were able to increase the rate up to 100Hz. The
results of increasing the MPC Rate are shown in Section

III. EDGE ARCHITECTURE

The Container is a unit of software that runs code and all
the dependencies so the application deployed on the container
will run quickly and reliably from any computer. In our case,

the application Docker container runs the MPC on the Edge,
while the UAV model is implemented on a local computer. The
local machine used as an Edge server and the local computer
running the UAV model must share the same network. In
the propose architecture we have utilized an Ubuntu 20.04
Container Image running ROS Noetic for deploying the MPC
on the Edge, and the same operating system and software on
our local computer.

In this architecture, MPC commands are sent from the Edge
to a local computer, which runs a simulation of a UAV, as
shown in Fig. [I| that represents the basic structure of the
system. Furthermore, in this implementation, we have utilized
the TCP protocol for the communication between the Edge
and the local computer, which are under the same network,
while we ran RosMaster, MPC and Optimizer ROS Nodes on
the Edge. The simulation node ran on Gazebo environment on
our local computer. The architecture and the block diagram of
the system are shown in Fig. 2] while the ROS operation is
shown in Fig. 3]

The parameters of the system are depicted in Fig. [2] where
r(k) is the reference input signal for the desired trajectory
and x(k) is the states signal generated by the UAV dynamics.
In the proposed architecture, we feedback the states signal
to the MPC. Since there is latency from the time instance
that the UAV dynamics, on the local computer, generate the
states signal to the time instant that the signal gets to the
MPC, on the Edge (round trip delay), the states signal arriving
to the MPC is delayed and denoted as x(k — di), where
dy represents the time delay. The reference and the states
signal describe the desired pose and the real pose of the UAV
respectively. u(k—ds) is the command signal generated by the
MPC. The value ds represents the MPC execution time that
is depending on the MPC rate and the computational process.
Again, since the command signal has to travel from the Edge
to the local computer, where the UAV model is implemented,
the command signal arriving to the UAV can be denoted as
is u(k — d1 — da), while the command signal is the necessary
thrust for each one of the rotors for the desired trajectory.
Finally, y(k) is the output of the system which denotes the
z, Yy, z, yaw values of the real pose of the UAV.

IV. SIMULATION RESULTS AND EVALUATION

In this Section we evaluate the system and present the
simulation results with a hardware in the loop approach (edge
architecture and software model for the aerial platform. In
more details, we used an Edge Server located in Luled, Swe-
den. The Edge Server is providing the needed computational
resources with low latency. In Fig. [3] the ROS structure is
depicted, where we import the Optimizer into the MPC Node,
which subscribes to the odometry topic (measured position
depended on UAV real position) and reference topic (reference
position depended on desired trajectory) and publishes the
commands to the thrust topic (MPC output value of thrust
for desired trajectory), while the UAV simulation subscribes
to the thrust topic to receive the commands and publishes its
position to the odometry topic. In order for the MPC and the
UAV dynamics Nodes to exchange data by publishing and
subscribing to topics, they have to register to the RosMaster,
which is running on the Edge.

ROS

- Container
‘optimizer.py

'RosMaster
I ¥
o;[.“ EHUZEI Registration

UAV

Subscribe

mpc py —— odometry topic P<— dynam|cs ;

Subscribe \DISh SubSc’lbe/

reference topic thrust topic

Fig. 3. ROS Architecture showing: a)ROS nodes in blue, and b)ROS topics
in yellow. The lines point out the relationship between topics and nodes

The sequence of the operation is described in Alg. |1} where
the MPC controller is taking care of the UAV to follow the
desired trajectory with an Error Tolerance of 0,4m.

Algorithm 1 Algorithmic Sequence of Operations
1. Start RosMaster Node

2. Run Optimizer

3. Start UAV Dynamics Node

4. UAV Reads Real Position [x,y, 2]T
5. Start UAV MPC Node
6
7
8
9
1

from Sensors

. UAV Start Take Off

. UAV Hovering at [z,vy,2]7 =[0,0,1]T
. Load Desired Trajectory
. Calculated Way Points (Zrcf, Yref, Zref)
0. UAV Follow the Way Points
k=0
while z,.¢(k) — =, yres(k) —y, Zres(k) —2z > 0.4m
do
goto xref(k)a yref(k)a Zref(k)
end while
k=k+1

For the simulation of the UAV model we used the Gazebo
simulation software, while we were able to visualize the be-
havior of the system for each one of the different MPC horizon
and rate values. Furthermore, we recorded the data from the
odometry, reference and thrust topics and we evaluated the
system by using the MATLAB environment of MathWorks to
extract useful data and plots.

