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Abstract

We investigate the capacity loss for using uncorrelated Gaussian input over a multiple-input multiple-output

(MIMO) linear additive-noise (not necessarily Gaussian) channel. We upper bound the capacity loss by a universal

constant, C∗, which is independent of the channel matrix and the noise distribution. For a single-user MIMO

channel with nt inputs and nr outputs, C∗ = min{1
2 , nr

2nt
log2(1 + nt

nr
)} bit per input dimension (or 2C∗ bit per

transmit antenna per second per Hertz), under both total and per-input power constraints. If we restrict attention

to (colored) Gaussian noise, then the capacity loss is upper bounded by a smaller constant, CG = nr

2nt
log2(

nt

nr
)

for nr ≥ nt/e, and CG = 0.265 otherwise, and this bound is tight for certain cases of channel matrix and noise

covariance. We also derive similar bounds for the sum-capacity loss in multi-user MIMO channels. This includes in

particular uncorrelated Gaussian transmission in a MIMO multiple access channel, and “flat” Gaussian dirty-paper

coding in a MIMO broadcast channel. In the context of wireless communication, our results imply that the benefit of

beamforming and spatial water filling over simple isotropic transmission is limited. Moreover, the excess capacity

of a point-to-point MIMO channel over the same MIMO channel in a multi-user configuration is bounded by a

universal constant.

Index Terms

Multiple-input multiple-output (MIMO) channel, multiple-input multiple-output broadcast channel (MIMO-

BC), multiple-input multiple-output multiple-access channel (MIMO-MAC), capacity loss, uncorrelation loss, non-

cooperation loss, robust input.

I. INTRODUCTION

Shannon’s channel capacity is given by the maximum mutual information over all possible input distributions,

C = C(W ) = max
P∈P

I(P, W ), (1)

†Parts of this work were presented at the 42th Annual Allerton Conference, University of Illinois, USA, October 2004, and at ISIT2005

Adelaide, Australia September 2005
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where I(P, W ) is the mutual information associated with input P and channel W , and P is the set of allowed input

distributions [1]. In transmission over power-constrained linear MIMO channels, the optimum input distribution in

(1) depends on the power constraint, the channel matrix and the joint statistics of the additive noise. Therefore,

knowledge of these parameters is required not only at the receiver (which is usually the case for slow fading channels)

but also at the transmitter. In this paper we examine the capacity loss for using a fixed (channel independent) input,

namely, uncorrelated Gaussian input, in both single user and multi user configurations. The term capacity loss

means here the difference between the true capacity (or capacity-sum) of the channel and the mutual information

achieved by uncorrelated Gaussian input. In the context of multi-antenna wireless communication, uncorrelated

input amounts to isotropic transmission, as happens in many forms of space-time coding [2], [3], as opposed to

channel optimized beamforming [4].

Our main motivation is the lack of channel state information (CSI) at the transmitter [5]. The classical model for

transmission over channels with uncertainty is the compound channel [6], [7]. Assuming the channel can be any

member from a family W , and the input distribution is constrained to a set P , the compound channel capacity is

given by

Ccompound = max
P∈P

min
W∈W

I(P, W ) (2)

= min
W∈W

C(W ) (3)

where the second equality holds by the Minmax Theorem whenever the sets P and W are convex [8, p.214], [6]. The

resulting optimum input P ∗ guarantees rate of Ccompound no matter what the actual channel is, hence it represents

a robust codebook design for transmission over a channel with uncertainty.

This approach is, however, quite pessimistic, as it is dominated by the worst channel in the family. For example,

the compound capacity of the family of power constrained linear channels is zero, because the worst member in that

class has zero channel gain and/or infinite noise power. One way to overcome this difficulty in the linear MIMO

case is to assume that the channel matrix belongs to an “isotropic” set, and that the total noise power is bounded.

For this restricted class, it was shown in [9] that the compound channel capacity is achieved using an i.i.d Gaussian

input. A similar assumption is that the channels in W have some a-priori distribution, so one can look for an input

which is good on the average [10], [5].

