Consta-Dihedral Codes and their Transform Domain Characterization

V. Shashidhar and B. Sundar Rajan
Dept. of Electrical Communication Engineering Indian Institute of Science, Bangalore 560012, INDIA
\{shashidhar@protocol., bsrajan@\}ece.iisc.ernet.in

Abstract - We identify a cocycle on the dihedral group D_{n} of $2 n$ elements which results in a new class of codes called consta-dihedral codes. We define a new transform for these codes and then characterize all the consta-dihedral codes using this new transform.

The dihedral group D_{n} is the set $D_{n}=$ $\left\{1, r, r^{2}, \ldots, r^{n-1}, s, r s, r^{2} s, \ldots, r^{n-1} s\right\} \quad$ where $r^{n}=s^{2}=1$ and $r s=s r^{n-1}$. In this paper, we assume n is even. The results of this paper can be extended trivially to the case when n is odd. The following definition identifies a cocycle on dihedral group similar to the consta-cycle cocycle on cyclic group [1].
Definition 1 Let β_{r}, β_{s} be two elements of the field F_{q}. We define ψ to be a map from $D_{n} \times D_{n}$ to F_{q}^{*} given by

$$
\begin{gathered}
\psi(1, g)=\psi(g, 1)=\psi(1,1)=1, \\
\psi\left(r^{i}, r^{j}\right)=\psi\left(r^{i}, r^{j} s\right)=\beta_{r}^{\lfloor(i+j) / n\rfloor}, \quad \text { for } \quad i, j \neq 0
\end{gathered}
$$

and $\psi\left(r^{i} s, r^{j} s^{k}\right)=\psi\left(r^{i}, r^{n-j}\right) \beta_{s}^{\lfloor(k+1) / 2\rfloor}$, for $i, j \neq 0$. The cocycle ψ is called a $\left(\beta_{r}, \beta_{s}\right)$-constacyclic cocycle on D_{n}.
Definition 2 Let ψ be the $\left(\beta_{r}, \beta_{s}\right)$-constacyclic cocycle on D_{n}. Then, a right (left) $\left(\beta_{r}, \beta_{s}\right)$-consta-dihedral code is a subset of $F_{q}^{2 n}$ corresponding to a right (left) ideal in the cocyclic group ring $F_{q}^{\psi} D_{n}$. Clearly, when a code is both a right and left consta-dihedral code, it will correspond to a two-sided ideal in $F_{q}^{\psi} D_{n}$.
With β_{r} and β_{s} equal to 1 , we obtain the dihedral codes [2]. Let $F_{q^{m}}$ be an extension of F_{q} such that β_{r} and β_{s} have n-th and square roots in $F_{q^{m}}$ respectively. Let d be the order of β_{r}. Let λ_{r} be an n-th root of β_{r} and λ_{s} be a square root of β_{s}. We will assume that λ_{s} is in F_{q}. The transform matrix for a (β_{r}, β_{s})-consta-dihedral code is defined as follows: The transform matrix has rows and columns indexed with conjugate classes and elements of D_{n} respectively. The $(\lceil g\rceil), r^{i} s^{j}$)-th element of the transform matrix Φ is $\lambda_{r}^{i} \lambda_{s}^{j} \phi_{(\lceil g\rceil)}\left(r^{i} s^{j}\right)$, where $\phi_{(\lceil g\rceil)}$ is the irreducible representation of D_{n} corresponding to the conjugate class $\lceil g\rceil$.

Definition 3 (Consta-dihedral DFT (CD-DFT)) Let

$a=\left(a_{1}, a_{r}, \ldots, a_{r^{n-1}}, a_{s}, a_{r s}, \ldots, a_{r^{n-1} s}\right) \in F_{q}$ Then, the transform domain vector A of the time domain vector a is given as $A=\Phi a$.
Lemma 1 (Conjugate Symmetry Property) A
vector $A=\left(A_{1}, A_{r^{n / 2}}, A_{s}, A_{r s}, A_{r}, \ldots, A_{r^{n / 2}-1}\right) \quad \in$ $F_{q^{m}}^{4} \times M_{2}\left(F_{q}^{m}\right)^{n / 2-1}$, is a transform domain vector of a vector $a=\left(a_{1}, a_{r}, a_{r^{2}}, \ldots, a_{s}, a_{r s}, \ldots, a_{r^{n-1}}\right)$ iff A satisfies the following properties:
(1) $A_{1}^{q^{j}}=\left\{\begin{array}{cl}A_{r^{k}}(1,1)+A_{r^{k}}(1,2) & \text { if } k=h\left(q^{j}-1\right) / d \leq n / 2 \\ A_{r^{n-k}}(2,2)+A_{r^{n-k}}(2,1) & \text { if } k=h\left(q^{j}-1\right) / d>n / 2\end{array}\right.$

