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Abstract— The concatenation of nearly-MDS expander codes
of Roth and Skachek, “On Nearly-MDS Expander Codes,”Proc.
IEEE ISIT’04, with ‘typical’ LDPC codes is investigated. It is
shown that for the rates R = (1 − ε)C (C is the capacity of
the binary symmetric channel (BSC)), under certain condition
on the parameters of LDPC codes, these concatenated codes
have decoding time linear in their length and polynomial in
1/ε, and the decoding error probability decays exponentially.
These codes are compared to the recently presented codes of
Barg and Zémor, “Error Exponents of Expander Codes,” IEEE
Trans. Inform. Theory, 2002, and “Concatenated Codes: Serial
and Parallel,” IEEE Trans. Inform. Theory, 2005. It is shown that
the latter families can not be tuned to have all the aforementioned
properties.

I. I NTRODUCTION

It is known that several families of LDPC codes [5] can
attain the capacity of the binary erasure channel (BEC)
[10], [13]. It is generally believed that LDPC codes can ap-
proach capacity of a variety of other communication channels.
However, it is also believed that the decoding error probability
decreases only polynomially with the code length. When
using message-passing decoding algorithms [5], [12], the time
complexity of their decoding is linear in a code length and
polynomial in1/ε, where the code rate isR = (1− ε)C and
C is the capacity of BEC (see [8], [16]).

In contrast, the modifications of expander codes presented
in [1], [2], [3], [14], [15] also attain the capacity of the
memorylessq-ary symmetric channel, and the error probability
decreases exponentially with the code length. In this work,
we investigate time complexity of decoding algorithms of
expander codes from [1], [3]. We show that these algorithms
result in time complexity that is exponential in1/ε2. Further,
we propose a concatenated construction based on the expander
codes that yields (under certain condition) the decoding com-
plexity linear in code length and polynomial in1/ε, while
having exponentially decreasing probability of decoding error.

Recall the construction in [14], [15]. LetG = (A : B,E) be
a bipartite∆-regular undirected connected graph with a vertex
set V = A ∪ B such thatA ∩ B = ∅ and |A| = |B| = n,

1The work of this author was done in part when he was
visiting DIMACS/Bell Laboratories. The support of DIMACS
is deeply acknowledged.

and an edge setE of sizeN = ∆n such that every edge in
E has one endpoint inA and one endpoint inB. For every
vertexu ∈ V , denote byE(u) the set of edges incident with
u, and assume some ordering onE(u), for everyu ∈ V . Let
F = GF(q) be some finite field, andq > ∆.

Take CA and CB to be Generalized Reed-Solomon codes
with parameters[∆, rA∆, δA∆] and [∆, rB∆, δB∆] over F,
respectively. We define the codeC = (G, CA : CB) as in [15],
namely

C =
{

c ∈ F
N : (c)E(u) ∈ CA for everyu ∈ A

and (c)E(u) ∈ CB for every u ∈ B
}

, (1)

where(x)E(u) denotes the sub-word ofx = (xe)e∈E ∈ FN

that is indexed byE(u). The produced codeC is a linear code
of lengthN overF.

Let Φ denote the alphabetFrA∆. Taking some linear one-
to-one mappingEA : Φ → CA over F, and the mappingψ :
C→ Φn given by

ψ(c) =
(

E−1
A

(

(c)E(u)

))

u∈A
, c ∈ C ,

the authors of [15] define the codeCΦ of lengthn overΦ by

CΦ = {ψ(c) : c ∈ C} . (2)

The rate and the relative minimum distance ofCΦ are denoted
by RΦ andδΦ, respectively.

Let λG be the second largest eigenvalue of the adjacency
matrix of G and denote byγG the valueλG/∆. WhenG is
taken from a family∆-regular bipartite Ramanujan graphs
(e.g. [9]), we have

λG ≤ 2
√
∆− 1 . (3)

It was shown in [15], that the codeCΦ has the relative
minimum distance

δΦ ≥
δB − γG

√

δB/δA
1− γG

.

The linear-time decoding algorithm in Figure 1 was proposed
in [15] that corrects any pattern ofµ errors andρ erasures
such thatµ+ 1

2ρ < βn, whereβ is given by

β =
(δB/2)− γG

√

δB/δA
1− γG

. (4)
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The value ofm in the algorithm was established in [15] such
thatm = O(log n). The notation “?” is used for erasures, and
the notationsDA andDB are used for decoders of the codes
CA andCB, respectively.

Input: received wordy = (yu)u∈A in (Φ ∪ {?})n.

For u ∈ A do (z)E(u) ←
{

EA(yu) if yu ∈ Φ
?? · · ·? if yu =?

.

For i← 1, 2, . . . ,m do {
If i is eventhenX ≡ A,D ≡ DA,

elseX ≡ B,D ≡ DB .
For u ∈ X do (z)E(u) ← D((z)E(u)).
}

Output: ψ(z) if z ∈ C (and declare ‘error’ otherwise).

Fig. 1. Decoder of Roth and Skachek for the codeCΦ.

The proof in [15] requires that the decoderDA is a mapping
F∆ → CA that recovers correctly any pattern of less than
δA∆/2 errors overF, and the decoderDB is a mapping(F∪
{?})∆ → CB that recovers correctly any pattern ofθ errors
andν erasures, provided that2θ+ν < δB∆. The decodersDA

andDB are polynomial-time, for example Berlekamp-Massey
decoder can be used for both of them. It can be implemented
then inO(∆2) time.

