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Abstract— The trace map has been used very successfully to
generate cocyclic complex and Butson Hadamard matrices and
simplex codes over Z4 and Z2s . We extend this technique to
obtain new linear codes over Zps . It is worth nothing here
that these codes are cocyclic but not simplex codes. Further we
find that the construction method also gives Butson Hadamard
matrices of order psm.

I. INTRODUCTION

The use of the cocyclic map to find codes was first done in
[1]. The internal structure of the Hadamard matrices used to
generate these codes came from the nature of the cocyclic map,
which allowed for substantial cut-downs in the computational
times required to generate the Hadamard matrices and then
the codes. This property of cocycles was further exploited
in [2] where the authors constructed cocyclic complex and
Butson Hadamard matrices via the trace map. An interesting
by-product of this was the uniform construction of cocyclic
codes over Z4 and Z2s . These cocyclic codes were found to
be simplex codes of type α.

A natural extension of this research would be to find codes
over Zps . In this paper the trace map is used to define a
cocycle and the cocyclic matrix obtained is found to give
Butson Hadamard matrices of order psm. In [3] Klappenecker
and Roetteler use the trace map in a similar manner to obtain q
+ 1 mutually unbiased bases, where q is an odd prime power.
The authors are not aware of the trace map being used before
in this manner to find codes.

A linear code C of length n over Zps is an additive sub
group of Zn

ps . An element of C is called a codeword and a
generator matrix of C is a matrix whose rows generate C.
The Hamming weight WH(x) of an n-tuple x in Zn

ps is the
number of nonzero components and the Lee weight WL(x)
of x = (x1, x2, . . . , xn) is

∑n
i=1 min {xi, p

s − xi}. The
Hamming and Lee distance between x, y ∈ Zn

ps are defined
and denoted as dH(x, y) = WH(x − y) and dL(x, y) =
WL(x− y) respectively. Parameters of a linear code over Zps

are denoted by [n, k, dL], where n is the length of the code, k
is the p-dimension of the code (see [4]) and dL is the minimum
Lee distance of the code.

If G is a finite group (written multiplicatively with identity
1) and C is an abelian group, a cocycle (over G) is a set
mapping ϕ : G × G → C which satisfies ϕ(a, b)ϕ(ab, c) =
ϕ(a, bc)ϕ(b, c), ∀a, b, c ∈ G. A cocycle is normalized if
ϕ(1, 1) = 1. A cocycle may be represented as a cocyclic

matrix Mϕ = [ϕ(a, b)]a,b∈G once an indexing of the elements
of G has been chosen. In [5], Horadam and Perera define a
code over a ring R as a cocyclic code if it can be constructed
by using a cocycle or the rows of a cocyclic matrix or is
equivalent to such a code.

Let ω = exp( 2πi
k ) be the complex kth root of unity and

Ck = {1, ω, ω2, . . . , ωk−1} be the multiplicative group of all
complex kth roots of unity. A square matrix H = [hi,j ] of
order n with elements from Ck is called a Butson Hadamard
matrix if and only if HH∗ = nI , where H∗ is the conjugate
transpose of H . A Butson Hadamard matrix is denoted by
B(n, k) and in the case k = 2 and k = 4, B(n, k) is a
Hadamard and a complex Hadamard matrix respectively. The
matrix E = [ei,j ], ei,j ∈ Zk, which is obtained from H =
[ωei,j ] = [hi,j ] is called the exponent matrix associated with
H .

A code C over Zp, p-prime, is called a simplex code if every
pair of codewords are the same Hamming distance apart. In [4]
Gupta introduced the simplex code of type α and β over Z4

and Z2s and in [6] Gupta et. al. constructed the senary simplex
codes of type α, β and γ. A major distinguish characteristic
of a simplex code of type α over either Z4, Z2s or Z6 is that
each row of its generator matrix contains every element of the
alphabet equally often (see [4], [6], etc.). We construct a code
over Zps with a similar type of generator matrix, but this is
not a simplex code over Zps for p > 2 and s > 1. However in
the case of s = 1 this gives the usual simplex code over Zp

and when p = 2 and s = 1, we get the binary simplex code.
In Section II of this paper we outline the theory of the Galois

ring GR(ps,m) and define the trace map over GR(ps,m).
In Section III the trace map is used to define a cocycle over
GR(ps,m) and this cocycle is then used to construct a Butson
Hadamard matrix H of order psm. The rows of the exponent
matrix of H form a

[
psm, m, ps(m−1)

(
p2s−p2(s−1)

4

)]
linear

code over Zps .

II. GALOIS RING GR(ps,m) AND THE TRACE MAP

To be able to define the cocycle, we first need to look at
the definition of a Galois ring GR(ps,m).

