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Abstract— A game-theoretic approach for studying power
control in multiple-access networks with transmission delay
constraints is proposed. A non-cooperative power control game
is considered in which each user seeks to choose a transmit
power that maximizes its own utility while satisfying the user’s
delay requirements. The utility function measures the number of
reliable bits transmitted per joule of energy and the user’sdelay
constraint is modeled as an upper bound on the delay outage
probability. The Nash equilibrium for the proposed game is de-
rived, and its existence and uniqueness are proved. Using a large-
system analysis, explicit expressions for the utilities achieved at
equilibrium are obtained for the matched filter, decorrelating and
minimum mean square error multiuser detectors. The effects
of delay constraints on the users’ utilities (in bits/Joule) and
network capacity (i.e., the maximum number of users that can
be supported) are quantified.

I. I NTRODUCTION

In wireless networks, power control is used for resource
allocation and interference management. In multiple-access
CDMA systems such as the uplink of cdma2000, the purpose
of power control is for each user terminal to transmit enough
power so that it can achieve the desired quality of service
(QoS) without causing unnecessary interference for other users
in the network. Depending on the particular application, QoS
can be expressed in terms of throughput, delay, battery life,
etc. Since in many practical situations, the users’ terminals
are battery-powered, an efficient power management scheme
is required to prolong the battery life of the terminals. Hence,
power control plays an even more important role in such
scenarios.

Consider a multiple-access DS-CDMA network where each
user wishes to locally and selfishly choose its transmit power
so as to maximize its utility and at the same time satisfy
its delay requirements. The strategy chosen by each user
affects the performance of other users through multiple-access
interference. There are several questions to ask concerning this
interaction. First of all, what is a reasonable choice of a utility
function that measures energy efficiency and takes into account
delay constraints? Secondly, given such a utility function, what
strategy should a user choose in order to maximize its utility?
If every user in the network selfishly and locally picks its
utility-maximizing strategy, will there be a stable state at which
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no user can unilaterally improve its utility (Nash equilibrium)?
If such an equilibrium exists, will it be unique? What will be
the effect of delay constraint on the energy efficiency of the
network?

Game theory is the natural framework for modeling and
studying such a power control problem. Recently, there has
been a great deal of interest in applying game theory to
resource allocation is wireless networks. Examples of game-
theoretic approaches to power control are found in [1–8].
In [1–5], power control is modeled as a non-cooperative
game in which users choose their transmit powers in order
to maximize their utilities. In [8], the authors extend this
approach to consider a game in which users can choose their
uplink receivers as well as their transmit powers. All the
power control games proposed so far assume that the traffic
is not delay sensitive. Their focus is entirely on the trade-offs
between throughput and energy consumption without taking
into account any delay constraints. In this work, we propose
a non-cooperative power control game that does take into
account a transmission delay constraint for each user. Our
focus here is on energy efficiency. Our approach allows us
to study networks with both delay tolerant and delay sensitive
traffic/users and quantify the loss in energy efficiency due to
the presence of users with stringent delay constraints.

The organization of the paper is as follows. In Section II, we
present the system model and define the users’ utility function
as well as the model used for incorporating delay constraints.
The proposed power control game is described in Section III,
and the existence and uniqueness of Nash equilibrium for the
proposed game is discussed in Section IV. In Section V, we
extend the analysis to multi-class networks and derive explicit
expressions for the utilities achieved at Nash equilibrium.
Numerical results and conclusions are given in Sections VI
and VII, respectively.

II. SYSTEM MODEL

We consider a synchronous DS-CDMA network withK
users and processing gainN (defined as the ratio of symbol
duration to chip duration). We assume that allK user terminals
transmit to a receiver at a common concentration point, such
as a cellular base station or any other network access point.
The signal received by the uplink receiver (after chip-matched
filtering) sampled at the chip rate over one symbol duration
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can be expressed as

r =

K
∑

k=1

√
pkhk bksk +w, (1)

where pk, hk, bk and sk are the transmit power, channel
gain, transmitted bit and spreading sequence of thekth user,
respectively, andw is the noise vector which is assumed to be
Gaussian with mean0 and covarianceσ2

I. We assume random
spreading sequences for all users, i.e.,sk = 1√

N
[v1...vN ]T ,

where thevi’s are independent and identically distributed
(i.i.d.) random variables taking values in{−1,+1} with equal
probabilities.