II. PROPOSED CONSTRUCTION AND ANALYSIS

General settings

Consider the memoryless binary symmetric channel with
crossover probabilityp. Its capacity is given byC = 1−H2(p),
whereH2(.) is the binary entropy function. LetR = C(1− ε)
be a designed rate. TakeF to be a power of2. A family of the
codesCΦ described above will be used as an outer codes in a
concatenated construction, whose parameters will be discussed
in the sequel.

A ‘typical’ binary LDPC code of rateRin and (constant for
a fixedε) lengthnin will be used as an inner codeCin in this
concatenated construction. Let us examine characteristics of a
‘typical’ LDPC code.

Decoding complexity: it was conjectured in [8] that per-
bit complexity of message-passing decoding of LDPC or
irregular repeat accumulative (IRA) codes over any ‘typical’
channel isO

(

log 1
π

)

+O
(

1
ε log

1
ε

)

, whereπ is a decoded error
probability. For LDPC codes over BEC it was shown in [10]
that the decoding complexity per bit behaves asO(log(1/ε)).
In this work we assume that the decoding complexity of LDPC
(or some other polynomial-time innin decodable) codes over
the binary symmetric channel is given by

O

(

nin ·
1

εr

)

, (5)

wherer ≥ 1 is some constant. Recently, in [11], IRA codes
with bounded decoding complexity per bit were constructed,
but for our purposes the assumption (5) will be enough. It is

possible to assume here that the inner code is polynomial-
time decodable (rather than linear-time), still the resulting
decoding time complexity is linear in overall length of a
resulting concatenated code.
Decoding error probability: as of yet, there are no satisfying
results on asymptotical behavior of the decoding error proba-
bility of LDPC codes over the binary symmetric channel under
the message-passing decoding, for rates near the capacity of
BEC. The behavior of the decoding error probability of LDPC
codes over other channels is even less investigated. In this
work, we obtain a sufficient condition on the probability of
decoding errorProbe(Cin) of an inner code to guarantee that
the error decoding probability of the overall concatenatedcode
decreases exponentially. In the sequel, we provide severalex-
amples of several possible decoding error probability functions
for which this condition holds.

Let Ccont be a resulting concatenated code of rateRcont ≥
R and lengthNcont. Denote byProbe(Ccont) its error decod-
ing probability. The following lemma is based on the result of
Forney [4, Chapter 4.2].

Lemma 1:The decoding error probability of the code
Ccont under the combined decoding, when probability of
decoding error for the inner code isProbe(Cin), and the outer
code is decoded by the expander decoder in Figure 1, is
bounded by

Probe(Ccont) ≤ exp{−n · E} = exp{−Ncont ·
E

nin
} ,

whereE > 0 is a constant given by

E = −β log (Probe(Cin))− (1− β) log (1− Probe(Cin))
+β log (β) + (1− β) log (1− β) , (6)

andβ is defined in (4).
Proof. We analyze the error exponent, following the guidelines
of the analysis of Forney [4, Chapter 4.2]. Letςi, i = 1, · · · , n,
be a random variable which equals1 if no inner decoding
error is made while decodingi-th inner codeword, and−1
otherwise. The outer code will fail to decode correctly if and
only if

ς
△
=

1

n

n
∑

i=1

ςi < (1− 2β) .

Denote

µ(−s) △
= log

(

Probe(Cin) · es + (1− Probe(Cin)) · e−s
)

.

Using the Chernov bound, we obtain

Probe(CΦ) = Prob

(

1

n

n
∑

i=1

ςi < (1− 2β)

)

< e
−n(s(2β−1)−µ(−s)) .

Optimization of the exponent over values ofs yields that the
maximum of the expression

s(2β − 1)− µ(−s)
is achieved when

s = 1
2 log

(1− Probe(Cin)) · 2β
Probe(Cin) · (2− 2β)

,

2



and the maximum is

s(2β − 1)− µ(−s) = − β log (Probe(Cin))
− (1− β) log (1− Probe(Cin))
+ β log (β) + (1− β) log (1− β) ,

thus completing the proof.

Parameter selection

In this section we make a selection of parameters for the
code Ccont. This parametrization allows us to estimate a
decoding error exponent as a function ofε.

Pick the rate ofCin to beRin = (1−κ ε)C, whereκ ∈ (0, 1)
is a constant. Then, we can write

R

Rin
=

C(1− ε)
C(1− κ ε) ≥ 1− (1− κ)ε+O(ε2) .

We fix δB = 1−R/Rin−δA = η(1−R/Rin), whereη ∈ (0, 1)
(and thus,δA = (1−η)(1−R/Rin)), and select the degree∆
of the graphG as∆ = ̺/εh, where̺ andh ≥ 2 are constants.
If h = 2, we require in addition that

̺ >
16

η(1− η)(1 − κ)2 . (7)

SinceCA andCB are GRS codes,

RΦ ≥ rA + rB − 1 = 1− δA − δB = R/Rin .

Then,λG = 2
√

̺/εh − 1 (see (3)) and

γG =
2
√

̺/εh − 1

̺/εh
<

2εh/2√
̺

.