Let p > 2 be a prime and s a positive integer. The ring
of integers modulo ps is the set Zps = {0, 1, 2, . . . , ps − 1}.
Let h(x) ∈ Zps [x] be a monic basic irreducible polynomial
of degree m that divides (xpm−1 − 1). The Galois ring of
characteristic ps and dimension m is defined to be the quotient
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ring Zps [x]/(h(x)) and is denoted by GR(ps,m). The element
ζ = x+(h(x)) is a root of h(x) and consequently ζ is a prim-
itive (pm − 1)th root of unity. Consequently we say that ζ is
a primitive element of GR(ps,m) and find that GR(ps,m) =
Zps [ζ]. Thus GR(ps,m) =< 1, ζ, ζ2, . . . , ζm−1 > and hence
|GR(ps,m)| = psm.

Every element u ∈ GR(ps,m) has a unique representation
as u =

∑s−1
i=0 piui, where ui ∈ T = {0, 1, ζ, ζ2, . . . , ζpm−2}.

This representation is called the p-adic representation of ele-
ments of GR(ps,m) and the set T is called the Teichmuller
set. Note that u is invertible if and only if u0 �= 0. Hence
every non-invertible element of GR(ps,m) can be written
as u =

∑s−1
i=k piui, k = 1, 2, . . . , s − 1. By using the p -

adic representation of elements of GR(ps,m), the Frobenius
automorphism f is defined in [7], [8], [9], etc. as

f : GR(ps,m) → GR(ps,m)
f(u) =

∑s−1
i=0 piup

i .

Note that when s = 1, f is the usual Frobenius automor-
phism for the Galois field GF (p, m) (see [10]).

The relative trace map over GR(ps,m) is defined as

T : GR(ps,m) → Zps

T (u) = u + f(u) + f2(u) + . . . + fm−1(u).

In addition to being a surjective linear transformation, the
trace map also satisfies the following property:

Lemma 2.1: For any b ∈ GR(ps,m), as x ranges over
GR(ps,m), T (xb) takes elements in Dk = {pkt | t =
0, 1, 2, . . . , ps−k − 1} equally often, i.e., ps(m−1)+k times,
where k = 0, 1, 2, . . . , s − 1.

Proof: For any x ∈ GR(ps,m), consider the m - tuple
Vx = (T (x), T (ζx), . . . , T (ζm−1x)) over Zps = D0. Let
V = {Vx|x ∈ GR(ps,m)} and consider the following
correspondence:

α : GR(ps,m) → V .

It is easy to see that α sets up a one to one correspondence
between the elements of GR(ps,m) and the m - tuples of V
over D0. Thus as x ranges over GR(ps,m), each component
T (xζi), for i = 0, 1, 2, . . . ,m− 1, must take each element of
D0 equally often, i.e., psm

ps = ps(m−1) times. In general, for
invertible element b ∈ GR(ps,m) (i.e., b =

∑s−1
i=0 piui; ui ∈

T and u0 �= 0), as x ranges over GR(ps,m), T (xb) must also
assume each element of D0 equally often, i.e., ps(m−1) times.
If b is not invertible then b =

∑s−1
i=k piui, k = 1, 2, . . . , s−1.

Now from the expansion of T (xb) and induction on k, as x
ranges over GR(ps,m), T (xb) must takes each element of
Dk equally often, i.e., psm

ps−k = psm−(s−k) = ps(m−1)+k times.
This complete the proof.

III. COCYCLIC BUTSON HADAMARD MATRICES OF ORDER
psm AND LINEAR CODES OVER Zps

Defining a cocycle using the trace map, we can obtain
cocyclic Butson Hadamard matrices. It turns out that the
exponent matrices of these Buston Hadamard matrices are
linear codes which are similar in structure to the simplex codes

of type α over Z4, Z2s and Z6 found by [2], [4], [6], but are
not simplex codes in the case p > 2 and s > 1. The important
thing to note is that the trace map has not been used in this
manner before, that the trace map is not a cocycle and that
the Butson Hadamard matrix is obtained using the cocycle.

Proposition 3.1: Let p be a prime, p > 2. Let GR(ps,m)
be the Galois ring of characteristic ps and Cps be the multi-
plicative group of all complex (ps)th roots of unity.

(i) The set mapping
ϕ : GR(ps,m) × GR(ps,m) → Cps

ϕ(ci, cj) = (ω)T (cicj)

is a cocycle.
(ii) The matrix H = Mϕ = [ϕ(ci, cj)]∀ci,cj∈GR(ps,m) is a

Butson Hadamard matrix of order psm.
(iii) The rows of the exponent matrix of H (i.e.,

A = [T (cicj)]∀ci,cj∈GR(ps,m)) form a linear code over Zps

with parameters
[n, k, dL, dH ] =

[
psm, m, ps(m−1)

(
p2s−p2(s−1)

4

)
, psm−1(p − 1)

]
.

