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Abstract

Joint equalization and decoding schemes are described for two-dimensional intersymbol interference

(ISI) channels. Equalization is performed using the minimum mean-square-error (MMSE) criterion.

Low-density parity-check codes are used for error correction. The MMSE schemes are the extension

of those proposed by Tüchleret al. (2002) for one-dimensional ISI channels. Extrinsic information

transfer charts, density evolution, and bit-error rate versus signal-to-noise ratio curves are used to study

the performance of the schemes.

I. INTRODUCTION

Tüchler et al. [10] considered the problem of coded data transmission overone-dimensional

intersymbol interference (ISI) channels. Receivers basedon the principle of turbo equalization

have proven highly successful for these channels. Such a receiver consists of multiple equal-

izers/decoders that exchange extrinsic information and each component computes its output

using the extrinsic information of the other components (asa priori information) along with

the channel output. Tüchleret al. proposed soft-in soft-out equalizers based on the minimum

mean-square-error (MMSE) criterion that use the extrinsicinformation from the error-correction

code decoder to compute their estimate. They showed that theperformance of their iterative
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receiver, an MMSE equalizer with a convolutional code, is very close to that of the iterative

receiver using the much more complex MAP (BCJR) equalizer.

In this letter we consider coded data transmission over two-dimensional (2D) ISI channels.

The absence of (computationally tractable) exact MAP or ML algorithms for two dimensions

necessitates the search for low-complexity approximate schemes. Many such schemes have been

proposed by Singlaet al. [6], Marrow and Wolf [7], and Shentalet al. [8] among others. We

describe iterative schemes that use two dimensional extensions of the aforementioned MMSE

equalizers in conjunction with low-density parity-check codes for the 2D ISI. The equalizers are

modified taking into account the 2D nature of the ISI.

MMSE equalization for 2D ISI channels was first proposed and studied by Chugget al. [1].

However, the equalizer they proposed is not iterative and they did not employ any error-correction

coding. Singlaet al. [6] also proposed an iterative receiver for 2D ISI channels using MMSE

equalization followed by decoding using low-density parity-check (LDPC) codes. However, the

MMSE equalizers proposed herein have a much lower complexity and better performance than

those previously proposed by Singlaet al. [6]. The rest of the paper is organized as follows. In

Section 2 describes the model we use for the systems with 2D ISI. In Section 3, we describe

three MMSE equalization schemes using a linear equalizer, and iterative decoding algorithms

using LDPC codes with the equalizers. Results are provided in Section 4 and conclusions in

Section 5.

II. SYSTEM MODEL

The channel is represented as a discrete-time channel governed by the following equation

r(i, j) =
L−1
∑

l1=0

L−1
∑

l2=0

x(i− l1, j − l2)h(l1, l2) + w(i, j), (1)

where r(i, j) and x(i, j) are elements of the output and encoded data matrices, respectively;

w(i, j) are samples of the noise, assumed to be additive white Gaussian;h = {h(l1, l2)}L−1

l1,l2=0
is

the 2D channel point spread function. For error correction we use LDPC coset codes [3] whose

code graph chosen uniformly at random from the ensemble of regular graphs. The ISI coefficients

are assumed to be real. For the purpose of illustration of ourconcepts and simulations we use

3×3 point spread functions of the form
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where the interference coefficients are specified in terms ofan “interference parameter”s: a =

1/
√
1 + s2 + s4, b = a·s/2, and c = a·s2/2. The parameters quantifies the the amount of

interference; the larger thes, the more severe the interference.

III. MMSE EQUALIZATION AND DECODING

The equalizer computes the linear MMSE estimate of the data using the channel output and

the extrinsic information from the LDPC decoder. The linearMMSE estimate ofx(i, j) is,

x̂(i, j) = E[x(i, j)] +
N
∑

l1=−N

N
∑

l2=−N

(

r(i− l1, j − l2)− E[r(i− l1, j − l2)]
)

c(i, j : l1, l2), (3)

where it is assumed that the estimate is computed using a(2N +1)×(2N +1) support. The size

of the support determines the complexity of the equalizer and there is usually a trade-off involved

between performance and complexity of the equalizer.{c(i, j : l1, l2)}Nl1,l2=−N are the MMSE

filter coefficients for bitx(i, j) andE[x(i, j)] is the mean ofx(i, j). The mean and variance of

x(i, j) can be calculated using the extrinsic information. The coefficients of the Wiener filter are

obtained by solving the Wiener-Hopf equations

K
rr
cij = K

rx, (4)

whereK
rr
= E[(rij −E[rij])(rij −E[rij ]

T )]; K
rx = E[(rij −E[rij ])(x(i, j)−E[x(i, j)])]; rij is

the (2N + 1)2 × 1 vector obtained by rastering{r(i− l1, j − l2)}Nl1,l2=−N ; andT denotes matrix

transposition. Using (1) and (4) we can obtain the filter coefficients and then the MMSE estimate

is obtained using (3). During the computations for a particular bit its extrinsic information,

obtained from the LDPC decoder, is set to zero which modifies the filter coefficients and the

MMSE estimate. This is done to ensure that the estimate contains only extrinsic information.

