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Abstract— Consider data transmission over a binary-input
additive white Gaussian noise channel using a binary low-
density parity-check code. We ask the following question: Given
a decoder that takes log-likelihood ratios as input, does ithelp
to modify the log-likelihood ratios before decoding? If we use
an optimal decoder then it is clear that modifying the log-
likelihoods cannot possibly help the decoder’s performance, and
so the answer is “no.” However, for a suboptimal decoder likethe
linear programming decoder, the answer might be “yes”: In this
paper we prove that for certain interesting classes of low-density
parity-check codes and large enough SNRs, it is advantageous
to truncate the log-likelihood ratios before passing them to the
linear programming decoder.

I. I NTRODUCTION

While maximum-likelihood (ML) decoding of low-density
parity-check (LDPC) codes is reasonably well understood
based on the expected weight distribution of the codes, the
linear programming (LP) and the related belief propagation
(BP) decoding of LDPC codes reveal a number of interesting
and unexpected phenomena. The root cause of the differ-
ence between these suboptimal decoders and ML decoding
is the occurrence of so calledpseudo-codewords; from the
perspective of an LP or BP decoder, the pseudo-codewords
act as attractive solutions to the decoding problem, even
though they are not actual codewords in the LDPC code under
consideration. In contrast to codewords which, for codes of
length n and under antipodal signaling, map to elements of
the set{+1,−1}n, pseudo-codewords are vectors of lengthn
that map to vectors with entries that lie in the interval[−1,+1].
Note that the set of possible pseudo-codewords is a function
not only of the code but also of the chosen parity-check matrix.

This paper explores one of the above-mentioned unexpected
phenomena of LP decoding and discusses the roots of this
behavior. Considering the tight relationship between LP decod-
ing and iterative decoding [1], [2], [3], [4], our observations
about LP decoding must also have consequences for iterative
decoding. Before we start describing that phenomenon, let us
first explain the communication setup (see Fig. 1) that is under
consideration.

• We use a binary channel code of lengthn, dimensionk,
and ratek/n.
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Fig. 1. Communication setup under consideration. (See maintext for
explanations.)

• The information wordu ∈ {0, 1}k is encoded into the
codewordx ∈ {0, 1}n. We assume that all information
words are chosen with equal likelihood.

• Let θ : R → R, ωi 7→ 1−2ωi. Restricting the domain of
θ to {0, 1} we obtain the usual BPSK mapping:0 7→ +1
and1 7→ −1. When applying the mapθ to a vector we
define the result to be a vector where each component
is mapped according toθ. Instead ofθ(ωi) andθ(ω) we
will very often simply writeω̄i and ω̄, respectively. For
our communication setup this means that the codeword
x ∈ {0, 1}n is mapped to its signal-space pointx̄ ,

θ(x) =
(

θ(x1), . . . , θ(xn)
)

∈ {+1,−1}n.
• For i = 1, . . . , n, the symbols̄xi are sent over a (binary-

input) additive white Gaussian noise channel (AWGNC)
with noise powerN0/2, i.e. we receiveȲi , x̄i + Z̄i

where {Z̄i}ni=1 are i.i.d. random variables with̄Zi ∼
N (0, N0/2). Here,N (µ, σ2) denotes a Gaussian random
variable with meanµ and varianceσ2.

• Based on the observations̄Yi = ȳi, i = 1, . . . , n, we
compute the normalized log-likelihood ratios (LLRs)

λi , η · log

(

pȲi|X̄i
(ȳi|+1)

pȲi|X̄i
(ȳi| −1)

)

= η · log

(

pȲi|Xi
(ȳi|0)

pȲi|Xi
(ȳi|1)

)

,

where the normalization constantη , η(N0) is chosen
such thatλi equals+1 if z̄i = 0.

• A mappingµ : R → R is applied to the LLRs and results
in the modified LLRsλ′

i , µ(λi), i = 1, . . . , n.
• Based on the modified LLR vectorλ′, a decoderφ tries

to make a decision̂̄x , φ(λ′) aboutx̄. (Or, alternatively,
tries to decide onu or x.)

• When decoding a code of lengthn, we use the label
Pφ
µ (n) for denoting the block error probability of a

decoderφ which bases its decisions on the modified LLR
vectorλ′ , µ(λ).
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Let C̄ , θ(C) be the set of points in signal space that
correspond to the codewords. Using the (normalized) LLR
vector λ, the maximum likelihood (ML) decoderφML can
be cast as

ˆ̄x , φML(λ
′) , argmax

x̄∈C̄

n
∑

i=1

x̄iλ
′
i, (1)

with the trivial mappingλ′
i , µtriv(λi) , λi, i = 1, . . . , n.