A more optimistic approach, very common in the areas of universal source coding [11] and universal channel

decoding [12], [13], is that of competitive optimality. Instead of trying to guarantee a certain rate, we look for a

robust input P ∗∗ which for any channel W ∈ W does not loose “too much” mutual information relative to the

channel capacity, i.e.,

C(W )− I(P ∗∗,W ) ≤ Const. ∀ W, (4)

where the universal constant in the right-hand side is hopefully small. Thus, we want to enjoy the possibility

for transmission at higher rates if the channel happens to be good, but still use the same codebook generating
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distribution for all channels in the class. As we shall show, i.i.d. Gaussian distribution provides such a competitive

input for linear MIMO channels.

A natural question to ask, though, is what is the operational meaning of mutual information if the transmitter does

not know the channel? Limited feedback provides one possible answer; in slow fading channels, it is practically

reasonable to assume that while the receiver cannot describe all channel parameters to the transmitter, it can inform

it about the achievable rate or the “effective SNR”. Thus, the transmitter can translate extra mutual information

into extra coding rate. An alternative model where mutual information may be a meaningful measure even without

feedback is that of rateless codes; here the effective communication time is determined by the receiver which “quits”

the channel when it received enough information to decode [14], [15].

Although an input with a uniformly bounded capacity-loss as in (4) above does not exist in general [16], it

does for additive noise channels. Previous work [17] considered the class of single-input single-output (SISO)

power-constrained channels of the form

Yi = Xi + Ni, i = 1, . . . n, (5)

where the additive noise {Ni} may have arbitrary distribution, possibly with memory. It was shown that the capacity-

loss for using white (i.i.d.) Gaussian input X∗ instead of the optimum power constrained input is bounded by half

a bit per channel use:

C − 1
n

I(X∗;X∗ + N) ≤ 1
2

bit, ∀ N. (6)

If we restrict attention to the class of Gaussian noise channels, the loss for not performing the water filling

optimization is at most log2(e)/2e ≈ 0.265 bit per channel use, and this bound can be achieved for some two-step

noise spectrum [17].

The half a bit bound (6) is interesting in general, though not always useful. It is loose at low signal-to-noise ratio

(SNR), when the capacity is smaller than half a bit; it is loose asymptotically at high SNR, in which case white

Gaussian input is approximately optimal for any noise distribution; and it’s loose when the noise is approximately

white Gaussian (see Appendix A). In fact, it was conjectured in [17] that this bound is never tight, and the worst

loss is somewhere between 0.265 and 0.5 bit.

The two bounds above can be easily extended to point-to-point communication over symmetric vector channels,

i.e., MIMO channels with equal number of inputs and outputs: the capacity loss for using i.i.d. Gaussian input

is always less than 1/2 bit per dimension, and in the case of Gaussian noise (with arbitrary spatial correlation)

is at most log2(e)/2e ≈ 0.265 bit per dimension (where the latter loss is achieved for certain combinations of

Gaussian noise and channel matrix). In the context of wireless communication, these results can be expressed as

follows: if the number of transmit antennas is equal to the number of receive antennas, then the capacity loss for

using “isotropic” transmission is at most 1 bit per antenna per second per Hertz (where each antenna represents

two dimensions: in-phase (I) and quadrature (Q)). When restricting the background noise and interference to be

Gaussian, the bound becomes ≈ 2× 0.265 = 0.53 bit per antenna per second per Hertz.
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Unfortunately, the extension of these bounds to asymmetric MIMO channels is not straightforward, as it is not

clear if the right normalization is per output dimension or per input dimension. Such channels are very common in

cellular communication, where the base station usually has more antennas than the mobile station. In the SISO case,

this corresponds to a multi-rate channel (or a poly-phase filter channels), i.e., a channel where the input sampling

rate is not equal to the output sampling rate.

