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Abstract— Belief propagation (BP) and the concave convex wWherey = 1,..., M denotes the parity index anddenotes the
procedure (CCCP) are both methods that utilize the Bethe gset of node indices involved in theth parity. Similarly,l =

free energy as a cost function and solve information proceB® | A denotes the bit index ankddenotes the set of parity
tasks. We have developed a new algorithm that also uses the.’ .’ L .
Bethe free energy, but changes the roles of the master varitds indices linking to thel-th bit. [u| and |I| denote the degree

and the slave variables. This is called the Bowman-Levin (BL ©Of u-th parity and thel-th bit, respectively. The proportion
approximation in the domain of statistical physics. When we means the normalization of a probability function — i.eg th

applied the BL algorithm to decode the Gallager ensemble of symmation of the probability for all possible argumeumts-
short-length regular low-density parity check codes (LDP) should bel.

over an additive white Gaussian noise (AWGN) channel, its . . . ., . .
average performance was somewhat better than that of either W& cOnsider a noisy channel with additive white Gaussian

BP or CCCP. This implies that the BL algorithm can also be noise (AWGN); i.e., the probability of the received codets
successfully applied to other problems to which BP or CCCP defined as
has already been applied.

N 2
Y—x
|. INTRODUCTION P(ylz) < [ ] exp <—7( 572 ) > : 2
l

Recently, various statistical inference algorithms haee b
come of interest in the field of large-scale information proxhere o2 denotes the variance of the noise. The posterior
cessing. Belief propagation (BP) [1] and the concave convprobability of the sent code can then be expressed as
procedure (CCCP) [2] are among the most effective of the
methods which minimize the Bethe free energy [3], [4]. In the M N
field of practical application (e.g., the problem of decagin FP(@ly) o< [[] [ 1+] = [HGXP (xl%)] )
low-density parity check code (LDPCC) [5], [6]), BP and H len !

CCCP have both been successfully applied [7].

However, they are not the only methods that minimize the
Bethe free energy. In this paper, we focus on the methbd
of Lagrange undetermined multipliers used by both BP and L
CCCP, and derive a new algorithm by exchanging the roles = argnﬁsz(wly), @)
of master variables and slave variables. This approactedcal
Bowman-Levin (BL) approximation [8], is sometimes used iivhich minimizes the bit error rate. On the other hand, the
the field of statistical physics as a way to find an extremum faaximum a posteriori (MAP) solution minimizes the block
saddle, local minimum, or local maximum) of the Bethe fregrror rate,
energy.

To infer the sent code: by y, we employ the maximum
sterior marginal (MPM) solution,

T\l

& = arg max P(z|y), (5)
Il. LOwW DENSITY PARITY CHECK CODE(LDPCC) ®

The LDPCC decoding problem can be handled withiut is generally difficult to determine because of the expene
a Bayesian framework. The prior probability of the codedal calculation cost.

consisting of N binary bits & € {+1,—1}"), is defined as
Ill. BETHE FREE ENERGY

M
P(x)oc [T | 1+]] | (1)  One purpose of the Bethe free energy approach is to
1 lep determine a set of marginal probabilities of a given proligbpi
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@ parity checks we here attempt to decode the LDPCC by minimizingnder
the consistency conditiod{IL0) expecting tHat(z;)} well
M . approximate the marginal probabilities even in the casé tha
bits the parity connection does not have the tree structure.

(b) parity checks
IV. LAGRANGE MULTIPLIERS
bits s

To minimize the Bethe free energy under the constrhidt (10),

Fig. 1. Examples of the parity connection. (a) Tree strecand (b) loopy W€ intTOduce L'agrange.u'nd'eter.mined multipliexs,(z;). The
structure. Ob]ectlve function to minimize is

G({b.}, A =F+1L, 13
which provides the MPM solution here. The Bethe free energy, (B} Aa} ) 13)

F, is defined using Kullback-Leibler (KL) divergence as  where

M
F = ZKL :B” ||¢M($M)) (6) L= ZZZ)\“Z (l’l) (Z b#(wu) _ qz(l’l)) , (14)

nolep @ Tp\L
+ Z(l—|l|) KL(qi ()[4 (z1)), and we solve the following three equations:
l
where P(x|y) can be represented as 0= oG _ In bu(@y) F14 Z}wlm)’ (15)

B by () - bu(Tp)

N
sr: T z)
ly) o [H% n ] ll:[%( 1) ”] ) (7) 0— oG (1-11)) (1

leu

) > M)

dq(xr) e
5 (16)
Su(ap) oo |1+ ][ | ([Tntan)] ®)
icu ; 0= = bu(mu) — ala). 17)
Pi(x)) o exp (xl%) , 9) Fut

using (normalized) probability functions,,(x,.) and;(z;) using z; € {+1, —.1} and the normalization condit.ions of
in the current case. The introduced test probability fugrti te probability functions, we can redugeand ), to linear
of creeks{b,(x,,)}, and bits {g(x1)}, are required to satisfy Unctions as

the consistency of the marginal probabilities: 1+x; tanh hy
q(x) = — (18)
Yo bu(@y) =al@) (L€ p). (10) "
—~ A1) = —a (h,ﬂ - ;) " (19)
{bu(zp)} and {q(z))} that minimize F are expected to We also sometimes use, — _ tauhy. Using
approximate the marginal probabilities 8{x|y). OreSSIONS. we can r d EE?E 16D (17) ¢
The Bethe free energy approach gives the exact margm (?se expressions, we can re uce ( (17) to

