Consta-Dihedral Codes and their Transform Domain Characterization

V. Shashidhar and B. Sundar Rajan Dept. of Electrical Communication Engineering Indian Institute of Science, Bangalore 560012, INDIA {shashidhar@protocol.,bsrajan@}ece.iisc.ernet.in

Abstract — We identify a cocycle on the dihedral group D_n of 2n elements which results in a new class of codes called consta-dihedral codes. We define a new transform for these codes and then characterize all the consta-dihedral codes using this new transform.

The dihedral group D_n is the set $D_n = \{1, r, r^2, \ldots, r^{n-1}, s, rs, r^2s, \ldots, r^{n-1}s\}$ where $r^n = s^2 = 1$ and $rs = sr^{n-1}$. In this paper, we assume *n* is even. The results of this paper can be extended trivially to the case when *n* is odd. The following definition identifies a cocycle on dihedral group similar to the consta-cycle cocycle on cyclic group [1].

Definition 1 Let β_r, β_s be two elements of the field F_q . We define ψ to be a map from $D_n \times D_n$ to F_q^* given by

$$\psi(1,g) = \psi(g,1) = \psi(1,1) = 1,$$

$$\psi(r^i, r^j) = \psi(r^i, r^j s) = \beta_r^{\lfloor (i+j)/n \rfloor}, \quad for \quad i, j \neq 0$$

and $\psi(r^i s, r^j s^k) = \psi(r^i, r^{n-j})\beta_s^{\lfloor (k+1)/2 \rfloor}$, for $i, j \neq 0$. The cocycle ψ is called a (β_r, β_s) -constacyclic cocycle on D_n .

Definition 2 Let ψ be the (β_r, β_s) -constacyclic cocycle on D_n . Then, a right (left) (β_r, β_s) -consta-dihedral code is a subset of F_q^{2n} corresponding to a right (left) ideal in the cocyclic group ring $F_q^{\psi} D_n$. Clearly, when a code is both a right and left consta-dihedral code, it will correspond to a two-sided ideal in $F_q^{\psi} D_n$.

With β_r and β_s equal to 1, we obtain the dihedral codes [2]. Let F_{q^m} be an extension of F_q such that β_r and β_s have *n*-th and square roots in F_{q^m} respectively. Let *d* be the order of β_r . Let λ_r be an *n*-th root of β_r and λ_s be a square root of β_s . We will assume that λ_s is in F_q . The transform matrix for a (β_r, β_s) -consta-dihedral code is defined as follows: The transform matrix has rows and columns indexed with conjugate classes and elements of D_n respectively. The $(\lceil g \rceil), r^i s^j$ -th element of the transform matrix Φ is $\lambda_r^i \lambda_s^j \phi_{(\lceil g \rceil)}(r^i s^j)$, where $\phi_{(\lceil g \rceil)}$ is the irreducible representation of D_n corresponding to the conjugate class $\lceil g \rceil$.

Definition 3 (Consta-dihedral DFT (CD-DFT)) Let

 $a = (a_1, a_r, \dots, a_{r^{n-1}}, a_s, a_{rs}, \dots, a_{r^{n-1}s}) \in F_q$ Then, the transform domain vector A of the time domain vector a is given as $A = \Phi a$.

Lemma 1 (Conjugate Symmetry Property) A

vector $A = (A_1, A_{r^{n/2}}, A_s, A_{rs}, A_r, \dots, A_{r^{n/2}-1}) \in F_{q^m}^4 \times M_2(F_q^m)^{n/2-1}$, is a transform domain vector of a vector $a = (a_1, a_r, a_{r^2}, \dots, a_s, a_{rs}, \dots, a_{r^{n-1}s})$ iff A satisfies the following properties:

$$(1) \ A_1^{qj} = \left\{ \begin{array}{cc} A_{rk}(1,1) + A_{rk}(1,2) & \text{if} \ k = h(q^j - 1)/d \le n/2 \\ A_{r}n - k(2,2) + A_{r}n - k(2,1) & \text{if} \ k = h(q^j - 1)/d > n/2 \end{array} \right.$$

