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Abstract — For a MIMO Ricean fading channel with

perfect side information at the receiver we derive an

analytic upper bound on the difference between ca-

pacity and the mutual information that is induced by

an isotropic Gaussian input. We show that if the num-

ber of receiver antennas is at least equal to the num-

ber of transmitter antennas, then, as the signal-to-

noise ratio tends to infinity, such an input is asymptot-

ically optimal. But otherwise such an isotropic input

might be suboptimal. We also propose an iterative

algorithm to calculate the optimal power allocation.

I. Introduction

We consider a discrete-time memoryless MIMO channel
whose output Y ∈ C

m is given by

Y = (eH + D)x + Z (1)

where x ∈ C
n is the channel input; the random vector Z has

a NC

`
0, σ2

Im

´
distribution1; the fading matrix H = eH + D ∈

C
m×n consists of a deterministic mean matrix D and a random

matrix eH, whose m · n random components are IID NC(0, 1).

It is assumed that eH and Z are independent, and that their
joint law does not depend on the input x.

We shall consider the capacity of this channel when the
realization of the fading matrix H is known to the receiver,
but only its probability law is known at the transmitter. We
assume that the transmitted signal is subject to an average
power constraint E

ˆ
X†X

˜
≤ Es, where we use A

† to denote
the Hermitian conjugate of A.

The capacity C of this channel is achieved by a multivariate
circularly-symmetric Gaussian input. Combining the input
power and the noise power to a single “signal-to-noise ratio”
parameter ρ = Es

σ2 , capacity can be expressed as

C(ρ) = sup
K̂∈K

EeH

h
log det

“
Im + ρ(eH + D)K̂(eH + D)†

”i
(2)

where K is the set of positive semi-definite matrices K̂ with

trace tr
“
K̂

”
≤ 1.

As shown in [1, 2], if D = UΣDV
† is a singular value de-

composition, where (ΣD)i,i = σi are the decreasingly ordered
singular values of D, then the optimal normalized input covari-
ance matrix is K̂

∗ = VΛ
K̂∗V

†, where Λ
K̂∗ = diag (λ∗

1, . . . , λ
∗
n).

Since no explicit expression for the decreasingly ordered eigen-
values (power allocation) {λ∗

i } is known, and since in some
systems it may be advisable to choose codes that do not de-
pend on D, it is natural to ask how much is lost w.r.t. capacity
if a uniform power allocation λi = 1/n, 1 ≤ i ≤ n, is used.

1Here NC(0,K) denotes the zero-mean circularly-symmetric mul-
tivariate Gaussian distribution of covariance matrix K, and Im de-
notes the m × m identity matrix.

II. Main Results

The following result is stated without proof.

Theorem 1. The difference between capacity (2) and the mu-
tual information between the input and output of the channel
(1) induced by XGI ∼ NC

`
0, Es

n
In

´
is upper bounded as

C(ρ) − I(XGI;Y, eH) ≤ n − l −
nl2

ρ
· e

nl
ρ · Ei

„
−

nl

ρ

«
(3)

where l = min{m, n} and Ei (−ξ) = −
R ∞

ξ

e−t

t
dt, ξ > 0, is

the exponential integral function.

If n ≤ m, then the bound tends to zero as ρ → ∞, which
shows that XGI is asymptotically optimal. In fact, one can
show that in this case capacity (2) can be expressed as

C(ρ) = n log ρ + E

h
log det(H†

H)
i
− n log n + o(1) (4)

and is achieved asymptotically by NC

“
0, EsK̂(ρ)

”
inputs

(K̂(ρ) ∈ K) if, and only if, limρ→∞ K̂(ρ) = In/n component-
wise.

The situation is different if m < n. In this case

C(ρ) = m log ρ + sup
K̂∈K

E

h
log det(HK̂H

†)
i

+ o(1). (5)

Since the cost function is strictly concave in K̂, the asymp-
totically optimal K̂

∗ is unique. Considering the decreasingly
ordered singular values {σi} of D, one can show that if σi = σj

for 1 ≤ i, j ≤ n (where we define σk = 0 if k > m), then
λ∗

i = λ∗
j . Also, a numerical evaluation shows that unless D = 0

(i.e., Rayleigh fading) a uniform power allocation K̂ = In/n
need not be asymptotically optimal.

Such numerical results can be obtained by use of the it-
erative algorithm below, which is based on an application of
the Blahut-Arimoto algorithm to the channel (1) and the fact
that if one initializes the algorithm with a Gaussian distribu-
tion one obtains a Gaussian distribution in the next step:

• Choose s > 0 and σ2 > 0, and set K
(0) = In.

• For i ≥ 0 iterate K
(i+1) =

“
(K(i))−1 + sIn − M

(i)
”−1

with M
(i) = E

»
H

†
“

HK
(i)

H
† + σ2

Im

”−1

H

–
.

The algorithm converges towards the optimal input covariance
matrix K

∗ with tr (K∗) = Es for the channel (1), where Es

depends on the choice of s.
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