(Fig. [(a)). In such cases, any probability ®f can be ex-

probabilities when the parity connection has the tree airec
. : g p(Tp) o
pressed as a product of its marginal probabilitis,(x,, )}

N
1+ H wl] lH eXP(!Ezhul)l : (20)
)

lep

and{q(x;)}, as

M N h (21)

l " )
= [H bu(wu)] [H ql(ﬂcl)l”] : (11) |l|— (,Zel ! )

' s . Y w Y, bu)
Then, the Bethe free energy coincides with the KL divergence mp = b , (22)
between the test and the true probabilities, 2o Zwu\z n(@p)

F =KL(Q(z)||P(x|y)), (12) respectively. From Eqs[{R0) and]22), we obtain

which implies that minimizing the Bethe free energy leads hy = hy + atanh H tanh b, (23)

to the correct probabilityQ(x) = P(z|y), and, therefore,
the exact MPM solution can be assessed from the obtained
{@(z;)}. Unfortunately, the Bethe free energy does not reprlow, we have two types of variablé¢h,;} and{k,}, and two
sent the KL divergence for loopy graphs (Hij). 1(b)). Howevetypes of simultaneous equatiof:121) ahd] (23).

'ep\l



V. BELIEF PROPAGATION(BP) the master variables. After the convergence of the inngp,loo

BP considers the double-indexd{,,}, to be the master the outer loop is performed to determing’".
variables. Specifically, from Eqd_{1) arid}23), we obtain

hui+atanh [] tanh inner loop:h,, 5 + S (ht-
lrep\l wEN\p
; >y — ylz (24) +hj —atanh [] tanhh, | (30)
| |_ w'el Iep\l
for any {1,/ € 1}. BP ingeniously rearranges the left side of ~ outer loop:; ! « % + > (b = hyn). (31)
this equation with the average without '€l

BL considers the single-indexdd {h;}, to be the master
variables. Specifically, BL determine§:,;} by first using
{lh;} in Eq. Z3). It requires some iteration to be solved,

1
|l|——1 Z (hull—i—atanh H tanh A

VII. BoOwMAN-LEVIN (BL)
JZESAVE UVep'\l

Y L .
hym — = 25 :
|l|— Zel LT3 (25) resulting in an inner loop:
inner loop:h,,; < hf — atanh tanh . 32
We then obtain the iterative substitution to convefgg, }. Py ¢ atan z/g\z A Al (32)
loop: hyu = 2+ 3" atanh ] tanhh (26) inati -
P- oy <= 5 atan antfyir- Because the determination of the slave variabés, }, de-
W ENR repl pends on the provisional values of the master varialles,
Once the master variables are determined, we can easilijnobBL also needs a double-loop algorithm. Eg.1(21) implies that
the slave variables{hl} by update
result:hy ¢ — 5+ atanh [] tanhhup.  (27) .
! Vew\l outer loop:Aa! ! |l| Z By — : (33)
n el

To lower the calculation cost, we check whether the esti-
mated sent codeg; = sign h;, satisfies all parities for every may be employed for the outer-loop using the converged
loop of Eq. [Z6). We stop the iteration loop if we reach anyariables{h,,}.
codeword, or the number of loops reaches an upper limit.  Eq. [33), however, does not provides satisfactory results
as this empirically increases the Bethe free energy. This is

+ CONCAVE CONVEX PROCEDURHCCCP) because the outer loop{33) is interpreted as
CCCP is a double loop algorithm utilizing convex opti-

mization. The convexity of the Bethe free energy is gengrall B Rty Ha_Gt (34)
not guaranteed because of the negative coefficientl|, of ! oy
the second term in Eq](6). So, CCCP employs the following cosh=2 ht . . o
additional term at every outer loop step where k = = positive. G* denotesG, which is
N regarded as a function of onlj;} at outer-loop step.
St In order to resolve this difficulty, we use the natural gratlie
Ft=F | KL HE 2 .
+ Z' | KL(qu(z1)llai (1) (28) descent method [9] instead of EE.133) as
M N t+1 t 106"
= > KL (@)l 6 () + > KL(qi ()| [tn(x1)) outer loop:h™! « hj —kH ' —7-,  (35)
l
! N wherek denotes a small positive step width, ahfl denotes
+ Z g (z;) In ¢tl(33l). (29) the Fisher information matrix defined as
g (21) . <8logQ(sc)8logQ(w)> (36)
Equation [2P) guarantees the convexity bt ({b,.}, {a}), " Oh; i/ Q@
becaus&L divergence function is convex, and the third term -27 (i
: . ! . ‘ ! cosh™h; (i =)
is a linear function. Besidest’ necessarily decreases Af! “10 (i #4) 37)
decreases because the additional term is non-negativéhand _ _ o
additional term itself disappears §f;;} converges. assuming the following approximation:
In the inner loop, similar to BP, CCCP considers the double- N
indexedh, {h,;}, to be the master variables. On the other Q(z) ~ qu(m)- (38)