[^0](2) $A_{s}^{q^{j}}=\left\{\begin{array}{cl}A_{r^{2}}(1,1)-A_{r^{k}}(1,2) & \text { if } k=h\left(q^{j}-1\right) / d \leq n / 2 \\ A & \text { if } k=h\left(q^{j}-1\right) / d>n / 2\end{array}\right.$
(3) $A^{q^{j}}=\left\{\begin{aligned} & r^{n}-k \\ & A_{r^{k}}(1,1)+A_{r^{k}}(1,2) \text { if } k=n / 2+h\left(q^{j}-1\right) / d \leq n / 2\end{aligned}\right.$
(3) $A_{r^{n / 2}}^{q^{j}}=\left\{\begin{aligned} A_{r^{k}}(2,2)+A_{r^{k-k}}(2,1) & \text { if } k=n / 2+h\left(q^{j}-1\right) / d>n / 2\end{aligned}\right.$
(4) $A_{r s}^{q^{j}}=\left\{\begin{array}{cl}A_{r^{k}}(1,1)-A_{r^{k}}(1,2) & \text { if } k=n / 2+h\left(q^{j}-1\right) / d \leq n / 2 \\ A_{r} n-k(2,2)-A_{r} n-k(2,1) & \text { if } k=n / 2+h\left(q^{j}-1\right) / d>n / 2\end{array}\right.$
and
(5) $A_{r^{k}}^{q^{j}}(u, v)=\left\{\begin{array}{cc}A_{r^{l}}(u, v) & \text { if } l=k q^{j}+\frac{h\left(q^{j}-1\right)}{d} \leq n / 2 \\ A_{r^{l} l}(3-u, 3-v) & \text { if } l=-k q^{j}-\frac{h\left(q^{j}-1\right)}{d} \leq n / 2\end{array}\right.$, for
$u=1$ and $v=1,2 \quad{ }^{l} \quad d$
(6) $A_{r^{q}}^{q^{j}}(u, v)=\left\{\begin{array}{cl}A_{r^{l}}(u, v) & \text { if } l=-k q^{j}+\frac{h\left(q^{j}-1\right)}{d} \leq n / 2 \\ A_{r^{l}}(3-u, 3-v) & \text { if } l=+k q^{j}-\frac{h\left(q^{j}-1\right)}{d} \leq n / 2\end{array}\right.$ for
$u=2$ and $v=1,2$.
Let $\quad I_{k}^{\psi}(i) \quad\left\{\left((-1)^{(i-1)} k q^{j}+\frac{h\left(q^{j}-1\right)}{d}\right)^{\prime}\right.$ $\left\lvert\,\left((-1)^{(i-1)} k q^{j}+\frac{h\left(q^{j}-1\right)}{d}\right)\right.$ is an nonzero integer $\}, \quad$ for $i=1,2$, where $(x)^{\prime}$ is equal to x if $x \leq n / 2$ and $n-x$ otherwise. Then, from the conjugacy constraints of Φ_{d}, it is easy to see that the components $A_{r^{k}}(i, 1)$ and $A_{r^{k}}(i, 2)$ can take values only from the field $F_{q} l_{k(i)}$, where $l_{k(i)}$ is the cardinality of the set $I_{k}^{\psi}(i)$ for $i=1,2$. Then, we have the following structure theorem for the cocyclic group ring $F_{q}^{\psi} G$.
Theorem 1 (Structure Theorem) Let L be the set of elements one from each distinct q-cyclotomic coset $I_{k}^{\psi}(i)$. Then, the cocyclic group ring $F_{q}^{\psi} G$ is isomorphic to the algebra $\bigoplus_{k \in L} F_{q^{l_{k(i)}}}$ where $l_{k(i)}$ is the size of the set $I_{i}^{\psi}(i)$.
For every $\lambda \in F_{q^{m}}^{*}$ (nonzero elements of $F_{q^{m}}$), an $F_{q^{\prime}}$-subspace V of $F_{q^{m}}$ is called λ-invariant if it is closed under multiplication by λ. A λ-invariant F_{q}-subspace of $F_{q^{m}}$, for brevity will be denoted as $[\lambda, q, m]$-subspace,

We now characterize all the right consta-dihedral codes in the transform domain we have defined. The characterizations of the left and two-sided consta-dihedral codes are similar to that of right codes.
Theorem 2 Let \mathcal{C} be a $2 n$-length linear code over F_{q}, and let $A(\mathcal{C})=\{\phi a \mid a \in \mathcal{C}\}$. Also let $A_{r^{k}}(\mathcal{C})=\left\{A_{r^{k}} \mid A \in A(\mathcal{C})\right\}$ and $A_{r^{k}}(\mathcal{C})(u, v)=\left\{A_{r^{k}}(u, v) \mid A \in A(\mathcal{C})\right\}$ for $u, v=1,2$. Then, \mathcal{C} is a right $\left(\beta_{r}, \beta_{s}\right)$-consta-dihedral code iff the following properties are satisfied:
(1) $A(\mathcal{C})$ satisfies the conjugate symmetry property,
(2) $A_{r^{k}}(\mathcal{C})(1,1)$ is a $\left[\alpha^{k} \lambda_{r}, q, l_{k}\right]$-subspace; $A_{r^{k}}(\mathcal{C})(2,2)$ is $a\left[\alpha^{-k} \lambda_{r}, q, l_{k}\right]$-subspace; $A_{r^{k}}(\mathcal{C})(1,2)$ is an $\left[\alpha^{k} \lambda_{r}^{n-1}, q, l_{k}\right]$ subspace and $A_{r^{k}}(\mathcal{C})(2,1)$ is an $\left[\alpha^{-k} \lambda_{r}^{n-1}, q, l_{k}\right]$-subspace,
(3) The set $A_{r^{k}}(\mathcal{C})$ is a subspace of $M_{2}\left(F_{q^{l_{k}}}\right)$ which is invariant under the right multiplication of $\left(\begin{array}{cc}0 & \lambda_{s} \\ \lambda_{s} & 0\end{array}\right)$.

References

[1] G. Hughes, "Constacyclic codes, cocycles and a $u+v \mid u-v$ construction," IEEE Trans. Inform. Theory, vol.46, no.2, pp.674680, Mar 2000.
[2] MacWilliams, F. J., "Codes and ideals in group algebras," Proc. Conf. Combinatorial Mathematics and its Applications,, 1967, Chapel Hill, N.C., U. of N.C. Press, 1969.

[^0]: ${ }^{1}$ This work was partly funded by the IISc-DRDO Program on Advanced Research in Mathematical Engineering through a grant to B.S.Rajan.