To evaluate our proposed architecture, we completed a series
of simulation tests. Our goal was to evaluate the system in
terms of latency and computational capacity. To achieve that
we choose two different desired trajectories, a circular and a
spiral. We determined different MPC horizons and rates and
we run several tests. For each test we measured the time delays
and we evaluated the responses. The objective were to increase
the MPC horizon and rate in values that the local processor
would not be able to handle. In Fig. d and Fig. [5| we depict the
latencies for different values of horizons and rates respectively.
The Table [I| and Table [[I] present some information regarding
the latencies.

Frequency Distribution (Hz)
100+~ i 3
90 - ' 1
80 3 = +
70 -

60 -

50 -

o o+
L

40 -

30

N
L

T
B

Lo s HM..\L}.%..HAW .

10= I I
20 40 60 80 100
MPC Horizon (Steps)

Fig. 4. Frequency distribution for different MPC Horizon values

TABLE I
LATENCY IN MILLISECONDS FOR DIFFERENT HORIZON STEPS AND FIXED
RATE AT 40 Hz

HorizonSteps 20 40 60 80 100
Minimum 21.518 | 14.583 | 10.647 | 12.691 | 12.362
Lower Adjacent 49.348 | 49.158 | 48.582 | 48.054 | 47.217
25" Percentile 49.843 | 49.785 | 49.642 | 49.511 | 49.363
Median 50.002 | 49.998 | 50.008 | 50.010 | 50.033
75th Percentile 50.175 | 50.208 | 50.349 | 50.492 | 50.796
UpperAdjacent || 50.658 | 50.840 | 51.397 | 51.946 | 52.927
Mazximum 86.705 | 83.665 | 82.910 | 86.629 | 82.007

As we can observe from Fig. 4] and Table [by increasing
the value of the MPC horizon, the median time delay remains
almost the same, but we have more deviation. This was
expected, since longer horizon means more computations so

the execution of the MPC might get slower in some cases. The
difference of deviation between the shorter and longer chosen
horizon is in single digit millisecond.

Frequency Distribution (Hz)
350 ‘

300 .

250

200 + + i

150 - ; -

o
o
T
' mm“m
L

,

W

10 x .
20 40 60 80 100

MPC Rate (Hz)

Fig. 5. Frequency distribution for different MPC Rate values

TABLE II
LATENCY IN MILLISECONDS FOR DIFFERENT RATES AND FIXED HORIZON
AT 20 STEPS

Rate(Hz) 20 40 60 80 100
Minimum 14.583 | 4.878 4.931 3.003 3.062
LowerAdjacent || 49.158 | 24.071 | 15.847 | 11.933 | 9.463
25t Percentile 49.785 | 24.768 | 16.465 | 12.359 | 9.869
Median 49.998 | 25.006 | 16.682 | 12.503 | 10.000
75th Percentile 50.208 | 25.240 | 16.868 | 12.650 | 10.141
UpperAdjacent || 50.840 | 25.939 | 17.464 | 13.080 | 10.545
Mazximum 83.665 | 42.261 | 25.299 | 30.854 | 19.809

In Fig. 5]and Table[] we can see that by increasing the MPC
Rate, the controller gets much faster and we do not suffer from
standard deviations. This means that we can take advantage
of the Edge resources and we can implement a much faster
controller. As we already mentioned, this is essential for the
UAV because with a fast controller, the system can respond
faster. The importance of a fast controller can be shown in the
case of collision avoidance, where the UAV have to respond
fast in order to prevent the collision. The combination of a
fast controller with a predictive behavior can help the system
avoid the collision in an optimal way.

The round-trip for the MPC execution for each step is shown
in Fig. [0} These measurements are from the circular trajectory
shown in Fig. [/| where the duration of the circular trajectory
was 100 seconds and for the spiral trajectory was 130 seconds.
The MPC rate is set at 20Hz and the MPC Horizon steps are
set to 20. The mean execution time is 49.95 milliseconds,
which is almost the same to the MPC Rate 20Hz, which is
equal to 50 milliseconds. In Fig. [6] [7} [I0] and [T1] the responses
of the circular and spiral trajectories are depicted, where the

Displacement Z (m)
6

5 <

—Real Trajectory
—Reference Trajectory

4 Displacement X (m)

Fig. 6. 3D view of the circular trajectory. Red line:
line: real trajectory

reference signal. Blue

Displacement X (m) (a) Response of the X axis

0 10 20 30 40 50 60 70 80 90 100
Time (s)
(b) Response of the Y axis
T T T T

d AN oN s
L

Displacement Y (m)

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Displacement Z (m) (c) Response of the Z axis
\ : \ \

o+ N WA U O
L

1 I I I I
0 10 20 30 40 50 60 70 80 90 100

Time (s
) —Real Trajectory

—Reference Trajectory

Fig. 7. Responses of the circular trajectory for each axis. a)x axis response,
b)y axis response and c)z axis response

red line represents the reference signal and the blue line the
real trajectory, while in Fig. [9]and Fig. [[3] we can observe the
latencies for each time step of the two different trajectories,
respectively.

