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Abstract — We consider a model with three termi-
nals and examine the problem of characterizing the
largest rates at which two pairs of terminals can si-
multaneously generate private keys, each of which is
effectively concealed from the remaining terminal.

I. INTRODUCTION

Suppose that terminals X', ) and Z observe, respectively,
the distinct components of a discrete memoryless multiple
source, i.e., ii.d. repetitions of the random variables (rvs)
X, Y, Z, respectively. The terminals are permitted unre-
stricted communication among themselves over a public chan-
nel, and all the transmissions are observed by all the terminals.
An eavesdropper has access to this public communication but
gathers no additional side information; also, the eavesdropper
is passive, i.e., unable to corrupt the transmissions. Terminals
X and Y (resp. X and Z) generate a “private key” (PK) with
the possible help of terminal Z (resp. )) which is concealed
from the helper terminal Z (resp. ) and from an eaves-
dropper with access to the public communication among the
terminals. Our main technical results are single-letter outer
and inner bounds for the PK-capacity region. Further, under
certain special conditions, for instance if the correlation of Y
and Z is deterministic (i.e., there exists a common function
of Y and Z which renders them conditionally independent),
these bounds coincide to yield the PK-capacity region.

II. STATEMENT OF RESULTS

Consider a discrete memoryless multiple source (DMMS)
with three components corresponding to generic rvs X, Y,
Z with finite alphabets X', Y, Z. Let X" = (X1, -+, Xn),
Y = Y1, ,Yn), Z" = (Z1, - ,Zn) be n iid. repeti-
tions of the rvs X, Y, Z. The terminals X, ), Z respec-
tively observe the components X" Y™ Z™ of the DMMS
(X™, Y™, Z"™), where n denotes the observation length. The
terminals can communicate with each other through broad-
casts over a noiseless public channel, possibly interactively
in many rounds. Following [1], we assume without loss of
generality that these transmissions occur in consecutive time
slots in 7 rounds; the communication is depicted by 3r rvs
Fi,---, Fs., where F; denotes the transmission in time slot t,
1 <t < 3r, by a terminal assigned an index ¢ = ¢t mod 3,
1 < i < 3, with terminals X, ), Z corresponding to indices
1, 2, 3, respectively. In general, F} is allowed to be any func-
tion, defined in terms of a mapping f:, of the observations at
the terminal with index ¢ and of the previous transmissions
Tt = (F1,---, Fi—1). Let F denote collectively all the trans-
missions. Randomization at the terminals is not permitted.

The rvs Kxy, Lxy represent an e-private key (e-PK) for
the terminals X' and ) which is private from the helper ter-
minal Z, achievable with communication F, if Kxy and Lxy

are functions of the data available at terminals X and ), re-
spectively, i.e., Kxy = Kxy(X™,F), Lxy = Laxy(Y",F);
Kxy and Lxy take values in the same finite set Kxy with
Pr{Kxy # Lxy} < e; Kxy (or Lxy) satisfies the secrecy
condition 21(Kxy ANF,Z") < &; and Kxy (or Lxy) satis-
fies the uniformity condition LH(Kxy) > Llog|Kxy| — e.
We are interested in the simultaneous generation of individual
PK pairs (Kxy, Kxz) as above.

A pair of numbers (Rxy, Rxz) is an achievable PK-rate
Kg?%) are achievable with suit-
able communication, such that e, — 0, %H(K;L}),) — Rxy,
%H(Kg%) — Rxz. The set of all achievable PK-rate pairs is
the PK-capacity region Cpg.

Our main results for the PK-capacity region are the follow-
ing.

Theorem 1 (Outer bound for Cprx): Let (Rxy, Rxz) be
an achievable PK-rate pair. Then

Rxy <I(X AY|Z), Rxz < I(X ANZ|Y), (D
Rxy+Rxz < I(XANY, Z) I(UNX).

pair if €,-PK pairs (Kg?l),,

— max
U:U-Y—-eXZ Uo-Z-XY
Theorem 2 (Inner bound for Cpri): The PK-capacity re-
gion Cpk is inner-bounded by the convex hull of the regions

(Rxy,Rxz): 0< Rxy <I(XAY|Upnssvy, Z),
0< Rxz <I(X ANZ|Y),
Ry + Rxz < I(XAY, Z) = I(Upaesiyy A X)
and
(Rxy,Rxz): 0< Ray <I(XNY|Z),

0 S RXZ S I(X N Z|Vmss(Z)7Y)7

R)(y + Rxz < I(X/\Y7Z) _I(Vmss(Z) /\X)

where Upss(yy (resp. Vinss(z)) is the minimal sufficient statis-
tic for Y (resp. Z) w.rt. Z (resp. Y).
Theorem 3: If there exists a rv U such that

U—-o-Y—-oXZ U-—o-Z-oXY, Y-oU-—o2(2

the PK-capacity region equals the set of pairs (Rxy, Rxz)
which satisfy (@) and

Rxy+Rxz <I(XAY,Z) —IIl{;LXI(U/\X')7
where the maximum is w.r.t. U satisfying ).
Theorem 4: If Y and Z are deterministically correlated,

the PK-capacity region Cpk equals the set of pairs (Rxy,
Rxz) which satisfy () and

Rxy + Rxz < I(XANY,Z) — I(Upes N X),
where Un,cy is the mazimal common function of Y and Z.
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