A. Utility Function

To pose the power control problem as a non-cooperative
game, we first need to define a suitable utility function. It is
clear that a higher signal to interference plus noise ratio (SIR)
level at the output of the receiver will result in a lower bit
error rate and hence higher throughput. However, achievinga
high SIR level requires the user terminal to transmit at a high
power which in turn results in low battery life. This tradeoff
can be quantified (as in [1]) by defining the utility function of
a user to be the ratio of its throughput to its transmit power,
i.e.,

uk =
Tk

pk
. (2)

Throughput is the net number of information bits that are
transmitted without error per unit time (sometimes referred
to asgoodput). It can be expressed as

Tk =
L

M
Rkf(γk), (3)

where L and M are the number of information bits and
the total number of bits in a packet, respectively.Rk and
γk are the transmission rate and the SIR for thekth user,
respectively; andf(γk) is the “efficiency function” which
is assumed to be increasing and S-shaped (sigmoidal) with
f(∞) = 1. We also require thatf(0) = 0 to ensure that
uk = 0 when pk = 0. In general, the efficiency function
depends on the modulation, coding and packet size. A more
detailed discussion of the efficiency function can be found in
[8]. Note that for a sigmoidal efficiency function, the utility
function in (2) is a quasiconcave function of the user’s transmit
power. The throughputTk in (3) could also be replaced with
any increasing concave function such as the Shannon capacity
formula as long as we make sure thatuk = 0 whenpk = 0.

Based on (2) and (3), the utility function for userk can be
written as

uk =
L

M
R
f(γk)

pk
. (4)

For the sake of simplicity, we have assumed that the transmis-
sion rate is the same for all users, i.e.,R1 = ... = RK = R.
All the results obtained here can be easily generalized to the
case of unequal rates. The utility function in (4), which has
units of bits/Joule, captures very well the tradeoff between
throughput and battery life and is particularly suitable for
applications where energy efficiency is crucial.

B. Delay Constraints

Let X represent the (random) number of transmissions
required for a packet to be received without any errors. The
assumption is that if a packet has one or more errors, it
will be retransmitted. We also assume that retransmissionsare
independent from each other. It is clear that the transmission
delay for a packet is directly proportional toX . Therefore,
any constraint on the transmission delay can be equivalently
expressed as a constraint on the number of transmissions.
Assuming that the packet success rate is given by the efficiency
function f(γ)1, the probability that exactlym transmissions
are required for the successful transmission of the packet is
given by

Pr{X = m} = f(γ) (1− f(γ))m−1
, (5)

and, hence, E{X} = 1
f(γ) . We model the delay requirements

of a particular user (or equivalently traffic type) as a pair
(D, β), where

Pr{X ≤ D} ≥ β. (6)

In other words, we would like the number of transmissions to
be at mostD with a probability larger than or equal toβ. For
example,(2, 0.9), i.e.,D = 2 andβ = 0.9, implies that 90%
of the time we need at most two transmissions to successfully
receive a packet. Note that (6) can equivalently be represented
as an upper bound on the delay outage probability, i.e.,

Pdelay outage , Pr{X > D} ≤ 1− β. (7)

Based on (5), the delay constraint in (6) can be expressed
as

D
∑

m=1

f(γ) (1− f(γ))
m−1 ≥ β,

or
f(γ) ≥ η(D, β), (8)

where
η(D, β) = 1− (1− β)

1
D . (9)

Here, we have explicitly shown thatη is a function ofD andβ.
Sincef(γ) is an increasing function ofγ, we can equivalently
express (8) as

γ ≥ γ̃, (10)

where
γ̃ = f−1 (η(D, β)) . (11)

Therefore, the delay constraint in (6) translates into a lower
bound on the SIR. Since different users could have different
delay requirements,̃γ is user dependent. We make this explicit
by writing

γ̃k = f−1 (ηk) , (12)

whereηk = 1− (1− βk)
1

Dk . A more stringent delay require-
ment, i.e., a smallerD and/or a largerβ, will result in a higher
value for γ̃. Without loss of generality, we have assumed that
all the users in the network have the same efficiency function.
It is straightforward to relax this assumption.

1This assumption is valid in many practical systems (see [8] for further
details).



III. POWER CONTROL GAME WITH DELAY CONSTRAINTS

We propose a power control game in which each user
decides how much power to transmit in order to maximize its
own utility and at the same time satisfy its delay requirements.
We have shown in Section II-B that the delay requirements
of a user translate into a lower bound on the user’s output
SIR. Therefore, each user will seek to maximize its utility
while satisfying its SIR requirement. This can be captured by
defining adelay-constrained utility for user k as

ũk =

{

uk if γk ≥ γ̃k
0 if γk < γ̃k

, (13)

whereuk and γ̃k are given by (4) and (12), respectively.
Let G̃ = [K, {Ak}, {ũk}] denote the proposed non-

cooperative game whereK = {1, ...,K}, andAk = [0, Pmax],
which is the strategy set for thekth user. Here,Pmax is the
maximum allowed power for transmission. We assume that
only those users whose delay requirements can be met are
admitted into the network. For example, for the conventional
matched filter, this translates into having

K
∑

k=1

1

1 + N
γ̃k

< 1.