$(2) \ A_{s}^{qj} = \begin{cases} A_{rk}(1,1) - A_{rk}(1,2) \\ A_{rn-k}(2,2) - A_{rn-k}(2,1) \end{cases}$	$\begin{array}{ll} {\it if} \ k=h(q^j-1)/d\leq n/2\\ {\it if} \ k=h(q^j-1)/d> n/2 \end{array}$
${}^{(3)}A_{r}^{qj} = \begin{cases} A_{rk}(1,1) + A_{rk}(1,2) \\ A_{rk}(2,2) + A_{rk}(2,1) \end{cases}$	$ \begin{array}{l} \mbox{if } k = n/2 + h(q^j - 1)/d \leq n/2 \\ \mbox{if } k = n/2 + h(q^j - 1)/d > n/2 \end{array} $
$(4) A_{rs}^{qj} = \begin{cases} (1, r, r, k, k) + (r, r, r, k, k) \\ A_{rk}(1, 1) - A_{rk}(1, 2) \\ A_{rn-k}(2, 2) - A_{rn-k}(2, 1) \end{cases}$ and	if $k = n/2 + h(q^j - 1)/d \le n/2$ if $k = n/2 + h(q^j - 1)/d > n/2$
and (5) $A_{rk}^{qj}(u, v) = \begin{cases} A_{rl}(u, v) \\ A_{rl}(3 - u, 3 - v) \end{cases}$ u = 1 and v = 1, 2	$\begin{array}{l} \mbox{if } l=kq^j+\frac{h(q^j-1)}{d}\leq n/2 \\ \mbox{if } l=-kq^j-\frac{h(q^j-1)}{d}\leq n/2 \end{array}, \ \mbox{for } \end{array}$
$ \begin{array}{l} u = 1 \ and \ v = 1, 2 \\ (6) \ A_{rk}^{qj}(u, v) = \begin{cases} A_{rl}(u, v) \\ A_{rl}(3 - u, 3 - v) \\ u = 2 \ and \ v = 1, 2. \end{cases} $	$ \begin{array}{l} \text{if } l = -kq^j + \frac{h(q^j-1)}{d} \leq n/2 \\ \text{if } l = +kq^j - \frac{h(q^j-1)}{d} \leq n/2 \end{array} \\ \end{array} $
u = 2 and $v = 1, 2$.	_

Let $I_k^{\psi}(i) = \left\{ ((-1)^{(i-1)}kq^j + \frac{h(q^j-1)}{d})' \\ \left| ((-1)^{(i-1)}kq^j + \frac{h(q^j-1)}{d}) \right|$ is an nonzero integer $\left\},$ for

i = 1, 2, where (x)' is equal to x if $x \le n/2$ and n - xotherwise. Then, from the conjugacy constraints of Φ_d , it is easy to see that the components $A_{r^k}(i, 1)$ and $A_{r^k}(i, 2)$ can take values only from the field $F_{q^{l_k(i)}}$, where $l_{k(i)}$ is the cardinality of the set $I_k^{\psi}(i)$ for i = 1, 2. Then, we have the

cardinality of the set $I_k^{\varphi}(i)$ for i = 1, 2. Then, we have the following structure theorem for the cocyclic group ring $F_q^{\psi}G$.

Theorem 1 (Structure Theorem) Let L be the set of elements one from each distinct q-cyclotomic coset $I_k^{\psi}(i)$. Then, the cocyclic group ring $F_q^{\psi}G$ is isomorphic to the algebra $\bigoplus_{k \in L} F_{q^{l_k(i)}}$ where $l_{k(i)}$ is the size of the set $I_i^{\psi}(i)$.

For every $\lambda \in F_{q^m}^{*m}$ (nonzero elements of F_{q^m}), an F_q -subspace V of F_{q^m} is called λ -invariant if it is closed under multiplication by λ . A λ -invariant F_q -subspace of F_{q^m} , for brevity will be denoted as $[\lambda, q, m]$ -subspace,

We now characterize all the right consta-dihedral codes in the transform domain we have defined. The characterizations of the left and two-sided consta-dihedral codes are similar to that of right codes.

Theorem 2 Let C be a 2n-length linear code over F_q , and let $A(C) = \{\phi a | a \in C\}$. Also let $A_{rk}(C) = \{A_{rk} | A \in A(C)\}$ and $A_{rk}(C)(u,v) = \{A_{rk}(u,v) | A \in A(C)\}$ for u, v = 1, 2. Then, C is a right (β_r, β_s) -consta-dihedral code iff the following properties are satisfied:

(1) $A(\mathcal{C})$ satisfies the conjugate symmetry property,

(2) $A_{r^k}(\mathcal{C})(1,1)$ is a $[\alpha^k \lambda_r, q, l_k]$ -subspace; $A_{r^k}(\mathcal{C})(2,2)$ is a $[\alpha^{-k} \lambda_r, q, l_k]$ -subspace; $A_{r^k}(\mathcal{C})(1,2)$ is an $[\alpha^k \lambda_r^{n-1}, q, l_k]$ subspace and $A_{r^k}(\mathcal{C})(2,1)$ is an $[\alpha^{-k} \lambda_r^{n-1}, q, l_k]$ -subspace, (3) The set $A_{r^k}(\mathcal{C})$ is a subspace of $M_2(F_{q^{l_k}})$ which is invari-

ant under the right multiplication of $\begin{pmatrix} 0 & \lambda_s \\ \lambda_s & 0 \end{pmatrix}$.

References

- G. Hughes, "Constacyclic codes, cocycles and a u+v|u-v construction," *IEEE Trans. Inform. Theory*, vol.46, no.2, pp.674-680, Mar 2000.
- [2] MacWilliams, F. J., "Codes and ideals in group algebras," Proc. Conf. Combinatorial Mathematics and its Applications,, 1967, Chapel Hill, N.C., U. of N.C. Press, 1969.

¹This work was partly funded by the IISc-DRDO Program on Advanced Research in Mathematical Engineering through a grant to B.S.Rajan.