It holds

β =
(δB/2)− γG

√

δB/δA
1− γG

> (δB/2)− γG
√

δB/δA .

The selection of̺ guarantees that

β > ϑε+ o(ε) , (8)

where

0 < ϑ =

{

η(1−κ)
2 − 2

√

η
̺(1−η) if h = 2

η(1−κ)
2 if h > 2

,

is a constant which depends only onκ, η and̺.

Example

Suppose that the decoding error probability for some inner
codeCin over the binary symmetric channel with crossover
probability p < H

−1
2 (1 −Rin) and some polynomial decoder

is given by:

Probe(Cin) ≤
1

nt
in

,

wheret is a constant,t ≥ 1.

Set h = 2 and q = ∆. Note thatrA = 1 − O(ε). Since
rA∆ log2(q) bits are needed to represent each symbol ofΦ,
the lengthnin of the binary inner codeCin is given by

nin =
rA∆

Rin
· log2(∆) (9)

=
(1 −O(ε))̺
Rin ε2

· log2
( ̺

ε2

)

=
̺ log2(̺/ε

2)

Rin ε2
+ o

(

̺ log2(̺/ε
2)

Rin ε2

)

, (10)

and thus, by ignoring the small term, the decoding error
probability of Cin is

Probe(Cin) ≤
(

ε2Rin

̺ log2(̺/ε
2)

)t

. (11)

We substitute expressions from (8) (only the main term)
and (11) into the result of Lemma 1 to obtain

Probe(Ccont) <

exp

{

− n
(

− ϑε · t log
(

ε2Rin

̺ log2(̺/ε
2)

)

− (1− ϑε) log
(

1−
(

ε2Rin

̺ log2(̺/ε
2)

)t
)

+ ϑε log (ϑε) + (1− ϑε) log (1− ϑε)
)}

.(12)

Note that for smallε > 0,

log(1 − ϑε) = −ϑε+O(ε2) ,

and

log

(

1−
(

ε2Rin

̺ log2(̺/ε
2)

)t
)

= −o(ε2t) .

Hence, the equation (12) (when neglectingo(ε) terms) be-
comes

Probe(Ccont) <

exp

{

− nϑε
(

− t log
(

ε2Rin

̺ log2(̺/ε
2)

)

+ log (ϑε)− 1

)}

= exp

{

−Ncontϑε

nin
· log

(

ϑε · ̺t(log2(̺/ε2))t
e · ε2tRt

in

)}

.

Using substitution of the expression (10) fornin, the latter
equation can be rewritten as

Probe(Ccont) <

exp

{

− Ncontϑε · ε2Rin

2̺ (log2(1/ε) + Θ(1))

·
(

(2t− 1) log(1/ε) + t log(1/Rin)

+ t log log(1/ε) + Θ(1)

)}

. (13)

3



The dominating term in the expression

(2t− 1) log(1/ε) + t log(1/Rin) + t log log(1/ε) + Θ(1)

is (2t−1) log(1/ε). By taking into account thatRin = C(1−
O(ε)), the equation (13) can be rewritten, when ignoring all
but the main term, as

Probe(Ccont) < (14)

exp

{

−Ncont ·
(

(2t− 1)ϑ ε3C

2̺ log 2
+ o(ε3)

)}

.

Thus, the decoding error probability is given by

Probe(Ccont) < exp{−Ncont · E(C, ε)} ,
where

E(C, ε) = max
̺,ϑ

{

ϑ

̺

}

· (2t− 1)C

2 log 2
· ε3

= max
κ, η, ̺

{

η(1− κ)
2̺

− 2

√

η

̺3(1− η)

}

· (2t− 1)C

2 log 2
· ε3 , (15)

and the parameters(κ, η, ̺) are taken over

κ ∈ (0, 1) ; η ∈ (0, 1) ; ̺ >
16

η(1 − η)(1 − κ)2 . (16)

Next, we optimize the value of the constant

Υ = max
κ, η, ̺

{

η(1 − κ)
2̺

− 2

√

η

̺3(1− η)

}

.

It is easy to see that the maximum is received forκ→ 0. We
substituteκ = 0 in expression (15) to obtain

Υ = max
η, ̺

{

η

2̺
− 2

√

η

̺3(1 − η)

}

. (17)

By taking a derivative ofΥ over ̺ and comparing it to zero,
we obtain that

̺ =
36

η(1− η) .

By substituting it back to expression (17) and finding point
of maximum, we haveη = 2/3 and ̺ = 162. These values
obviously satisfy condition (16). The appropriate value ofΥ
is then

Υ =
η

2̺
− 2

√

η

̺3(1 − η) =
2/3

2 · 162 − 2

√

2/3

1623 · (1/3)

=
1

1458
= 6.8587 · 10−4 .

Finally, we have

E(C, ε) =
(2t− 1)C

2916 · log 2 · ε
3 .

Figure 2 shows value of error exponentE(C, ε) in the
example fort = 1, 2 and3.