From this expression it is clear the the LLR vectorλ is a
sufficient statistic for optimal decoding. Moreover, usingthe
data-processing inequality (see e.g. [5]) it can easily be shown
that there is no mappingµ such that for a given code of length
n there is a decoderφ such thatPφ

µ (n) < PφML
µtriv

(n).
The situation is not as simple in the case of suboptimal

decoders, e.g. the linear programming (LP) decoder [3], [4].
In fact, combining the results in [6] and [1], we show that for
certain low-density parity-check (LDPC) codes and for high
enough SNR it is favorablenot to use the trivial mapµtriv,
but to use a two-level quantization map

λ′
i , µQ2,L(λi) ,

{

+L if λi ≥ 0

−L if λi < 0

before performing the LP decoding.
This seeming paradox is not uncommon for suboptimal

algorithms. We cite the following paragraph from Ganti et
al. [7, p. 2316] which remarks on a similar phenomenon (albeit
in a different context): “[. . . ] Indeed, in the matched case
it is clear that the optimal decoder for the general channel
performs at least as well as a decoder that first quantizes the
output and then performs optimal processing on the quantized
samples. Under mismatched decoding, however, it is unclear
how to relate the performance of the mismatched decoder on
the original channel to its performance on the output-quantized
channel.”

A natural question arises: Is the advantage of using the two-
level quantization map the result of a quantization effect,or
something else? We show that there are code families such
that for any finiteW , the thresholding map

λ′
i , µT,W (λi) ,











+W if λi ≥ +W

−W if λi ≤ −W

λi otherwise

(2)

is also favorable to the trivial mapµtriv. This suggests that the
asymptotic advantage overµtriv is gained not by quantization,
but rather by restricting the LLRs to have finite support.

The rest of the paper is structured as follows. We will give
a brief introduction to LP decoding and pseudo-codewords
in Sec. II.1 In Sec. III, we will talk about pseudo-codewords
stemming from the canonical completion and their importance
for the asymptotic behavior of the LP decoder. In Secs. IV
and V, we will discuss the main results of this paper, namely
we show examples when thresholding and quantizing of the
LLRs can help.

1For recent work on the notion of pseudo-codewords in decoding we refer
to [8], [9], [2], [1], [10], [3], [4].

II. LP DECODING

ML decoding as in (1) can also be formulated as

ˆ̄x , φML(λ
′) , arg max

x̄∈conv(C̄)

n
∑

i=1

x̄iλ
′
i, (3)

whereconv(C̄) is the convex hull of̄C and where the mapping
µ is the trivial mappingµtriv. Unfortunately, for most codes
of interest, the description complexity ofconv(C̄) grows
exponentially in the block length and therefore finding the
maximum in (3) with a linear programming solver is highly
impractical for reasonably long codes.2

A standard approach in optimization in order to simplify
the problem, is to replace the maximization overconv(C̄) by
a maximization over some easily describable polytopeP̄ that
is a relaxation ofconv(C̄):

ˆ̄x , argmax
x̄∈P̄

n
∑

i=1

x̄iλ
′
i. (4)

If P̄ is strictly larger thanconv(C̄) then the decision rule in
(4) obviously represents a sub-optimal decoder. A relaxation
which works particularly well for LDPC codes is given by the
following approach [3], [4]. LetC be described by anm× n
parity-check matrixH with rows h1,h2, . . . ,hm. Then the
polytopesP , P(H) andP̄ , P̄(H) , θ(P), also called the
fundamental polytopes [1], are defined as

P ,

m
⋂

i=1

conv(Ci) with Ci ,
{

x ∈ {0, 1}n |hix
T = 0 mod 2

}

,

P̄ ,

m
⋂

i=1

conv(C̄i) with C̄i , θ(Ci).

Note thatP is a convex set within[0, 1]n that containsconv(C)
but whose description complexity is much smaller than the
description complexity ofconv(C). (A similar comment ap-
plies to P̄ which is a convex set within[−1,+1]n and which
containsconv(C̄).) Points in the setP will be called pseudo-
codewords, and sinceP is a convex polytope, we may restrict
our attention to the vertices ofP (and P̄). Because the set
P̄ is usually strictly larger thanconv(C̄), the decoding rule
in (4) might deliver a vertex of̄P that is not the signal-space
equivalent of a codeword; these “fractional” vertices are the
reason for the sub-optimality of LP decoding (cf. [4], [1]).