This assumption makes sense because admitting a user that
cannot meet its delay requirement only causes unnecessary
interference for other users.

The resulting non-cooperative game can be expressed as the
following maximization problem:

max
pk

ũk for k = 1, ...,K, (14)

where thepk’s are constrained to be non-negative. The above
maximization can equivalently be written as

max
pk

uk subject to γk ≥ γ̃k for k = 1, ...,K. (15)

Let us first solve the above maximization by ignoring the
constraints on SIR. For all linear receivers, we have

∂γk

∂pk
=

γk

pk
. (16)

Taking the derivative ofuk with respect topk and taking
advantage of (16), we obtain

∂uk

∂pk
=

f ′(γk)

pk

∂γk

∂pk
− f(γk)

p2k
=

γkf
′(γk)− f(γk)

p2k
.

Therefore, the unconstrained utility function for userk is
maximized when the user’s output SIR is equal toγ∗, where
γ∗ is the (positive) solution to

f(γ) = γ f ′(γ). (17)

It can be shown that for a sigmoidal efficiency function,γ∗

always exists and is unique. In addition, for allγk < γ∗, uk

is increasing inpk and for all γk > γ∗, uk is decreasing in
pk [9]. Therefore,ũk is maximized when userk transmits at
a power level that achieves̃γ∗

k at the output of the uplink
receiver, where

γ̃∗
k = max{γ̃k, γ∗}. (18)

In the next section, we investigate the existence and unique-
ness of Nash equilibrium for our proposed game.

IV. NASH EQUILIBRIUM FOR THE PROPOSEDGAME

The Nash equilibrium for the proposed game is a set
strategies (power levels) for which no user can unilaterally
improve its own (delay-constrained) utility function. We now
state the following proposition.

Proposition 1: The Nash equilibrium for the non-
cooperative gamẽG is given by p̃∗k = min{p∗k, Pmax}, for
k = 1, · · · ,K, wherep∗k is the transmit power that results
in an SIR equal toγ̃∗ at the output of the receiver with
γ̃∗
k = max{γ̃k, γ∗}. Furthermore, this equilibrium is unique.

Proof: Based on the arguments presented in Section III,
ũk is maximized when the transmit powerpk is such thatγk =
γ̃∗
k = max{γ̃k, γ∗}. If γ̃k cannot be achieved, the user must

transmit at maximum power level to maximize its utility. Letus
definep̃k as the power level for which the output SIR for user
k is equal tõγk. Since userk is admitted into the network only
if it can meet its delay requirements, we havep̃k ≤ Pmax. In
addition, becausẽuk = 0 for pk < p̃k, there is no incentive for
userk to transmit at a power level smaller thanp̃k. Therefore,
we can restrict the set of strategies for userk to [p̃k, Pmax].
In this interval, ũk = uk and hence the utility function is
continuous and quasiconcave. This guarantees existence ofa
Nash equilibrium for the proposed power control game.

Furthermore, for a sigmoidal efficiency function,γ∗, which
is the (positive) solution off(γ) = γ f ′(γ), is unique and as
a resultγ̃∗

k is unique fork = 1, 2, ...,K. Because of this and
the one-to-one correspondence between the transmit power and
the output SIR, the Nash equilibrium is unique.

The above proposition suggests that at Nash equilibrium,
the output SIR for userk is γ̃∗

k , where γ̃∗
k depends on the

efficiency function throughγ∗ as well as userk’s delay
constraint through̃γk. Note that this result does not depend on
the choice of the receiver and is valid for all linear receivers
including the matched filter, the decorrelator and the (linear)
minimum mean square error (MMSE) detector.

V. M ULTI -CLASS NETWORKS

Let us now consider a network withC classes of users. The
assumption is that all the users in the same class have the same
delay requirements characterized by the correspondingD and
β. Based on Proposition 1, at Nash equilibrium, all the users in
classc will have the same output SIR,̃γ∗(c) = max{γ̃(c), γ∗},
where γ̃(c) = f−1

(

η(c)
)

. Here, η(c) depends on the delay
requirements of classc, namelyD(c) and β(c), through (9).
The goal is to quantify the effect of delay constraints on the
energy efficiency of the network or equivalently on the users’
utilities.