Remark. It is possible to improve an error exponent by a
constant factor if allowing the decoder for the codeCin to put
out an “erasure” message in a case of unreliable decoding of
the codeCin. See [4, Chapter 4.2] for details.
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Fig. 2. Error exponentE(C, ε) for the codeCcont.
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Sufficient condition

In this section we derive a sufficient condition on the
probability of decoding error of the inner code for providing
a positive error exponent forCcont under assumption that
the outer code is an expander code. We use the notation
Cin [Rin, nin] for the codeCin of rateRin and lengthnin.

Theorem 2:Suppose, there exist constantsε0 ∈ (0, 1),
a > 1 andh0 > 2, such that for any0 < ǫ < ε0, the decoding
error probability of a family of codesCin satisfies

Probe

(

Cin
[

(1− ǫ)C, 1

ǫh0

])

<
ǫ

2ea
.

Then for any rateR < C there exists a family of the codes
Ccont with exponentially decaying error probability.
Proof. LetR = (1−ε)C be a design rate of the codeCcont. In
the sequel, we select0 < κ < min{1, ε0/ε} such that the rate
of the codeCin is Rin = (1−κ ε)C = (1− ǫ)C > (1−ε0)C.
We aim to show for this selection ofκ that the decoding of the
codeCcont has an exponentially decaying error probability.

We selectRin > R, h > h0, andδB = 1−R/Rin − δA =
η(1 − R/Rin), whereη ∈ (0, 1) is a constant. We also take
̺ > 0 and∆ = ̺/(κ · ε)h.

As before,RΦ ≥ 1− δA − δB = R/Rin, and

β > ϑε+ o(ε) , (18)

where ϑ ∈ (0, 12 ) is a constant, which depends only onκ
andη. Moreover, by an appropriate selection ofκ andη it is
possible to makeϑ as close to12 as desired.

We substitute expressions forRin and∆ into (9). Then, the
lengthnin of the codeCin is given by

nin =
̺ rA log2(̺/(κε)

h)

(κε)h(1− κε)C .

4



We substitute the main term of the expression (18) into the
result of Lemma 1 to obtain (for small enoughε) that

Probe(Ccont) <

exp

{

− n
(

− ϑε · log (Probe(Cin))

− (1− ϑε) log (1− Probe(Cin))

+ ϑε log (ϑε) + (1− ϑε) log (1− ϑε)
)}

.(19)

For small enoughε,

(1− ϑε) log(1− ϑε) > −a · ϑε ,

and, by ignoring the positive term in the exponent, the equa-
tion (19) can be rewritten as

Probe(Ccont)

< exp
{

− n
(

− ϑε · log (Probe(Cin))

+ ϑε log (ϑε)− aϑε
)}

= exp

{

−Ncont ·
ϑε

nin

(

log

(

ϑε

Probe(Cin)

)

− a

)}

.

In order to have a positive exponent it is sufficient that there
exist someǫ = κε such that for the lengthnin(ε) and the rate
Rin = (1 − κε)C, it holds

ϑε

Probe(Cin[Rin, nin])
> e

a .

Since by an appropriate selection ofκ andη it is possible to
makeϑ as close to1

2 as desired, the latter condition can be
rewritten as

1
2ε

Probe(Cin[Rin, nin])
> e

a . (20)

By taking ǫ = κε < ε1 (for small enoughε1) it is possible
to have

nin =
̺ rA log(̺/(κε)h)

(κε)h(1 − κε)C >
1

(κε)h0

(note thatrA → 1 asε→ 0). Thus, by selection

κ < min{1, ε0/ε, ε1/ε} , (21)

we obtain

Probe(Cin[Rin, nin]) <

Probe

(

Cin
[

(1 − κε)C, 1

(κε)h0

])

<
κε

2ea
<

ε

2ea
.

It follows that for selection as in (21), the error exponent is
strictly positive.

Example. Suppose that the decoding error probability of
the codeCin of rateRin = (1−ε)C and lengthnin (for some
polynomial decoder) is bounded by

Probe(Cin) <
1

nin
· 1
ε4

.

For h0 > 5 anda > 1 there obviously existsε0 such that for
every0 < ǫ < ε0,

Probe(Cin) <
1

nin
· 1
ǫ4

= ǫh0 · 1
ǫ4

= ǫh0−4 <
ǫ

2ea
,

and therefore the conditions of Theorem 2 satisfied. This
selection guarantees the existence of a positive error exponent.

Example.Suppose that the decoding error probability of the
codeCin (of rateRin = (1− ε)C and lengthnin) is bounded
by

Probe(Cin) < e
−ninε

2

.

For h0 = 3 anda > 1 there obviously existsε0 such that for
every0 < ǫ < ε0,

Probe(Cin) < e
−ninǫ

2

= e
−(ǫ2/ǫ3) = e

−(1/ǫ) <
ǫ

2ea
,

and therefore Theorem 2 yields the existence of a positive
error exponent.

Decoding complexity

Theorem 3:The time complexity of decoding algorithm
of the codeCcont under the combined decoding, when the
decoding complexity of an inner code is as in (5) and the outer
code is an expander code, is linear inNcont and is polynomial
in 1/ε.
Proof. First, we estimate the decoding time complexity of the
outer codeCΦ. We show that the total number of applications
of one of the decodersDA andDB is upper-bounded byO(n),
and does not depend onε. Our analysis is closely related to
the analysis in [15, Section 4].