For analyzing the above setup it turns out to be useful to
define the AWGNC pseudo-weight [11] of a pseudo-codeword
ω ∈ P to be wAWGNC

p (ω) = ||ω||21/||ω||22, where ||ω||1
and ||ω||2 are theL1- andL2-norm of ω, respectively. The
significance ofwAWGNC

p (ω) is the following. The existence
of a pseudo-codewordω = (ω1, ω2, . . . , ωn) ∈ P \{0} causes
LP decoding to fail to detect the codeword0 if the vector of
received LLRsλ = (λ1, λ2, . . . , λn) satisfies the inequality
∑n

i=1 ω̄i · λ′
i >

∑n
i=1 0̄ · λ′

i, where λ
′ = µtriv(λ) = λ.

Then it can be shown that the squared Euclidean distance from
0̄ = +1 to the plane

{

λ
′ ∈ R

n |
∑n

i=1(ω̄i − 0̄)λ′
i = 0

}

is
wAWGNC

p (ω).

2Exceptions to this observation include for example the class of convolu-
tional codes with not too many states.



III. T HE CANONICAL COMPLETION AND

ITS IMPLICATIONS

Consider a(dv, dc)-regular3 binary codeC of length n
described by a parity-check matrixH. Its Tanner graph [12]
will be denoted byT , T(H), where the set of variable nodes
will be calledV , V (T), the set of check nodes will be called
C , C(T), and a nodev ∈ V is adjacent to a nodec ∈ C
if and only if the corresponding entry inH equals1. Given
a variable nodev ∈ V , we let ∆v(T) denote the maximal
(graph) distance fromv that any node inT can have. Our
goal in this section is to construct a pseudo-codeword whose
impact on the LP decoder depends on the mappingµ. Before
defining this pseudo-codeword, we need a definition.

Definition 1 ([1]): Let T be a Tanner graph. We denote an
arbitrary variable nodev ∈ V (T) to be the root. We classify
the remaining variable and check nodes according to their
(graph) distance from the root, i.e. the root is at tier 0, allnodes
at distance1 from the root will be called nodes of tier1, all
nodes at distance2 from the root node will be called nodes
of tier 2, etc.. We call this ordering “breadth-first spanning
tree ordering with rootv.” Because of the bipartiteness ofT,
it follows easily that the nodes of the even tiers are variable
nodes whereas the nodes of the odd tiers are check nodes.
Furthermore, a check node at tier2t+1 can only be connected
to variable nodes in tier2t and possibly to variable nodes in
tier 2t + 2. Note that the last tier is tier∆v(T) and that the
variable nodes are at tiers0, 2, . . . , 2⌊∆v(T)/2⌋. �

Definition 2 (Canonical completion [1]):Let C be a binary
(dv, dc)-regular code with parity-check matrixH and Tanner
graphT , T(H). Let v ∈ T be an arbitrary variable node.
After performing the breadth-first spanning tree ordering with
root v, we construct a vector̃ω in the following way. If bit i
corresponds to a variable node in tier2t, then

ω̃i ,
1

(dc − 1)t
.

It is possible to choose a scaling factorα > 0 (in fact, a whole
interval of α’s) such thatω , α · ω̃ ∈ P(H). We call the
resulting pseudo-codewordω the canonical completion with
root v. �

Theorem 1 ([1]): Same scenario as in Def. 2. The canonical
completion with rootv yields a vectorω such thatω is in
the fundamental polytopeP(H). Imposing the additional mild
constraint3 ≤ dv < dc, the pseudo-weightwAWGNC

p (ω) of ω
can be upper bounded by

wAWGNC
p (ω) ≤ β′

dv,dc
· nβdv,dc ,

where

β
′
dv,dc ,

(

dv(dv − 1)

dv − 2

)2

, βdv,dc ,
log

(

(dv − 1)2
)

log
(

(dv − 1)(dc − 1)
) < 1.

�

3An LDPC code is called a(dv , dc)-regular code if the uniform column
weight of the relevant parity-check matrixH is dv and the uniform row
weight ofH is dc.