hand, in the outer loop, single-indexéd{h,}, are treated as
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Fig. 2. Block (upper three lines) / bit (lower three linesyoerrates of Fi . .
- ) ) g. 3. Time evolution (outer loop steps) of the not-coldsedecoded
BP, CCCP, and BL algorithms. Configurations were as folloeexie length rates (upper three lines) and wrongly-decoded rates (Itwee lines) for BP,

N = 486, number of paritiesM = 243, degree of parity|u| = 6, : _
degree of bit|l| = 3 ((3,6)-regular LDPCC), limit of outer loops: 10000 &C[:(i:;,mand BL algorithms. The data corresponds to the cadg, pNo = 2

(the limit of loops in the case of BP), number of inner loopsedixas
6 for CCCP and BL, and step widttt = 0.3 in BL. Ey/No[dB] is
defined 351010g1g 1/(202(N —M)/N)). The number of communications
were 103,3 x 10°,10%,3 x 10%,105,3 x 10°, and 10 for Ey, /Ny =
1.0,1.5,...,4.0, respectlvely Each error bar denotes98% confidence cases. In the early, outer |00p steps, BP tended to reach the
interval based on a binomial distribution. correct codeword first, and then CCCP and BL followed. In
the later steps, BL continuously improved the block error

rate, while CCCP had little effect after about tl3€0-th

We then obtain step. The effect of BP was intermediate. The rates for the
outer Ioop:hf“ “ ht— ka_Gt’ (39) wrongly-decoded case were almost the same among the three
omy algorithms. These results suggest that the BL algorithnh wil
where outperform BP and CCCP if we can afford a high calculation
oGt cost — for example] 000 outer-loop steps.
e Z wt— =5 — ([U=1)h; (40)  The calculation cost is roughly proportional to the number
of inner loops (we regard that of BP to bg So, if we set the
VIII. VALIDATION number of inner loops asfor CCCP and BL, the cost ratio of

We validated the performance of the BL a|gorithm bﬁp, CCCP, and BL will be about: 6 : 6. If we consider the
comparing it with that of BP and CCCP through a simulatiofverage number of outer loops, the difference could become
of the Gallager ensemble of the short-length regular LDPCarger (e.g.,1 : 10 : 12), but this depends on the upper limit
As the decoding performance greatly depends on the pa@y the number of outer loops.
check matrix, the simulation was done over an LDPCC ensem-Parallelization is also an important factor regarding giale
ble; that is, we remade the matrix for every communicatidipn cost. Briefly, parallelization of the BP loop is possibt is
according to the Gallager’s construction [5]. We assumedl ttalso possible for the outer loops of CCCP and BL, but not for
the decoder knows the true noise variance of the AWGHe inner loop of CCCP. On the other hand, it is indispensable
channelg2. In the simulation, BL performed somewhat bettefor the inner loop of BL to achieve fast convergence.
than both BP and CCCP. Parameter optimization of the three algorithms is a real

Figure @ shows the block and bit error rates of eagbroblem. In the case of BP, we have to determine only the
algorithm over various signal-to-noise ratio&,(/No). BL upper limit of the outer loops. For CCCP, we also have to
performed better than BP and CCCP, especially in the ametermine the number of inner loops. For BL, in addition to
where Ey, /Ny was around® dB. The error floor appeared inthe CCCP parameters, we have to determine the step width of
the area wherd, /Ny was greater than abo@t5 dB. This the natural gradient descent. Empirically, the configoratf
error floor probably occurred due to the short loop of thetparithe step width appears rather robust since the simulated BL
check matrix. performance generally exceeded that of the other algosithm

Figure[3 shows the time (outer-loop step) evolution of thigig. @) even though they shared a common step width
rate for both the not-correctly-decoded and wrongly-decodconfiguration (i.e.f = 0.3).



The optimization of the parity check matrix is also a
problem, especially for short-length LDPCC. We will furthe
investigate the dependence of these algorithms on thexmatri
in our future work.

IX. CONCLUSION

The method we have proposed minimizes the Bethe free
energy based on the Bowman-Levin (BL) approximation. The
BL algorithm combined with the natural gradient descent
method successfully converges. We have compared our BL
algorithm to the belief propagation (BP) and concave convex
procedure (CCCP) algorithms with respect to the decoding
problem of the Gallager ensemble of short-length regular lo
density parity check codes (LDPCC) over an additive white
Gaussian noise (AWGN) channel. Simulation showed that the
BL algorithm outperformed the BP and CCCP algorithms,
although the BL calculation cost was greater. This suggests
that the BL algorithm can be successfully applied to other
problems to which BP or CCCP have already been applied.
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