Denote byσ (σ < β) the number of erroneous symbols in
the codeCΦ. Denote byσi the relative number of erroneous
vertices in the setA and the setB after i-th iteration of
the decoder in Figure 1, for odd and eveni, respectively. In
particular,σ1 = σ, since each erroneous symbolyu of y is
translated into erroneous vertexu ∈ A.

It was shown in [15, Theorem 4.1] that for eveni ≥ 2, σi
andσ are related as

1√
σi+1

≥
(

(

δAδB
4γ2G

)i/2 (

1− σ

β

)

+
σ

β

)

1√
σ

(22)

Consider the caseh > 2 (the proof can be easily adjusted
for the caseh = 2). The inequality (22) can be rewritten as

1√
σi+1

≥
(

(

Θ(ε2−h)
)i/2

(

1− σ

β

)

+
σ

β

)

1√
σ
, (23)

and obviously the number of erroneous vertices decreases ex-
ponentially, and forε→ 0 the number of iterations approaches
some constant.

The total number of applications of one of the decodersDA

andDB is bounded by

Γ = (σ1 + σ2 + σ3 + σ4 + · · ·+ σm) · n ,
wherem is a total number of iterations, andσm < 1/n.
Write number of erroneous vertices for odd and even iterations
separately,

Γ1 = (σ1 + σ3 + σ5 + · · · )·n andΓ2 = (σ2 + σ4 + σ6 + · · · )·n .
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Using (23) we see thatΓ1 ≤ σ1n·cω, wherecω is a constant
that does not depend onn andε. It was shown in [15, Theorem
4.1] that for eveni > 1

σi−1/σi ≥ δA/δB ,

and thusΓ2 ≤ σ1n · cω · δB/δA. Finally, we conclude that
Γ = Γ1 + Γ2 = O(n), and the sum does not depend onε.

Using techniques, similar to that of Sipser and Spiel-
man [17], one can maintain on each iteration of the algorithm
a list of erroneous vertices. Both decodersDA and DB

can be implemented to work in timeO(∆2) = O(1/ε2h).
Each application of decoderDA (DB) changes at most
1
2δA∆ (12δB∆) = O(ε∆) = O(1/εh−1) symbols, — only
this number of neighborsu should be checked to satisfy
(z)E(u) ∈ CB ((z)E(u) ∈ CA). If some of equations are
not satisfied, the vertex is mentioned as “erroneous”. Each
such check requires to computeO(ε∆) = O(1/εh−1) parity
check equations of length∆ = O(1/εh). The complexity of
operations involved ini-th iteration of the decoder is thus
O(σin/ε

3h−2). The total complexity of decoding ofCΦ is, in
turn,O(n/ε3h−2).

We assume that each inner code has the decoding complex-
ity bounded byO(nin/ε

r), for example a ‘typical’ LDPC code
can be chosen as an inner code2. Each code of lengthnin

forms the sub-block of the word ofCcont and there aren such
blocks in total. Therefore, the overall complexity of decoding
all inner codes is

O
(nin

εr
· n
)

= O

(

Ncont

εr

)

.

Recall that using the equation (9), and substituting the selec-
tion of ∆, the lengthnin of the inner code is given by

nin = O(log(1/ε)/εh).

Summing the decoding complexities of the inner codeCin and
the outer codeCΦ, we obtain

O

(

Ncont ·
(

1

ε2h−2 log(1/ε)
+

1

εr

))

.

III. T IME COMPLEXITY OF DECODER IN[1]

The purpose of this and the next sections is to compare
the parameters of the codes from Section II with the codes
presented by Barg and Zémor in [1] and [3]. Similarly to the
previous sections, we assume that the design rate isR = (1−
ε)C. In the sequel we show that the parameters of codes from
[1] and [3] cannot be modified such that the time complexity
would be only sub-exponential in1/ε while keeping a non-
zero error exponent.

2The decoding complexity ofCcont will be linear inNcont

even ifCin has a polynomial decoder. However, in this case the
power of1/ε in the complexity expression will be higher.

Construction

We consider codes in [1]. We briefly describe the construc-
tion and the decoding algorithm, following the presentation
in [1].

Let G = (A : B,E) be a bipartite∆-regular undirected
connected graph with a vertex setV = A∪B such thatA∩B =
∅ and|A| = |B| = n, and an edge setE of sizeN = ∆n such
that every edge inE has one endpoint inA and one endpoint
in B.

Let the size ofF be a power of2. Let CA andCB be two
random codes of length∆ overF. The codeCBZ2 = (G, CA :
CB) is defined similarly to the definition ofC in (1), with
respect toCA andCB as defined in this paragraph.

Decoding

Formal definition of the decoder appears in Figure 3. The

Input: Received wordy = (ye)e∈E in F
N .

Let z ← y.
For i← 1, 2, . . . ,m do {

If i is odd thenX ≡ A,D ≡ DA,
elseX ≡ B,D ≡ DB.

For u ∈ X do (z)E(u) ← D((z)E(u)).
}

Output: z if z ∈ CBZ2 (and declare ‘error’ otherwise).

Fig. 3. Decoder of Barg and Zémor for the codeCBZ2.

number of iterationsm is taken to beO(log n). The decoders
DA and DB are the maximum-likelihood decoders for the
codesCA andCB, respectively.