Assuming µ to be the trivial mappingµtriv, the above
theorem has immediate consequences for the LP decoder: the
LP decision region for̄0 is constrained by a hyperplane whose
squared Euclidean distance from̄0 is at mostβ′

dv,dc
nβdv,dc .

Becauseβdv,dc
< 1, this implies that the word error probabil-

ity PφLP
µtriv

(n) of LP decoding islower bounded:PφLP
µtriv

(n) ≥
(

1 − 1/(K ′nβdv,dc )
)(

2πK ′nβdv,dc

)−1/2
exp

(

− K′

2 nβdv,dc

)

whereK ′ is positive and a function of the SNR, independent
of n. This observation implies that the reliability function
limn→∞ sup− 1

n log
(

PφLP
µtriv

(n)
)

of the AWGNC under LP
decoding approaches zero for any fixed SNR. This is in stark
contrast to ML decoding whose reliability function remains
non-zero for large enough signal-to-noise ratios. In this context
it is interesting to note that Lentmaier et al. [13] could prove
that under some mild technical conditions the block error rate
of a (dv, dc)-regular code under belief-propagation decoding
with a bounded number of iterations isupper bounded by
Ptree(n) ≤ n · exp(−K ′′nβdv,dc/4) for the same constant
βdv,dc

, where Ptree(n) refers to the block error rate of a
belief propagation decoding algorithm where the number of
iterations is one quarter the girth of the Tanner graph.

IV. QUANTIZING AND THRESHOLDING

We still consider the LP decoder, but we want to investigate
what happens whenµ is selected to be something other than
µtriv. So, let us consider what happens whenµ , µQ2,L is
selected for some4 L > 0. Actually, it can easily be seen that
the combination of the AWGNC and this quantization gives
(apart from scaling) the same LLR vectors as at the receiver
end of a binary symmetric channel (BSC). Recognizing this,
we can use the results of [6] which show that there exists fam-
ilies of expander-based(dv, dc)-regular LDPC codes which
are guaranteed to correct a constant fractionτ of errors on
the BSC. By a simple union bound argument we conclude
that for sufficiently large SNR the block error probability is
upper bounded byPφLP

µQ2,L
(n) ≤ n exp(−K ′′′n) where again

K ′′′ is positive and independent ofn. It follows that there
exist families of expander-based(dv, dc)-regular LDPC codes
wherelimn→∞ sup− 1

n log
(

PφLP
µQ2,L

(n)
)

is strictly larger than
zero under LP decoding, for sufficiently large SNR.

What explains this advantage in the asymptotic behavior?
Looking at the above results we have to consider two can-
didates: (i) the quantized values of the modified LLRs or
(ii) the finite support of the modified LLRs. It turns out
that the answer is given by (ii), namely it is sufficient to
threshold the LLRs, whereas quantization as in (i) is not
really necessary. As is shown in the Section V, one can set
µ , µT,W (see (2)) for any finiteW ≥ 1 and construct
classes of(dv, dc)-regular expander-based LDPC codes where
limn→∞ sup− 1

n log
(

PφLP
µT,W

(n)
)

is non-zero under LP decod-
ing.5

4Note that the result of the LP decoder is independent of the exact choice
of L > 0.

5The constraintW ≥ 1 is not necessary, but was imposed to simplify the
presentation; Th. 2 holds for anyW > 0.



Theorem 2:Consider the setup as described in Sec. I where
we transmit over an AWGNC with noise powerσ2 , N0/2.
For any finite truncation valueW ≥ 1, any constant rate0 <
r < 1, and sufficiently smallσ2 > 0, there exists a family
of (dv, dc)-regular Tanner graphs for low-density parity-check
codes of increasing length, each with rate at leastr, such that
limn→∞ sup− 1

n log
(

PφLP
µT,W

(n)
)

is strictly larger than zero.
Proof: See Section V.

Putting the above results for the LP decoding with the differ-
ent mappingsµ = µtriv andµ = µT,W in juxtaposition reveals
a surprising property of LP decoding. For values of SNR where
both the lower bound onPφLP

µtriv
and the upper bound onPφLP

µT,W

are non-trivial it is actually advantageous for (certain classes
of) long codes to threshold the LLRs before attempting to
decode. In other words, since there is ann large enough (as a
function ofK andK ′′′) such thatn exp(−K ′′′n) is less than
(1−1/(K ′nβdv,dc ))(2πK ′nβdv,dc )−1/2 exp(−K′

2 nβdv,dc ), op-
erating on the thresholded versions of the LLRs will yield a
smaller probability of error than retaining the full information
contained inλ.6

What does this mean for a pseudo-codewordω associated
with a canonical completion? Roughly speaking, the mappings
µT,W and µQ2,L bend the vectorλ in such a way that
the pseudo-codewordω is less often the result of the LP
decoder. This bending, which for an optimal decoder can only
deteriorate its performance, turns out to be overall helpful for a
sub-optimal algorithm like the LP decoder, at least for certain
interesting classes of LDPC codes and large enough SNRs.