In Fig. [6] we are presenting the 3D responses of the UAV
model when receiving the commands, for following a circular
trajectory, from the Edge MPC. The blue line represents the
desired trajectory and the red line represents the real trajectory
of the UAV model. The real trajectory is following the desired

Error between reference and real position values (m)
5 T T

P ————
——Error on the X axis
——Error on the Y axis
Error on the Z axis
—Tolerance of 0.4m

Duration of the trajectory (s)

Fig. 8. Error between reference and real position on X, Y and Z axis during
circular trajectory

Frequency Distribution (Hz)
80 - ! z
70°

1l 1T

10 - I L L L I I L L 1
0 10 20 30 40 50 60 70 80 90 100
Duration of the trajectory (s)

L
|

Fig. 9. Latency for each signal step of the circular trajectory

one under the requirements with an error € [0,0.4m]. The
same principals are applied for the spiral trajectory in Fig.

Moreover, we are presenting the responses in each axe
in Fig. [f] and [7] for the circular and the spiral trajectory
respectively. In these figures it is easy to observe the steady
state error, which is reasonable since we applied an error
tolerance of 0.4m.

Furthermore, the errors between the reference and real posi-
tion on X, Y and Z axis during circular and spiral trajectories
are depicted in Fig 8] and [T2] respectively. The controller tends
to keep the error under the tolerance of 0.4m.

Finally, in Fig. [0] and Fig. [I3] we are presenting the overall
latency of each time step. We calculated the latency by
extracting the frequency distribution between two sequential
commands. The latency as we explained in Section [[TI} de-
pends on two parameters, the MPC execution time, based on
the MPC rate and computational needs, and the round trip
delay. So the latency in Fig.[9]and[T3]is the sum of the latencies
for each time step as shown in Eq. [

Ltotal = Lrtd + Lewec (3)

where L;,q; is the total latency, L,;q is the round-trip
latency (RTL) and L., is the MPC execution time latency.

Displacement Z (m)

9y
8.
74
6.
54
4.
34
2.
14
0 —Real Trajectory
\ —Reference Trajectory
4/ S —
b //</V
2 "
<
0\ S =2
- _—
2 \\ < 0
X > o -2
Displacement Y (m) 4 B Displacement X (m)

Fig. 10. 3D view of the spiral trajectory. Red line: reference signal. Blue
line: real trajectory

Displacement X (m) (a) Response of the X axis
T T T T T T

o AN oN s O

. , 7 |

0 10 20 30 40 50 60 70 80 90
Time (s)

(b) Response of the Y axis

:) : : i :

!
100 110

Displacesment Y (m)

4l
2
0

-2

4 -

6 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time (s)

Disp[ac%‘nent Z (m) (c) Response of the Z axis
T T T T T T

|
0 10 20 30 40 50 60 70 80 90
Time (s)

L I . |

100 110 120 130
—Real Trajectory
—Reference Trajectory

Fig. 11. Responses of the spiral trajectory for each axis. a)x axis response,
b)y axis response and c)z axis response

V. CONCLUSION

We were able to successfully control the trajectory of an
UAV with a MPC operating on the Edge, but still there are

Error between reference and real position values (m)
5

T T T T T 1
—Error on the X axis
4.5 ——Error on the Y axis _
Error on the Z axis
4 —Tolerance of 0.4m
3.5 4
3 d
2.5
2
1:5 o
1 4
—

N R A
40 6 80 100 120
Duration of the trajectory (s)

Fig. 12. Error between reference and real position on X, Y and Z axis during
spiral trajectory

Frequency Distribution (Hz)
70~ ! L

60 -

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Duration of the trajectory (s)

Fig. 13. Latency for each signal step of the spiral trajectory

some improvements that can be applied. Our next step would
be to deploy our Docker Containers as PODs on a Cluster and
use Kubernetes for orchestration. POD is the group of contain-
ers sharing storage and network resources and Kubernetes is
an orchestration system for automatic application deployment,
scaling and management [15]], while this would be helpful in
terms of deploying and managing our containers and it will
be also possible to assign the desired resources and create
services for better and more efficient management.

Over and above that, there are some further directions for
potential improvements. The major issues with our system’s
architecture is the latency and the lack of a backup controller
running locally on UAV’s on-board processor. We will be
able to challenge these throwbacks by using 5G network
capabilities for reducing the latency by reducing the signals’
travel time. Additionally, 5G will provide us more bandwidth
for huge amount of data streaming. Moreover, we can have a
backup computation light controller locally on the UAV that
will operate only in case of network connection lost.