Proof:
(i) This is easy to show using the properties of the trace

map.
(ii) H = Mϕ = [ϕ(ci, cj)]∀ci,cj∈GR(ps,m). To prove that

HH∗ = psmI , consider the sum

S =
∑

∀x∈GR(ps,m)

ϕ(ci, x)ϕ(x, cj), (1)

where ϕ(x, cj) is the complex conjugate of ϕ(x, cj). From
the properties of the trace map we have

S =
∑

∀x∈GR(ps,m)

(
exp

(
2πi

ps

))T (x(ci−cj))

. (2)

When ci = cj , S = psm
1 . When ci �= cj , from Lemma 2.1

and basic properties of the sum of the nth roots of unity, we
have

S =
∑

∀x∈GR(ps,m)

(
exp

(
2πi

ps

))T (x(ci−cj))

(3)

= ps(m−1)+k

ps−k−1∑
t=0

(
exp

(
2πi

ps

))pkt

(4)

= 0. (5)

(iii) Consider the exponent matrix A associated with H .

A = [T (cicj)]∀ci,cj∈GR(ps,m).

Since T (cicj) ∈ Zps , we can consider the rows of A as
codewords over Zps . Now consider the matrix

GA=




T (ci), i = 1, 2, . . . , psm

T (ζci), i = 1, 2, . . . , psm

...
...

T (ζm−1ci), i = 1, 2, . . . , psm




m×psm

,
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where ci ∈ GR(ps,m). Since ζi are invertible in GR(ps,m)
and from Lemma 2.1, each row of GA contains each element
of Zps equally often, i.e., ps(m−1) times. Further the rows of
GA are linearly independent. Therefore the code generated by
GA is a linear code over Zps . In addition the structure of GA

is very similar to the generator matrices of the simplex codes
in [2], [4], [6] over Z4, Z2s and Z6.

Now taking all linear combinations of the rows of GA we
obtain

A = [T (cicj)]∀ci,cj∈GR(ps,m).

Therefore GA is a generator matrix of the code A and
hence A is a linear code over Zps with the p-dimension
k = m. Let x be any nonzero codeword in A. Then x
can be written as x = (x1, x2, . . . , xpsm), where xi ∈
Dk. From Lemma 2.1, each element in Dk will appear
in x equally often, i.e., ps(m−1)+k times. Therefore the
Lee weight of x is WL(x) = ps(m−1)

(
p2s−p2k

4

)
and the

Hamming weight is WH(x) = ps(m−1)+k
(
ps−k − 1

)
. The

minimum Lee and Hamming weights of the codewords of
A are obtained when k = s − 1. Thus min WL(x) =
ps(m−1)

(
p2s−p2(s−1)

4

)
and min WH(x) = psm−1 (p − 1).

Therefore the parameters of the code A are [n, k, dL, dH ] =[
psm, m, ps(m−1)

(
p2s−p2(s−1)

4

)
, psm−1 (p − 1)

]
.

Note that the code A is not equidistance with respect to
either the Lee or Hamming distances. Therefore this is not a
simplex code over Zps .

When p > 2 and s = 1, then GF (p, m) is the Galois field
of order pm. Hence

(i) The map defined by

ϕ : GF (p, m) × GF (p, m) → Cp

ϕ(ci, cj) = (w)T (cicj)

is a cocycle and the matrix H = Mϕ =
[ϕ(ci, cj)]∀ci,cj∈GF (p,m) is a Butson Hadamard matrix
of order pm.

(ii) Rows of the exponent matrix associated with Mϕ, i.e.,
A = [T (cicj)]∀ci,cj∈GF (p,m), form a Zp - linear code with
parameters [n, k, dH ] = [pm, m, pm−1(p−1)], where dH is the
minimum Hamming distance. Also every nonzero codeword
has constant Hamming weight WH = pm−1(p − 1) and
constant Lee weight WL = pm−1

4 (p2 −1). Thus the code A is
a simplex code over Zp.

In the case p = 2, the cocylic matrix obtained is a
Hadamard matrix and the rows of the matrix A obtained by
substituting the entries of H which are 1 by 0 and -1 by
1 (i.e., A = [T (cicj)]∀ci,cj∈GF (2,m), the exponent matrix
associated with H) is a binary linear code with parameters
[n, k, dL] = [2m,m, 2m−1].
In addition the rows of the matrix A∗ obtained by deleting
the all zero column of A form an Z2 - simplex code
[2m − 1,m, 2m−1].

It is important to note here that the Hadamard matrix
obtained by the above construction is of Paley type.

IV. CONCLUSION

Here the trace map was used to define a cocycle and the
cocyclic matrix obtained is found to give Butson Hadamard
matrices of order psm.

A natural extension of this work would be to generate
cocyclic codes over Zn for any positive integer n. This is
currently under investigation.
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