Analysis

Following the analysis of [1] it is possible to show that
for the codeCBZ2 over F = GF(2), the error probability,
Probe(CBZ2), is bounded by

Pe(CBZ2, p) ≤ exp{−αNf3(R, p)} ,
where0 < α < 1, and the main term off3(R, p) is less or
equal to

max
R≤R0<C

{

E0(R0, p)
(

H
−1
2 (R0−R)

2 − Θ
(

1√
∆

))}

, (24)

whereE0(R0, p) is the random coding exponentfor rateR0

over the BSC with the crossover probabilityp.
Proposition 4: If the codesCBZ2 overF = GF(2) have

a positive error exponent, then∆ = Ω
(

1/(H−1
2 (ε))2

)

.
Proof. In order to have a positive error exponent it is needed
that

H
−1
2 (R0 −R)

2
−Θ

(

1√
∆

)

> 0 .

Observe thatR0 −R ≤ C −R = Cε ≤ ε. Recall the error
exponent in (24) and conclude that

1
2H

−1
2 (ε) ≥ 1

2H
−1
2 (R0 −R) > Θ

(

1/
√
∆
)

,
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and thus∆ = Ω
(

1/(H−1
2 (ε))2

)

.

It is suggested in [1] to use the maximum-likelihood deco-
ding for randomcodesCA and CB. This decoding, however,
has time complexity at least

exp{Ω(∆)} = exp{Ω
(

1/(H−1
2 (ε))2

)

} .
In the analysis of [1] it is possible to takeCBZ2 over large

F (see [1, Section IV]). In that case, the error probability,
Probe(CBZ2), is bounded by

Pe(CBZ2, p) ≤ exp{−αNf2(R, p)} ,
and the main term off2(R, p) is less or equal to

max
R≤R0<C

{

E0(R0, p)
(

R0−R
2 −Θ

(

1√
∆

))}

. (25)

In this case, Proposition 4 can be rewritten as
Proposition 5: If the codesCBZ2 have a positive error

exponent, then∆ = Ω
(

1/ε2
)

.
The proof is very similar to that of Proposition 4.
When using the maximum-likelihood decoder forrandom

codesCA andCB, the decoding time complexity is at least

exp{Ω(∆)} = exp{Ω
(

1/ε2
)

} .
IV. T IME COMPLEXITY OF DECODER IN[3]

Construction

Recall the construction of expander codes presented in [3].
Let G = (V,E) be a bipartite graph withV = V0 ∪ (V1 ∪V2),
such that each edge has one endpoint inV0 and one endpoint
in eitherV1 or V2. Let |Vi| = n for i = 0, 1, 2. Let the degree
of each vertex inV0, V1, andV2 be ∆, ∆1, and∆2 = ∆ −
∆1, respectively. In addition, let the subgraphG1 induced by
V0∪V1 be a regular bipartite Ramanujan graph and denote by
E1 its edge set. Letλ1 be a second largest eigenvalue of the
adjacency matrix ofG1.

Let CA be a [l∆, R0l∆, d0 = l∆δ0] linear binary code of
rateR0 = ∆1/∆. Let CB be q-ary [∆1, R1∆1, d1 = ∆1δ1]
additive code, and letq = 2l. Let Caux be q-ary code of
length ∆1. The codeCBZ3 is defined as the set of vectors
x = {x1, x2, · · · , xN}, indexed by the setE of sizeN = ∆n,
such that

1) For every vertexv ∈ V0, the subvector(xj)j∈E(v) is a
q-ary codeword ofCA and the set of coordinatesE1(v)
is an information set for the codeCA.

2) For every vertexv ∈ V1, the subvector(xj)j∈E(v) is a
q-ary codeword ofCB.

3) For every vertexv ∈ V0, the subvector(xj)j∈E1(v) is a
codeword ofCaux.

Decoding

The authors of [3] proposed decoding algorithm for the code
CBZ3. In the first iteration, each subvectorz(v), v ∈ V0, is
treated as following: the decoder computes, for every symbol
b of theq-ary alphabet, and for every edgee ∈ E1 incident to
v, the weight of the edge as follows:

de,b(z) = min
a∈CA:a(e)=b

d(a, z(v)),

wherea(e) denotes theq-ary coordinate of the codeworda
that corresponds to the edgee, and whered(·, ·) is the binary
Hamming distance. This information is passed along the edge
e to the corresponding decoder on the right-hand side of the
bipartite graph. In the second iteration, for every vertexw ∈
V1 the right decoder associated to it finds aq-ary codeword
b = (b1, . . . , b∆1) ∈ CB that satisfies

b = arg min
x=(x1,...,x∆1)∈CB

∆1
∑

i=1

dw(i),xi
(z) ,

and writesbi on the edgew(i), i = 1, . . . ,∆1.
Then, the decoder continues similarly to the decoder in [1].

Analysis

Lemma 6:Consider the binary symmetric channel with
crossover probabilityp. Let 0 < ε≪ p. Then,

H
−1
2 (H2(p) + ε(1− H2(p))) = p+

ε(1− H2(p))

log2 ((1− p)/p)

− ε2(1 − H2(p))
2 log2 e

2p(p− 1) (log2 ((1− p)/p))3
+O(ε3).

