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Abstract — We consider a model with three termi-

nals and examine the problem of characterizing the

largest rates at which two pairs of terminals can si-

multaneously generate private keys, each of which is

effectively concealed from the remaining terminal.

I. Introduction

Suppose that terminals X , Y and Z observe, respectively,
the distinct components of a discrete memoryless multiple
source, i.e., i.i.d. repetitions of the random variables (rvs)
X, Y , Z, respectively. The terminals are permitted unre-
stricted communication among themselves over a public chan-
nel, and all the transmissions are observed by all the terminals.
An eavesdropper has access to this public communication but
gathers no additional side information; also, the eavesdropper
is passive, i.e., unable to corrupt the transmissions. Terminals
X and Y (resp. X and Z) generate a “private key” (PK) with
the possible help of terminal Z (resp. Y) which is concealed
from the helper terminal Z (resp. Y) and from an eaves-
dropper with access to the public communication among the
terminals. Our main technical results are single-letter outer
and inner bounds for the PK-capacity region. Further, under
certain special conditions, for instance if the correlation of Y
and Z is deterministic (i.e., there exists a common function
of Y and Z which renders them conditionally independent),
these bounds coincide to yield the PK-capacity region.

II. Statement of Results

Consider a discrete memoryless multiple source (DMMS)
with three components corresponding to generic rvs X, Y ,
Z with finite alphabets X , Y, Z. Let Xn = (X1, · · · , Xn),
Y n = (Y1, · · · , Yn), Zn = (Z1, · · · , Zn) be n i.i.d. repeti-
tions of the rvs X, Y , Z. The terminals X , Y, Z respec-
tively observe the components Xn, Y n, Zn of the DMMS
(Xn, Y n, Zn), where n denotes the observation length. The
terminals can communicate with each other through broad-
casts over a noiseless public channel, possibly interactively
in many rounds. Following [1], we assume without loss of
generality that these transmissions occur in consecutive time
slots in r rounds; the communication is depicted by 3r rvs
F1, · · · , F3r, where Ft denotes the transmission in time slot t,
1 ≤ t ≤ 3r, by a terminal assigned an index i = t mod 3,
1 ≤ i ≤ 3, with terminals X , Y, Z corresponding to indices
1, 2, 3, respectively. In general, Ft is allowed to be any func-
tion, defined in terms of a mapping ft, of the observations at
the terminal with index i and of the previous transmissions
F t−1 = (F1, · · · , Ft−1). Let F denote collectively all the trans-
missions. Randomization at the terminals is not permitted.

The rvs KXY , LXY represent an ε-private key (ε-PK) for
the terminals X and Y which is private from the helper ter-
minal Z, achievable with communication F, if KXY and LXY

are functions of the data available at terminals X and Y, re-
spectively, i.e., KXY = KXY (X

n,F), LXY = LXY (Y
n,F);

KXY and LXY take values in the same finite set KXY with
Pr{KXY 6= LXY} ≤ ε; KXY (or LXY ) satisfies the secrecy

condition 1
n
I(KXY ∧ F, Zn) ≤ ε; and KXY (or LXY ) satis-

fies the uniformity condition 1
n
H(KXY) ≥ 1

n
log |KXY | − ε.

We are interested in the simultaneous generation of individual
PK pairs (KXY , KXZ ) as above.

A pair of numbers (RXY , RXZ ) is an achievable PK-rate

pair if εn-PK pairs (K
(n)
XY

, K
(n)
XZ

) are achievable with suit-

able communication, such that εn → 0, 1
n
H(K

(n)
XY

) → RXY ,
1
n
H(K

(n)
XZ

) → RXZ . The set of all achievable PK-rate pairs is
the PK-capacity region CPK .

Our main results for the PK-capacity region are the follow-
ing.

Theorem 1 (Outer bound for CPK): Let (RXY , RXZ ) be
an achievable PK-rate pair. Then

RXY ≤ I(X ∧ Y |Z), RXZ ≤ I(X ∧ Z|Y ), (1)

RXY+RXZ ≤ I(X∧Y,Z)− max
U : U−◦−Y −◦−XZ, U−◦−Z−◦−XY

I(U∧X).

Theorem 2 (Inner bound for CPK): The PK-capacity re-
gion CPK is inner-bounded by the convex hull of the regions






(RXY , RXZ ) : 0 ≤ RXY ≤ I(X ∧ Y |Umss(Y ), Z),
0 ≤ RXZ ≤ I(X ∧ Z|Y ),
RXY +RXZ ≤ I(X ∧ Y,Z)− I(Umss(Y ) ∧X)







and






(RXY , RXZ ) : 0 ≤ RXY ≤ I(X ∧ Y |Z),
0 ≤ RXZ ≤ I(X ∧ Z|Vmss(Z), Y ),
RXY +RXZ ≤ I(X ∧ Y,Z)− I(Vmss(Z) ∧X)







,

where Umss(Y ) (resp. Vmss(Z)) is the minimal sufficient statis-

tic for Y (resp. Z) w.r.t. Z (resp. Y ).
Theorem 3: If there exists a rv U such that

U −◦−Y −◦−XZ, U −◦−Z−◦−XY, Y −◦−U−◦−Z, (2)

the PK-capacity region equals the set of pairs (RXY , RXZ )
which satisfy (1) and

RXY +RXZ ≤ I(X ∧ Y,Z)−max
U

I(U ∧X),

where the maximum is w.r.t. U satisfying (2).
Theorem 4: If Y and Z are deterministically correlated,

the PK-capacity region CPK equals the set of pairs (RXY ,
RXZ) which satisfy (1) and

RXY +RXZ ≤ I(X ∧ Y,Z)− I(Umcf ∧X),

where Umcf is the maximal common function of Y and Z.
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