As we show in this work, the behavior of the capacity loss in the asymmetric case is quite different. To get some

insight, consider the two simple examples of a single input multiple output (SIMO) and a multiple input single

output (MISO) channels. Gaussian input is clearly optimal for the former case. A SIMO channel is defined as

Yi = X + Ni, i = 1, . . . , nr,

where X satisfies the power constraint EX2 ≤ P , and the Ni’s are independent Gaussian noises. In this case white

Gaussian input is optimal, and the capacity-loss is zero. In contrast, optimum transmission over a MISO channel

Y =
nt∑

i=1

hiXi + N, N ∼ N (0, σ2),

under the sum power constraint
∑nt

i=1 EX2
i ≤ P , is given by beamforming or “maximum ratio combiner”, [18],

[4],

Xi =
hi

||h||X, with X ∼ N (0, P ),

where ‖h‖ is the norm of the channel coefficients vector, and the resulting capacity is

C =
1
2

log
(

1 +
||h||2P

σ2

)
(7)

bit per input vector. I.i.d. Gaussian input Xi ∼ N (0, P/nt), on the other hand, gives mutual information of

I(X1, . . . , Xn; Y ) =
1
2

log
(

1 +
||h||2P
ntσ2

)
. (8)

Comparing (7) and (8) we see that at high SNR the capacity loss per input vector is 1
2 log2(nt), i.e., sub-linear in

the number of inputs nt but more than 0.265 bit per output.

In Section II we develop bounds for the capacity loss of i.i.d Gaussian input for general linear additive noise

MIMO channels, which go roughly like O
(

nr

nt
log( nt

nr
)
)

bit per channel input dimension (or O
(
nr log( nt

nr
)
)

bit

per input vector). In agreement with [17], the bound for general noise becomes 1
2 bit per input (or 1 bit per transmit

antenna per second per Hertz) for nr ≥ nt, and it is apparently not tight. If we restrict attention to Gaussian noise

but still allow arbitrary correlation structure, the bound becomes log2(e)
2e bit per input for nr = nt, and it is sharp,

i.e, it can be approached for certain channel matrices and (Gaussian) noise. Section II also shows that the same

bounds hold for the case of a per-antenna power constraint [19].

Section III extends the discussion to multi-user configurations: the MIMO multiple access channel (MAC) and

the MIMO broadcast channel (BC). We consider two types of rate-sum losses: (i) loss due to separate processing

by the users (called the “cost of non-cooperation”), and (ii) loss due to using uncorrelated Gaussian inputs. It turns

out that bounds similar to those developed for the single user case apply also to these types of capacity losses. The
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formulation is, however, different in the two channel configurations. In the MIMO-MAC, a single constant bounds

the combined effect of both types of capacity loss. In fact, the problem is equivalent to a MIMO point-to-point

channel with a per-antenna power constraint.

The case of MIMO-BC differs in two aspects. First, although the input distribution is channel independent, the

transmitter must know the exact channel matrix in order to achieve the promised rates [20]. Hence the meaning

of robustness is weaker in this case, and is mainly about eliminating the need to perform complex water-filling

computations in real-time [21]. Secondly, each type of loss in the BC case is bounded by a different constant. The

loss for using white Gaussian transmission is bounded by a constant of the form O(nr

nt
log( nt

nr
)), while the loss for

the users being unable to jointly decode their receptions is bounded by a constant of the form O( nt

nr
log(nr

nt
)) (i.e,

with the roles of nt and nr switched). Finally, Section IV concludes the paper and adds some remarks. Preliminary

version of these results appeared in [22], [23]

II. THE SINGLE USER (POINT TO POINT) CASE

1

Enc

Ŵ

Dec

W

1

nrnt

Fig. 1. The MIMO point-to-point channel.