In order to obtain explicit expressions for the utilities
achieved at equilibrium, we use a large-system analysis similar
to the one presented in [10] and [11]. We consider the
asymptotic case in whichK,N → ∞ and K

N
→ α < ∞. This

allows us to write SIR expressions that are independent of the
spreading sequences of the users. LetK(c) be the number of
users in classc, and defineα(c) = limK,N→∞

K(c)

N
. Therefore,

we have
∑C

c=1 α
(c) = α.

It can be shown that for the matched filter (MF), the
decorrelator (DE), and the MMSE detector, the minimum



power required by userk in classc to achieve an output SIR
equal toγ̃∗(c) is given by the following equations:

pMF
k =

1

h2
k

γ̃∗(c)σ2

1−
∑C

c=1 α
(c)γ̃∗(c)

for
C
∑

c=1

α
(c)

γ̃
∗(c)

< 1,(19)

pDE
k =

1

h2
k

γ̃∗(c)σ2

1− α
for α < 1, (20)

and

pMMSE
k =

1

h2
k

γ̃∗(c)σ2

1−
∑C

c=1 α
(c) γ̃∗(c)

1+γ̃∗(c)

for
C
∑

c=1

α
(c) γ̃∗(c)

1 + γ̃∗(c)
< 1.(21)

Note that we have implicitly assumed thatPmax is sufficiently
large so that the target SIRs (i.e.,γ̃∗(c)’s) can be achieved by
all users. Furthermore, sincẽγ∗(c) ≥ γ̃(c) for c = 1, · · · , C,
we haveũk = uk = L

M
R

f(γ̃∗(c))
pk

. Therefore, for the matched
filter, the decorrelator, and the MMSE detector, the utilities
achieved at the Nash equilibrium are given by

ũMF
k =

LR

Mσ2
h
2
k

(

1−

C
∑

c=1

α
(c)

γ̃
∗(c)

)

f(γ̃∗(c))

γ̃∗(c)

for
C
∑

c=1

α
(c)

γ̃
∗(c)

< 1, (22)

ũDE
k =

LR

Mσ2
h
2
k

(

1−
C
∑

c=1

α
(c)

)

f(γ̃∗(c))

γ̃∗(c)

for
C
∑

c=1

α
(c)

< 1, (23)

and

ũMMSE
k =

LR

Mσ2
h
2
k

(

1−
C
∑

c=1

α
(c) γ̃∗(c)

1 + γ̃∗(c)

)

f(γ̃∗(c))

γ̃∗(c)

for
C
∑

c=1

α
(c) γ̃∗(c)

1 + γ̃∗(c)
< 1. (24)

Note that, based on the above equations, we have
ũMMSE
k > ũDE

k > ũMF
k . This means that the MMSE reciever

achieves the highest utility as compared to the decorrelator and
the matched filter. Also, the network capacity (i.e., the number
of users that can be admitted into the network) is the highest
when the MMSE detector is used. For the specific case of no
delay constraints,̃γ∗(c) = γ∗ for all c and (22)–(24) reduce to

uMF
k =

LR

Mσ2
h
2
k (1− αγ

∗)
f(γ∗)

γ∗

for αγ∗

< 1,(25)

uDE
k =

LR

Mσ2
h
2
k (1− α)

f(γ∗)

γ∗

for α < 1, (26)

and

uMMSE
k =

LR

Mσ2
h
2
k

(

1− α
γ∗

1 + γ∗

)

f(γ∗)

γ∗

for α
γ∗

1 + γ∗

< 1. (27)

Comparing (22)–(24) with (25)–(27), we observe that the
presence of users with stringent delay requirements results
not only in a reduction in the utilities of those users but
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Fig. 1. Target SIR,̃γ∗, as a Function ofβ for D =1,2, and 3.

also a reduction in the utilities of other users in the network.
A stringent delay requirement results in an increase in the
user’s target SIR (rememberγ̃∗

k = max{γ̃k, γ∗}). Sincef(γ)
γ

is
maximum whenγ = γ∗, a target SIR larger thanγ∗ results in
a reduction in the utility of the corresponding user. In addition,
because of the higher target SIR for this user, other users inthe
network experience a higher level of interference and henceare
forced to transmit at a higher power which in turn results in a
reduction in their utilities (except for the decorrelator,in which
case the multiple-access interference is completely removed).
Also, since γ̃∗

k ≥ γ∗ and
∑C

c=1 α
(c) = α, the presence

of delay-constrained users causes a reduction in the system
capacity (again, except for the decorrelator). Through (22)–
(24), we have quantified the loss in the utility (in bits/Joule)
and in network capacity due to users’ delay constraints for the
matched filter, the decorrelator and the MMSE receiver. The
sensitivity of the loss to the delay parameters (i.e.,D andβ)
depends on the efficiency function,f(γ).