V. PROOF OFTHEOREM 2

This Section is devoted to proving Th. 2. Before we start
going through the different steps of the proof, we introduce
some useful notation. For an integern, we use[n] to denote
the set of integers from1 to n. We useT(n,m) to denote
a Tanner graph withn variable nodes andm check nodes.
For such a Tanner graph, we will usually identify the set of
variable nodesV with [n] and the set of check nodesC with
[m]. For a set of nodesS, let N(S) denote the neighbor set
of S.

Definition 3: A Tanner graphT with variable node setV of
sizen, is an(αn, β)-expanderif all setsS ⊆ V with |S| ≤ αn
have|N(S)| ≥ β|S|. �

The following proposition follows from [14] (see also [15]):
Proposition 3: Let 0 < r < 1, and letdv anddc be positive

integers such thatr = 1 − dv

dc
. Then for any0 < δ < 1− 1

dc
,

and sufficiently largen, there exists a Tanner graph withn
variable nodes,m = ndv/dc check nodes, uniform variable
node degreedv, and uniform check degreedc, which is an
(αn, δdv)-expander, where0 < α < 1 is a constant that does
not depend onn. Moreover, a randomly constructed graph has
these properties with high probability. �

For the given truncation valueW in Th. 2, let dv be any
integer greater than4(4W + 2). Let δ̂ be any constant where

6A similar comment can be made about LP decoding withµ = µtriv

vs. µ = µQ2,L: there is ann from where on it is better to work with the
one-bit quantized LLRs than with the original LLRs.

1 − 1
dv

> δ̂ > 1 − 3
4 (

1
4W+2 ). Now let δ be the largest value

that is less than or equal tôδ such thatδdv is an integer. Note
that δ̂ − δ ≤ 1

dv
. This implies thatδ > 1− 1

4W+2 .
From Prop. 3, we obtain a family of Tanner graphs; each

graphT(n,m) has uniform variable degreedv, uniform check
degreedc, hasr = 1− m

n , and is an(αn, δdv)-expander, for
some constantα that does not depend onn. Fix a particular
lengthn, and callC , C(n,m) the code defined by the Tanner
graphT , T(n,m) from the family.

Suppose the vector+1 = 0̄ ∈ C̄ is transmitted over the
AWGNC. Define U , {i ∈ [n] : λ′

i < 1/2}, where λ′

is defined according to (2).7 This set represents the variable
nodes with “high noise.” For one particulari ∈ [n], define
p(σ2) as the probability thati ∈ U . Note thatp(σ2) is the
same for alli, is a function only of the varianceσ2, and goes
to zero asσ2 goes to zero.

Define γ ,
(1−δ)dv

(1−δ)dv+1 . Note that0 < γ < 1. Let σ2

be sufficiently small so thatp(σ2) < α
2(1+γ) . By a simple

Chernoff bound we have that

|U | ≤
αn

2(1 + γ)
≤

αn− 1

1 + γ
(5)

with probability at least1−2−Ω(n). In other words, with high
probability, the set of nodes with high noise is “small.”

We let δ′ , 2δ − 1 and define

U̇ ,

{

i ∈ V

∣

∣

∣

∣

i /∈ U and |N(i) ∩N(U)| > (1− δ′)dv

}

.

The setU̇ represents the variable nodes that do not have high
noise, but do have high connectivity to the neighbors of the
nodes with high noise.