As in [10], it is assumed that after MMSE equalization the probability density functions (pdf)

p(x̂(i, j)|x(i, j) = x), x∈{±1}, are Gaussian with parametersµij(x) = E[x̂(i, j)|x(i, j) = x]

andσ2

ij(x) = Cov(x̂(i, j), x̂(i, j)|x(i, j) = x). The statisticsµij(x) andσ2

ij(x) can be calculated
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using the filter coefficients. Under this assumption the extrinsic information (the log-likelihood

ratio (LLR)) of the data, from the equalizer becomes

LE(x(i, j)) =
2x̂(i, j)µij(+1)

σ2
ij(+1)

. (5)

The equalizer sends the extrinsic information to the LDPC decoder which uses it asa priori

information and performs a fixed number of sum-product message-passing iterations [4] before

passing its extrinsic information to the MMSE equalizer. This process is continued until the

receiver converges or a maximum number of iterations is exhausted.

For the scheme described above the computation of the filter coefficients involves inversion

of a (2N + 1)2×(2N + 1)2 matrix which causes a high computational load. One approximation

which can be used to reduce this load is to have time-invariant coefficients. Following [10]

we investigate the performance of the exact equalizer when the filter coefficients are calculated

assuming no prior information and perfect prior information, referred to as the approximate I

and approximate II schemes, respectively. In either case the filter coefficients are calculated only

once and used for all the iterations. The extrinsic information is still calculated as in (5) with the

MMSE estimate now being calculated using either of the approximate schemes. The approximate

II equalizer turns out to be the matched filter implementation as noted by Tüchleret al. [10].

IV. RESULTS AND DISCUSSION

A. Extrinsic Information Transfer Charts

We use extrinsic information transfer (EXIT) charts [9] to compare the performance of the

equalizers described in the previous section. EXIT charts show how the “quality” of the output

information varies with the quality of the input information for a particular receiver component.

For the EXIT analysis, the equalizer is modeled as a device mapping the channel outputR and

the a priori LLRs Li to a sequence of output LLRsLo. It is assumed that the sequencesLi and

Lo are independent and identically distributed Gaussian and that the magnitude of the mean of

the Gaussians is equal to half the variance, thus the LLRs canbe specified by a single parameter.

Using ten Brink’s approach, we plotIo, the mutual information betweenLo andX, versusIi,

the mutual information betweenLi andX. HereX is a binary valued random variable taking

values +1 or -1 with equal probability. The pdf ofLo is estimated by making a histogram of the

LLR values at the equalizer output.
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Fig. 1 shows the exit charts for the equalization schemes forthe point spread function

corresponding tos=0.4. The SNR is calculated as

SNR = 10·log10
∑L−1

l1,l2=0
h2(l1, l2)

2σ2
w

. (6)

The filters each have a5×5 support. For each EXIT chart,106 randomly chosen equiprobable

symbolsx(i, j)∈±1 were generated and transmitted over the ISI channel. As expected the exact

MMSE scheme has the best performance. The approximate I scheme has a good starting behavior,

but poor behavior at high values ofIi, whilst the opposite is observed for the approximate II

scheme, which is consistent with the observations for one-dimensional ISI channels. As observed

in [10], the EXIT charts for the two approximate schemes in Fig. 1 suggest using a scheme which

switches between the two approximate equalizers based on which equalizer yields a larger value

of Io for a givenIi. We investigate this scheme, termed the hybrid scheme, in the following

subsections.

The figure also shows the EXIT charts for the exact MMSE equalizer at different SNRs. Also

shown is the EXIT chart for a block length 10000, regular (3,6) LDPC code. As the SNR is

reduced, the gap between the EXIT charts of the equalizer anddecoder becomes narrower until

the two touch at an SNR of about -1.05 dB. Reducing the SNR beyond this point leads to the

decoding trajectory getting stuck at the point of intersection leading to poor performance. Thus

this value of the SNR gives us an idea of how much noise the equalizer-decoder pair can tolerate

so as to reliably recover the data.

B. Density Evolution Using Gaussian Approximation

EXIT charts have proven very useful in predicting the behavior of iterative decoders. However,

the process of determining the noise threshold using EXIT charts is quite tedious. In this section

we propose a density evolution algorithm to determine noisetolerance thresholds for the MMSE-

LDPC schemes. The density evolution algorithm uses the Gaussian approximation that was used

for the EXIT charts,i.e., the pdf of the input/output of the receiver components are Gaussian and

can be characterized by a single parameter. This approximation was shown to be very accurate

for the sum-product decoder for LDPC codes by Chunget al. [2].