VI. N UMERICAL RESULTS

Let us consider the uplink of a DS-CDMA system with
processing gain 100. We assume that each packet contains
100 bits of information and no overhead (i.e.,L = M =
100). The transmission rate,R, is 100Kbps and the thermal
noise power,σ2, is 5 × 10−16Watts. A useful example for
the efficiency function isf(γ) = (1 − e−γ)M . This serves
as an approximation to the packet success rate that is very
reasonable for moderate to large values ofM [3]. We use
this efficiency function for our simulations. Using this, with
M = 100, the solution to (17) isγ∗ = 6.48 = 8.1dB.

Fig. 1 shows the target SIR as a function ofβ for D = 1, 2,
and 3. It is observed that, as expected, a more stringent delay
requirement (i.e., a higherβ and/or a lowerD) results in a
higher target SIR.

We now consider a network where the users can be divided
into two classes: delay sensitive (classA) and delay tolerant
(classB). For users in classA, we chooseDA = 1 and
βA = 0.99 (i.e., delay sensitive). For users in classB, we
let DB = 3 and βB = 0.90 (i.e., delay tolerant). Based on
these choices,̃γ∗

A = 9.6dB and γ̃∗
B = γ∗ = 8.1dB. Without

loss of generality and to keep the comparison fair, we also
assume that all the users are 100 meters away from the uplink
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receiver. The system load is assumed to beα (i.e., K
N

= α)
and we letαA and αB represent the load corresponding to
classA and classB, respectively, withαA + αB = α.

We first consider a lightly loaded network withα = 0.1
(see Fig. 2). To demonstrate the performance loss due to the
presence of users with stringent delay requirements (i.e.,class
A), we plot uA

u
anduB

u
as a function of the fraction of the load

corresponding to classA users (i.e.,αA

α
). Here,uA anduB are

the utilities of users in classA and classB, respectively, and
u represents the utility of the users if they all had loose delay
requirements which means̃γ∗

k = γ∗ for all k. Fig. 2 shows
the loss for the matched filter, the decorrelator, and the MMSE
detector. We observe from the figure that for the matched filter
both classes of users suffer significantly due to the presence
of delay sensitive traffic. For example, when half of the users
are delay sensitive, the utilities achieved by classA and class
B users are, respectively, 50% and 60% of the utilities for the
case of no delay constraints. For the decorrelator, only class
A users suffer and the reduction in utility is smaller than that
of the matched filter. For the MMSE detector, the reduction in
utility for classA users is similar to that of the decorrelator,
and the reduction in utility for classB is negligible.

We repeat the experiment for a highly loaded network with
α = 0.9 (see Fig. 3). Since the matched filter cannot handle
such a significant load, we have shown the plots for the decor-
relator and MMSE detector only. We observe from Fig. 3 that
because of the higher system load, the reduction in the utilities
is more significant for the MMSE detector compared to the
case ofα = 0.1. It should be noted that for the decorrelator
the reduction in utility of classA users is independent of
the system load. This is because the decorrelator completely
removes the multiple-access interference.

It should be further noted that in Figs. 2 and 3 we have
only plotted the ratio of the utilities (not the actual values).
As discussed in Section V, the achieved utilities for the MMSE
detector are larger than those of the decorrelator and the
matched filter.

VII. C ONCLUSIONS

We have proposed a game-theoretic approach for studying
power control in multiple-access networks with (transmission)
delay constraints. We have considered a non-cooperative game
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where each user seeks to choose a transmit power that
maximizes its own utility while satisfying the user’s delay
requirements. The utility function measures the number of
reliable bits transmitted per joule of energy. We have modeled
the delay constraint as an upper bound on the delay outage
probability. We have derived the Nash equilibrium for the
proposed game and have shown that it is unique. The results
are applicable to all linear receivers. In addition, we haveused
a large-system analysis to derive explicit expressions forthe
utilities achieved at equilibrium for the matched filter, decorre-
lator and MMSE detector. The reductions in the users’ utilities
(in bits/Joule) and network capacity due to the presence of
users with stringent delay constraints have been quantified.
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