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For a class of sensor networks, the task is to monitor an un-
derlying physical phenomenon over space and time through a
noisy observation process. The sensors can communicate back
to a data collector over a noisy channel. The key parameters
in such a setting are the fidelity (or distortion) at which the
underlying physical phenomenon can be estimated by a central
data collector, and the cost of operating the communication
network.

In the linear sensor network model shown in Fig. 1,
the discrete-time complex-valued vector source S[j] =
(S1[j], . . . , SL[j])T is observed as U[j] = AjS[j]+W[j], where
j is the time index. The complex matrix Aj is drawn in
an independent and identically distributed (iid) fashion from
a known distribution. The components of the measurement
noise vector W[j] are iid circularly complex Gaussian random
variables with mean zero and variance σ2

W .
Sensor m (Fm in the figure) observes the se-

quence {Um[j]}J
j=1, and encodes it into {Xm[j]}JK

j=1 =
Fm({Um[j]}J

j=1), using an arbitrarily complex encoding
procedure. K characterizes the channel bandwidth (relative
to the source bandwidth). Hence, sensor m uses an average

power of Pm = limJ→∞ 1
J

∑JK

j=1
E[|Xm[j]|2] for each source

observation, and the total power for all the sensors is
Ptot =

∑M

m=1
Pm. The transmitted signal vector X[j] is

received as Y[j] = BX[j] + Z[j], for some known fixed
complex-valued matrix B. The components of the channel
noise vector Z[j] are iid circularly complex Gaussian random
variables with mean zero and variance σ2

Z . The decoder
uses all observations {Y[j]}KJ

j=1 to provide an estimate of the

source sequence {Ŝ[j]}J
j=1 in such a way as to minimize the

mean-squared error D = limJ→∞ 1
J

∑J

j=1
E

[
‖S[j] − Ŝ[j]‖2

]
.

Theorem (Gaussian linear sensor network)— When S[j] is
an iid sequence of circularly complex Gaussian random vectors
with iid components of variance σ2

S , the distortion cannot be
smaller than
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where α is distributed according to the unordered singular
values of A, β1, . . . , βÑ are the Ñ non-zero singular val-

ues of B, µ = ((1/Ñ)
∑Ñ

n=1
β−2

n )(
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, where EA denotes the

expectation over the distribution of the matrix A.
Remark (Feedback and Collaboration)— The bound of this

theorem includes the case of arbitrary feedback from the des-
tination terminal to the sensors, as well as arbitrary collabo-
ration between the sensors.

This theorem extends our results in [1]. For a proof, see [2].
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Figure 1: Linear sensor network model.

Example 1— For simplicity, suppose that A is determin-
istic, and that all singular values of A and B are equal to√

Mα0 and
√

Mβ0, respectively (e.g., by assuming orthogonal
columns and rows, respectively, of unit magnitude elements,
and L ≤ M and N ≤ M). Then, Ñ = N , and the right hand
side of the presented bound evaluates to
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This formula implies that the distortion decreases at best like
1/M , and that the necessary power to actually achieve this
distortion scaling law must increase at least like ML/(KN)−1.

Example 2 (Wishart distribution)— Suppose the entries of
A are chosen in an iid fashion from a Gaussian distribution of
fixed variance. The resulting distribution of AHA is called the
Wishart distribution, see e.g. [3]. The first term in the bound
can be written as

∫ ∞

0
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W

λσ2
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W

L−1∑
l=0

l!

(l + M − L)!

[
pM−L

l (λ)
]2

λM−Le−λdλ,

where pi
j(·) denotes the associated Laguerre polynomial. As

M → ∞ (fixed ratio L/M < 1), the eigenvalues of (1/M)AHA
tend to a (modified) semicircle law, revealing that the scaling
behavior (as a function of M) is the same as in Ex. 1.

The lower bound presented in this paper can be achieved in
some cases of interest [1], and extends to source distributions
beyond the Gaussian case considered here.
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