Some interesting future direction will be to operate in
challenging environments and scenarios where the long MPC

horizon and the high MPC rate will come in use. These
scenarios can be an obstacle or collision avoidance missions
and in environments where the UAVs navigation is rather
difficult. Additionally, we can use the capabilities of Edge for
UAVs’ operations for more complex tasks. Offloading these
complex tasks on the Edge and having a multi agent systems
cooperation in real time will be a fascinating future direction.
With the development of the relevant technologies, the capa-
bilities on the field are expected to expand tremendously.

REFERENCES

[1] Per Skarin, William Tirneberg, Karl-Erik Arzén, and Maria Kihl,
“Towards Mission-Critical Control at the Edge and Over 5G,” presented
at 2018 IEEE International Conference on Edge Computing (EDGE),
San Francisco, CA, USA, Jul. 2-7, 2018

[2] Karl-Erik Arzén, Per Skarin, William Tiarneberg, Maria Kihl, “Control
over the Edge Cloud - An MPC Example,” presented at 1st International
Workshop on Trustworthy and Real-time Edge Computing for Cyber-
Physical Systems, Nashville, Tennessee, United States, Dec. 11-14, 2018

[3] Per Skarin, Johan Eker, Maria Kih, Karl-Erik Arzén, “An assisting
Model Predictive Controller approach to Control over the Cloud,”
presented at May 15, 2019

[4] Per Skarin, Johan Eker, Maria Kihl, Karl-Erik Arzén, “Cloud-Assisted
Model Predictive Control,” presented at 2019 IEEE International Con-
ference on Edge Computing (EDGE), Milan, Italy, Jul. 8-13, 2019

[5] Per Skarin, Johan Eker, Karl-Erik Arzén, “A Cloud-Enabled Rate-
Switching MPC Architecture,” presented at 2020 59th IEEE Confer-
ence on Decision and Control (CDC), Jeju Island, Republic of Korea,
December 14-18, 2020

[6] Per Skarin, Johan Eker, Karl-Erik Arzén, “Cloud-based model predictive
control with variable horizon,” published in International Federation of
Automatic Control World Congress 2020

[71 Ievgenii A. Tsokalo, Huanzhuo Wu, Giang T. Nguyen, Hani Salah,
Frank H.P. Fitzek, “Mobile Edge Cloud for Robot Control Services in
Industry Automation,” presented at 2019 16th IEEE Annual Consumer
Communications and Networking Conference (CCNC)

[8] Yehan Ma, Chenyang Lu, Bruno Sinopoli, Shen Zeng, “Exploring
Edge Computing for Multitier Industrial Control,” published in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 39, No. 11, Nov. 2020

[9]1 V. K. Sarker, J. Pefia Queralta, T. N. Gia, H. Tenhunen, T. Westerlund,
“Offloading SLAM for Indoor Mobile Robots with Edge-Fog-Cloud
Computing, ” presented at 2019 Ist International Conference on Ad-
vances in Science, Engineering and Robotics Technology (ICASERT),
Dhaka, Bangladesh, May 3-5, 2019

[10] A. Barnawi, M. Alharbi and M. Chen, “Intelligent Search and Find
System for Robotic Platform Based on Smart Edge Computing Service,”
published in IEEE Access, vol. 8, May 2020

[11] Ajay Kumar Tanwani, Nitesh Mor, John Kubiatowicz, Joseph E. Gonza-
lez, Ken Goldberg, “A Fog Robotics Approach to Deep Robot Learning:
Application to Object Recognition and Grasp Planning in Surface
Decluttering,” presented at IEEE International Conference on Robotics
and Automation, ICRA, 2019

[12] Siva Leela Krishna Chand Gudi, Suman Ojha, Benjamin Johnston, Jesse
Clark, Mary-Anne Williams, “Fog Robotics for Efficient, Fluent and
Robust Human-Robot Interaction,” presented at 17th IEEE International
Symposium on Network Computing and Applications (NCA 2018),
Cambridge, USA

[13] Bjorn Lindqvist , Sina Sharif Mansouri, Ali-akbar Agha-mohammadi ,
and George Nikolakopoulos, “Nonlinear MPC for Collision Avoidance
and Control of UAVs With Dynamic Obstacles,” published in IEEE
Robotics and Automation Letters, vol. 5, No. 4, Oct. 2020

[14] Bjorn Lindqvist, Sina Sharif Mansouri and George Nikolakopoulos,
“Non-linear MPC based Navigation for Micro Aerial Vehicles in Con-
strained Environments,” presented at 2020 European Control Conference
(ECC), Saint Petersburg, Russia, May 12-15, 2020

[15] kubernetes ‘“Production-Grade Container Orchestration,” available at
https://kubernetes.io/ [Accessed: Dec 15, 2021]

	I Introduction
	II Model Predictive Control
	II-A UAV Kinematics
	II-B Cost Function
	II-B1 MPC Horizon
	II-B2 MPC Rate

	III Edge Architecture
	IV Simulation Results and Evaluation
	V Conclusion
	References