The proof of this lemma appears in the Appendix.
Proposition 7: LetC be the capacity of a BSC and letCA

be a random code with rateR = (1−ε)C. The decoding error
probability of the codeCA, under the maximum-likelihood
decoding, behaves asexp{−Θ(ε2)} whenε→ 0.
Proof. We start with the well-known expression for the expo-
nent of the probability of the decoding error at the rates close
to the channel capacity [6].

E0(R, p) =










T (δ, p) +R− 1 if Rcrit ≤ R < C

1− log2

(

1 +
√

4p(1− p)
)

−R if Rmin ≤ R < Rcrit

−δ log2
√

4p(1− p) if 0 ≤ R < Rmin ,

whereRmin andRcrit are some threshold rates,

δ = δGV (R) = H
−1
2 (1−R) ,

and

T (x, y) = −x log2 y − (1− x) log2(1− y) .

At the code ratesR which are close toC, the relevant
expression for random coding exponent becomes

E0(R, p) = T (δ, p) +R− 1 . (26)

Next, we express all terms of the relevant part of (26) in
terms ofε. We recall, thatR = (1− ε)(1−H2(p)) and, thus,

H
−1
2 (1−R) = H

−1
2 (ε+ H2(p)− εH2(p)) .
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Thus, when disregardingO(ε3) term, the equation (26) be-
comes

E0(R, p) =

(1− ε)(1 − H2(p))− 1

+T
(

H
−1
2 (ε+ H2(p)− εH2(p)), p

)

(∗)
= −ε− (1− ε)H2(p) + T

(

p+
ε(1− H2(p))

log2((1− p)/p)

− ε2(1− H2(p))
2 log2 e

2p(p− 1) (log2((1 − p)/p))3
, p

)

= −ε− (1− ε)H2(p)−
(

p+
ε(1− H2(p))

log2((1− p)/p)

− ε2(1− H2(p))
2 log2 e

2p(p− 1) (log2((1 − p)/p))3

)

log2 p

−
(

1− p− ε(1− H2(p))

log2((1 − p)/p)

+
ε2(1− H2(p))

2 log2 e

2p(p− 1) (log2((1 − p)/p))3

)

log2(1− p)

= −ε(1− H2(p))

+
ε(1− H2(p))(− log2 p+ log2(1− p))

log2((1− p)/p)

+
ε2(1− H2(p))

2 log2 e(log2 p− log2(1 − p))
2p(p− 1) (log2((1 − p)/p))3

=
ε2(1− H2(p))

2 log2 e

2p(1− p) (log2((1 − p)/p))2
= ε2 · cp , (27)

wherecp > 0 is a constant that depends only on the crossover
probability p of the channel. Note that the transition(∗)
follows from Lemma 6.

Proposition 8: If the codesCBZ3 have a positive error
exponent, then∆ = Ω(1/ε2).

Proof. It is shown in [3] that the decoding error probability
of the codeCBZ3, Probe(CBZ3), satisfies

Probe(CBZ3) ≤ exp
{

−n∆lδ1(1 + α)−1

·(E0(R0, p)−Mα)(1 − o(1))} ,

whereα is a constant defined in [3] as1 > α > 2λ1/d1, and

M =M(R, p) =

{

1
2 log2((1− p)/p) if R ≤ Rcrit

log2

(

δGV (R)(1−p)
(1−δGV (R))p

)

if R ≥ Rcrit
,

δGV = H
−1
2 (1−R) is the Gilbert-Varshamov relative distance

for the rate R, andRcrit = 1 − H2(ρ0) is a so-calledcritical
rate, whereρ0 =

√
p/(
√
p+
√
1− p) (see [3] for details).

We are interested in small values ofε, i.e. R ≥ Rcrit. In

this case, the value ofM(R, p) can be rewritten as

M(R, p) = log2

(

δGV (R)(1 − p)
(1− δGV (R))p

)

= log2

(

H
−1
2 (1−R)(1 − p)

(1− H
−1
2 (1 −R))p

)

= log2

(

H
−1
2 (H2(p) + ε− εH2(p))(1 − p)

(1− H
−1
2 (H2(p) + ε− εH2(p)))p

)

,

where the last transition is due toR = (1 − H2(p))(1 − ε).
Using Lemma 6, the later relation becomes

M(R, p) =

log2

(

p+ ε(1−H2(p))
log2((1−p)/p) − 1

2 ·
ε2(1−H2(p))

2 log2 e

p(p−1)(log2((1−p)/p))3

)

(1− p)
(

1− p− ε(1−H2(p))
log2((1−p)/p) +

1
2 ·

ε2(1−H2(p))2 log2 e

p(p−1)(log2((1−p)/p)))3

)

p

+O(ε3) .

When ignoring the terms ofε2 and highest powers ofε, and
denotingθ = ε(1−H2(p))

log2((1−p)/p) , the later equation becomes

M(R, p) = log2

(

p+ θ

1− p− θ ·
(1− p)
p

)

+O(θ2)

= log2

(

1 + θ/p

1− θ/(1− p)

)

+O(θ2)

= log2 ((1 + θ/p)(1 + θ/(1− p))) +O(θ2)

= log2 (1 + θ/p+ θ/(1− p)) +O(θ2) .