We appeal to the following, which uses the same argument
as a similar theorem in [6]:

Theorem 4:If T is an(αn, δdv)-expander and|U | ≤ αn−1
1+γ

then |U |+ |U̇ | ≤ αn. �

Using (5) together with this theorem, we have that|U | +
|U̇ | ≤ αn with probability at least1 − 2−Ω(n). At this point
we will apply what we know about the expansion of the graph
to prove that the LP decoder succeeds. We first need another
definition and proposition from [6]:

Definition 4 ([6]): A δ-matchingof U is a subsetM of the
edges incident toU ′ , U ∪ U̇ such that(i) every check node
incident to at most one edge ofM , (ii) every node inU is
incident to at leastδdv edges ofM , and(iii) every node inU̇
is incident to at leastδ′dv edges ofM . �

Proposition 5 ([6]): If T is an(αn, δdv)-expander withδdv
an integer, and|U |+ |U̇ | ≤ αn, thenU has aδ-matching.�

It remains to show how the existence of aδ-matching proves
that the LP decoder will succeed. To prove that the LP decoder
succeeds, we use the method of finding adual witness. More
details, as well as a general treatment of this technique, can be
found in [6], [10]. Here, we state the definition and theorem
relevant to this application:

7The value 1/2 in the definition ofU was set for simplicity. The main
theorem will go through for anyW > 0, as long as this constant “1/2” is
less than 1, greater than zero, and less than or equal toW .



Definition 5 ([6]): Given a Tanner graphT(n,m), and a
vector of LLRsλ′

i, a setting of weights{τij} to the edges
(i, j) in T is feasibleif (i) for all checksj ∈ [m] and distinct
i, i′ ∈ N(j), we haveτij + τi′j ≥ 0, and (ii) for all nodes
i ∈ [n], we have

∑

j∈N(i) τij < λ′
i. �

Theorem 6 ([6]): Under any memoryless binary-input
output-symmetric channel, using any binary linear code,
under the assumption that+1 = 0̄ is transmitted, the LP
decoder (using a Tanner graphT for the code) succeeds if
and only if there exists a feasible weight assignment to the
edges ofT.

�

Finally, using a line of reasoning similar to [6], we establish
that a δ-matching is sufficient to guarantee a feasible edge
weight assignment, and thus a proof that the LP decoder
succeeds. Here is where we use our bound onδ in terms of
W :

Theorem 7:If U has aδ-matching, andδ > 1 − 1
4W+2 ,

then there exists a feasible edge weight assignment. �

Proof: Given aδ-matchingM , we assign weightsτij to
each edge(i, j) in the graph as follows; we later specify the
parameterκ > 0.

• For all j such that(i, j) ∈ M for somei ∈ U , setτij ,
−κ, and setτi′j , κ for all i′ ∈ N(j) \ {i}.

• For all otherj, setτi,j , 0 for all i ∈ N(j).

This weighting clearly satisfies condition (i) of a feasible
weight assignment. For the second condition, there are three
cases.

1) For a variable nodei ∈ U , we have−W ≤ λ′
i < 1/2.

By definition ofM , at leastδdv edges incident toi have
τij = −κ. All other incident edges haveτij ∈ {0, κ},
and so the total weight of edges incident toi is at most
δdv(−κ) + (1 − δ)dvκ = (1 − 2δ)dvκ. If we maintain
(a) κ > W

(2δ−1)dv
, then this total weight less than−W ,

which is less or equal toλ′
i, as required.

2) For a variable nodei ∈ U̇ , we haveλ′
i ≥ 1/2. At

least δ′dv edges incident toi are inM , and therefore
have weight0, by the definition ofM and the weight
assignment. All other edges have weight0 or +κ.
Therefore the total weight of incident edges is at most
(1 − δ′)dvκ = 2(1 − δ)dvκ. If we maintain (b) κ <

1
4(1−δ)dv

, then this total weight is less than1/2, which
is less or equal toλ′

i, as required.
3) For a variable nodei /∈ (U ∪ U̇), by definition this

variable node has at leastδ′dv edges not incident to
N(U). These edges all have weight 0, and so we get
the same condition(b) as in the previous case.

Combining our requirements(a) and (b) on κ, we get the
overall requirement 2δ−1

4(1−δ) > W , which is equivalent to our
assumption onδ.

Putting it all together, we have shown that for an arbitrary
truncation valueW , and rater, there is a sufficiently small
σ2 and a family of(dv, dc)-regular graphs on which the LP
decoder succeeds with probability1 − 2−Ω(n) when+1 = 0̄

is transmitted over an AWGNC with noise powerσ2 and with

LLR modificationµ , µT,W . The assumption that+1 = 0̄ is
transmitted is without loss of generality because the polytope
is “C-symmetric” (see [4], [3] for details). Thus we have
shown that the word error rate of the LP decoder decreases
exponentially.
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