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Abstract — For a MIMO Ricean fading channel with
perfect side information at the receiver we derive an
analytic upper bound on the difference between ca-
pacity and the mutual information that is induced by
an isotropic Gaussian input. We show that if the num-
ber of receiver antennas is at least equal to the num-
ber of transmitter antennas, then, as the signal-to-
noise ratio tends to infinity, such an input is asymptot-
ically optimal. But otherwise such an isotropic input
might be suboptimal. We also propose an iterative
algorithm to calculate the optimal power allocation.

I. INTRODUCTION

We consider a discrete-time memoryless MIMO channel
whose output Y € C™ is given by

Y = (H+D)x + Z (1)

where x € C" is the channel input; the random vector Z has
a N¢ (0, 02|m) distribution'; the fading matrix H=H+D €
C™*™ consists of a deterministic mean matrix D and a random
matrix H, whose m - n random components are IID N¢ (0, 1).
It is assumed that H and Z are independent, and that their
joint law does not depend on the input x.

We shall consider the capacity of this channel when the
realization of the fading matrix H is known to the receiver,
but only its probability law is known at the transmitter. We
assume that the transmitted signal is subject to an average
power constraint E[XTX] < &, where we use AT to denote
the Hermitian conjugate of A.

The capacity C of this channel is achieved by a multivariate
circularly-symmetric Gaussian input. Combining the input
power and the noise power to a single “signal-to-noise ratio”

parameter p = %, capacity can be expressed as

C(p) = sup E; [bg det (Im + p(H + D)K(H + D)T)] 2)

where K is the set of positive semi-definite matrices K with
trace tr (R) <1.

As shown in [1, 2], if D = UXpV' is a singular value de-
composition, where (Xp);; = o; are the decreasingly ordered
singular values of D, then the optimal normalized input covari-
ance matrix is K* = VAR*VT7 where Ag, = diag (A\],..., An).
Since no explicit expression for the decreasingly ordered eigen-
values (power allocation) {Aj} is known, and since in some
systems it may be advisable to choose codes that do not de-
pend on D, it is natural to ask how much is lost w.r.t. capacity
if a uniform power allocation \; =1/n, 1 <14 < n, is used.

I Here N (0, K) denotes the zero-mean circularly-symmetric mul-
tivariate Gaussian distribution of covariance matrix K, and |, de-
notes the m X m identity matrix.

IT. MAIN RESULTS
The following result is stated without proof.

Theorem 1. The difference between capacity (2) and the mu-
tual information between the input and output of the channel
(1) induced by X1 ~ N (O, %In) 18 upper bounded as

nl

~ 2
Clp) — I(Xau Y, i) <n—1— " % i <—”—l) (3)
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where | = min{m,n} and Ei(=¢) = —f;o gdt, £>0, s
the exponential integral function.

If n < m, then the bound tends to zero as p — oo, which
shows that Xqa1 is asymptotically optimal. In fact, one can
show that in this case capacity (2) can be expressed as

C(p)=nlogp+E [log det(HTH)} —nlogn+o(l) (4)

and is achieved asymptotically by /\/’@(QESR(p)) inputs

(K(p) € K) if, and only if, lim, o K(p) = I, /n component-
wise.

The situation is different if m < n. In this case

C(p) = mlogp+ sup E [log det(HKH')| +o(1).  (5)

Kek

Since the cost function is strictly concave in K, the asymp-
totically optimal K* is unique. Considering the decreasingly
ordered singular values {o;} of D, one can show that if o; = o;
for 1 < 4,5 < n (where we define o), = 0 if k& > m), then
Al = Aj. Also, a numerical evaluation shows that unless D = 0
(i.e., Rayleigh fading) a uniform power allocation K= In/n
need not be asymptotically optimal.

Such numerical results can be obtained by use of the it-
erative algorithm below, which is based on an application of
the Blahut-Arimoto algorithm to the channel (1) and the fact
that if one initializes the algorithm with a Gaussian distribu-
tion one obtains a Gaussian distribution in the next step:

e Choose s > 0 and o2 > 0, and set KO — I
) ) -1
e For i > 0 iterate K(HY) = ((K('))_1 + sl — I\/I('))

. . —1
with M@ = E [H* (HK(”HT + 02|m) ]HI}

The algorithm converges towards the optimal input covariance
matrix K* with tr (K*) = & for the channel (1), where &
depends on the choice of s.
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