For the density evolution algorithm we evolve the mean of thedensities through the iterations.

The density evolution algorithm proceeds as follows: at every iteration the MMSE equalizer
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computes the mean of the output LLR and passes it to the LDPC decoder; using that mean

the LDPC decoder computes the mean of its output LLR and passes it to the MMSE equalizer.

If the mean tends to infinity as the iterations progress then the variance is increased and the

same process is repeated. This continues until the criticalvalue of variance when the mean does

not tend to infinity. The density evolution for LDPC codes using a Gaussian approximation is

described in [2]. For the sake of brevity we omit the description.

Table I lists the thresholds for the MMSE-LDPC schemes for the 3×3 point spread functions

defined by (2). The SNR is calculated as in (6) except that the rate of the LDPC code is also taken

into account. The LDPC code is the regular (3,6) code. The table shows that as the interference

becomes more severe the thresholds become worse, which is what we expect. The table shows

that the noise thresholds of the hybrid scheme are very closeto those of the exact scheme. The

thresholds for the approximate II scheme are not shown sincethey are very high.

C. Bit-Error Rate versus SNR Curves

Fig. 2 shows the bit-error rate (BER) versus SNR curves for the MMSE-LDPC schemes, with

SNR defined in (6). The performance of the MMSE-LDPC schemes is plotted for the different

equalizers for the ISI in (2) corresponding tos=0.4. A block length 10000, regular (3,6) LDPC

code is used and the leftmost curve shows the performance of this code on an AWGN channel.

The figure also shows the performance of the full graph algorithm, a sum-product message-

passing based receiver for the 2D ISI channel [6]. For the MMSE-LDPC schemes the equalizer

performs a maximum of ten iterations; 20 iterations of LDPC decoding are performed for each

equalization. The BER curves confirm what the noise thresholds suggested, namely that the

hybrid scheme’s performance is very close to that of the exact scheme. The approximate I

scheme suffers a loss of about 1.5 dB compared to the exact scheme. Again the performance of

the approximate II scheme is omitted since it is very bad.

Fig. 2 also shows the performance for the exact MMSE-LDPC scheme for increasing block

lengths. The dashed vertical line depicts the threshold forthe exact MMSE-LDPC scheme using

a regular (3,6) code as calculated in the previous subsection. It can be seen from the figure that,

even as the block length increases, very low BERs are achieved only when the SNR is above

the threshold SNR. Fig. 3 shows the performance curves for the exact MMSE-LDPC scheme for

ISI corresponding to different values ofs in (2). As expected, when the ISI becomes severe the
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performance of the receiver degrades. However, even fors = 0.6, when the interference energy

is nearly 33%, the loss in SNR over the LDPC code is only a little over 3 dB.

V. CONCLUSIONS

In this letter we have presented results for the applicationof the MMSE schemes proposed by

Tüchleret al. [10] to 2D ISI channels. The MMSE equalizers are used in conjunction with LDPC

decoding to further improve the performance. Simulations results based on EXIT charts, density

evolution, and BER versus SNR curves, show similar performance trends as for one-dimensional

ISI channels. The performance of the MMSE-LDPC receiver using the exact equalizer is very

close to that of the message-passing based algorithm and at amuch lower computational cost. The

hybrid scheme performs almost as-well-as the exact scheme and has even lower computational

complexity.
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Fig. 1. EXIT charts for the MMSE equalization schemes at 1.15dB SNR. EXIT charts for the exact MMSE scheme for

different SNRs. Also shown is the EXIT chart for a block length 10000, regular (3,6) LDPC code.
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TABLE I

THRESHOLDS FOR EXACTMMSE-LDPCDECODING SCHEME USING REGULAR(3,6) LDPCCODE FOR DIFFERENT3×3

POINT SPREAD FUNCTIONS.

s Interference Threshold SNR [dB]

Energy (%) Exact Hybrid Approx I

0.1 1.00 1.209 1.209 1.220

0.2 3.99 1.349 1.385 1.445

0.3 8.93 1.707 1.772 1.891

0.4 15.65 2.197 2.247 2.472

0.5 23.81 2.993 3.125 3.420

0.6 32.87 4.168 4.306 4.622

0.7 42.20 5.638 5.850 6.144

0.8 51.21 7.594 7.932 8.125
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Fig. 2. BER versus SNR curves for different MMSE-LDPC schemes using a block length 10000, regular (3,6) LDPC code.

BER versus SNR curves for the exact MMSE-LDPC scheme using regular (3,6) LDPC codes of increasing block lengths.

October 14, 2018 DRAFT



12

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR [dB]

B
it−

E
rr

or
 R

at
e

LDPC No ISI
s=0.2
s=0.3
s=0.4
s=0.5
s=0.6

Fig. 3. BER versus SNR curves for the exact MMSE-LDPC schemesfor different 3×3 point spread functions using a block

length 10000, regular (3,6) LDPC code.
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