Using Taylor’s series forlog(·) around1 we obtain

M(R, p) = log2 e ·
(

θ

p
+

θ

(1− p)

)

+O(θ2)

=
log2 e

p(1− p) · θ +O(θ2) ,

and switching back toε notation this becomes

M(R, p) =
log2 e

p(1− p) ·
ε(1− H2(p))

log2 ((1− p)/p)
+O(ε2) = Θ(ε) .

(28)
Next, we evaluate the value ofα. Recall thatα > 2λ1/d1.
Sinced1 is linear in∆1, and∆1 < ∆, we have

α = Ω
(

4
√

∆1 − 1/∆1

)

= Ω(1/
√

∆1) = Ω(1/
√
∆) .

In order to have a positive error exponent it is necessary that

E0(R0, p)−Mα > 0 ⇒ E0(R0, p)

M
> α

⇒ E0(R0, p)

M
= Ω(1/

√
∆) .

Using Proposition 7,E0(R0, p) = Θ(ε2), and thus from (28)

ε = Ω(1/
√
∆) ⇒ ∆ = Ω(1/ε2) .

Assuming that the first two decoding iterations are as
suggested in [3], we conclude that the time complexity of the
decoding isexp{Ω(∆)} = exp{Ω(1/ε2)}.
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APPENDIX

Proof of Lemma 6.
Consider the value of the binary entropy function at the

point p + x for some smallx. Using Taylor series around
point p,

H2(p+ x) = H2(p) + H
′
2(p) · x+

1

2
H

′′
2(p) · x2 +O(x3) .

By calculation of the derivatives of the entropy function, one
gets

H
′
2(χ) = − log2 χ− χ ·

1

χ
· log2 e+ log2(1 − χ)

+ (1 − χ) · 1
χ
· log2 e = log2

(

1− χ
χ

)

;

and

H
′′
2(χ) = log2 e ·

(

− 1

1− χ −
1

χ

)

=
log2 e

χ(χ− 1)
.

Therefore,

H2(p+ x) =

H2(p) + log2

(

1− p
p

)

· x+
log2 e

p(p− 1)

x2

2
+O(x3) .

By applying the opposite of the binary entropy function on
both sides of the equation,

p+ x = H
−1
2 (H2(p+ x))

= H
−1
2

(

H2(p) + log2

(

1− p
p

)

· x

+
log2 e

p(p− 1)
· x

2

2
+ O(x3)

)

. (29)

Denote byθ the value oflog2
(

1−p
p

)

· x +
log2 e

p(p−1) · x
2

2 , thus
obtaining

p+ x = H
−1
2

(

H2(p) + θ +O(x3)
)

.

By solving the quadratic equation

θ =

(

log

(

1− p
p

)

· x+
1

p(p− 1)
· x

2

2

)

· log2 e ,

or equivalently

x2 + 2p(p− 1) log

(

1− p
p

)

x− 2θp(p− 1)

log2 e
= 0 ,

we obtain two solutions for the intermediatex, namely

x =
1

2

(

− 2p(p− 1) log

(

1− p
p

)

±
√

4p2(p− 1)2 log2
(

1− p
p

)

+
8θp(p− 1)

log2 e

)

= −p(p− 1) log

(

1− p
p

)

±
√

(

p(p− 1) log

(

1− p
p

))2

+
2θp(p− 1)

log2 e
;

however, only one of these solutions is positive:

x = −p(p− 1) log

(

1− p
p

)

+

√

(

p(p− 1) log

(

1− p
p

))2

+
2θp(p− 1)

log2 e
.

The later equality can be rewritten as

x = p(p− 1) log

(

1− p
p

)

·
(

− 1 +

√

1 +
2θ

p(p− 1) (log ((1− p)/p))2 log2 e

)

.

Using Taylor series approximation
√

1 + χ = 1 +
1

2
χ− 1

8
χ2 +O(χ3) ,

for small values ofχ, this becomes

x = p(p− 1) log

(

1− p
p

)

·
(

−1 + 1 +
θ

p(p− 1) (log ((1− p)/p))2 log2 e

−1

2
· θ2

p2(p− 1)2 (log ((1− p)/p))4 (log2 e)2
+O(θ3)

)

=
θ

log2 ((1− p)/p)

−1

2
· θ2 log2 e

p(p− 1) (log2 ((1− p)/p))3
+O(θ3) .

From (29) we have

H
−1
2

(

H2(p) + θ +O(θ3)
)

= p+
θ

log2 ((1 − p)/p)

−1

2
· θ2 log2 e

p(p− 1) (log2 ((1 − p)/p))3
+O(θ3) .

For fixed value ofχ < 1, the derivative ofH−1
2 (χ) is bounded

and thus it is possible to takeO(θ3) term out ofH−1
2 (χ +

O(θ3)). Therefore we have

H
−1
2 (H2(p) + θ) = p+

θ

log2 ((1− p)/p)

−1

2
· θ2 log2 e

p(p− 1) (log2 ((1 − p)/p))3
+O(θ3) .

Finally, we substituteθ = ε(1− H2(p)) and receive that

H
−1
2 (H2(p) + ε(1− H2(p))) = p+

ε(1− H2(p))

log2 ((1− p)/p)

−1

2
· ε2(1− H2(p))

2 log2 e

p(p− 1) (log2 ((1− p)/p))3
+O(ε3) ,

thus completing the proof of the lemma.
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