Consider the real valued MIMO channel shown in Figure 1

Y = HX + N, (9)

where for the sake of illustration inputs and outputs are drawn as antennas. Here H ∈ Rnr×nt is the channel matrix,

nt and nr are the number of inputs and outputs respectively, X ∈ Rnt and Y ∈ Rnr are the transmitted and received

vectors, respectively, and N ∈ Rnr is a general (not necessarily Gaussian nor component-wise independent) additive

noise. As we shall discuss after presenting our main Theorem below, the generalization of our results to complex

channel is straight forward. This is a single user (point to point) setting in the sense that a single transmitter

controls all channel inputs X1 . . . Xnt
and a single receiver observes all channel outputs Y1 . . . Ynr

. The sum power

constraint is

tr(Rx) = E||X||2 ≤ P, (10)

where tr is the trace operator and Rx = EXXT is the covariance matrix of X.
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A. Capacity Loss for Arbitrary Noise

The capacity in bit per input dimension of the MIMO channel (9) is given by

C(H,N, P ) , 1
nt

sup
X:E||X||2≤P

I(X; HX + N), (11)

where the maximization is over all possible joint distributions of the input vector X satisfying the power constraint

(10). We shall assume in the sequel that C(H,N, P ) is finite. In view of (1), for a given number of inputs nt and

outputs nr, we shall be interested in the worst capacity loss

Lmax(nt, nr) , sup
H,N

{
C(H,N, P )− 1

nt
I(X∗; HX∗ + N)

}
(12)

for using zero mean i.i.d Gaussian input X∗, when the maximization is over all channel matrices and noise

distributions. Although a complete characterization of Lmax is still missing, we shall develop uniform upper and

lower bounds which in some cases are quite tight.

Following the derivation in the SISO case [17], we start with a lemma regarding a general input.

Lemma 1: Let X′ be an arbitrary input to the MIMO channel (9). Then

C(H,N, P )− 1
nt

I(X′; HX′ + N) ≤ C∗(H,X′), (13)

where

C∗(H,X′) , 1
nt

sup
Z:E||Z||2≤P

I(Z; HZ + HX′). (14)

Proof: The proof is given in Appendix B.

Note that the quantity C∗(H,X′) is independent of the distribution of the noise N, hence it bounds the capacity

loss for using input X′ for any additive noise channel with channel matrix H . The worst capacity loss for using

X′ is bounded from above by the maximum of this quantity over all channel matrices, i.e, supH C∗(H,X′). The

smallest bound is achieved by using an input X′ that minimizes the maximum value of C∗(H,X′) over H , i.e, X′

which achieves

C∗ , inf
X′:E||X′||2≤P

sup
H

C∗(H,X′). (15)

Lemma 2: The minimum in (15) is achieved by X′ = X∗, where X∗ ∼ N (0, P
nt

Int
) is an i.i.d Gaussian vector

and Int
is the nt × nt dimensional identity matrix.

Proof: The proof is given in Appendix C.

Using these two lemmas we arrive at the following theorem.

Theorem 1: (Uniform bound for arbitrary noise) For any noise N and nr×nt channel matrix H, the capacity

loss of uncorrelated Gaussian input X∗ ∼ N (0, P
nt

Int
), to the channel (9), is upper bounded by

C(H,N, P )− 1
nt

I(X∗; HX∗ + N) ≤ C∗, (16)

where

C∗ =

{
nr

2nt
log2 (1 + nt

nr
), nr ≤ nt

1
2 , nr ≥ nt

(17)



7

bit per input dimension.

Proof: The proof is given in Appendix D.

This bound may also be expressed as C∗ = min{1, nr

nt
log2(1 + nt

nr
)} [bit/sec ·Hz · transmit antenna] for a

wireless channel with nt transmit antennas and nr receive antennas; this follows since each antenna amounts to a

complex input/output, i.e., it is not better than two real inputs/outputs. In this case, i.i.d input amounts to isotropic

transmission, as opposed to a channel optimized beamforming.

In Figure 2, we illustrate the behavior of C∗ = C∗(nt, nr) for fixed nt. For nr ≥ nt, i.e, when the number

of receive antennas is the same or greater than the number of transmit antennas, the loss for using i.i.d Gaussian

input is at most 1
2 bit per channel use per transmit antenna, similarly to the result in [17]. However, for nr < nt,

i.e, when there are less receive antennas than transmit antennas, the bound is nr

2 log2 (1 + nt

nr
) bit per input vector,

which is less than nt

2 bits but more than nr

2 bits. Therefore, the bound on the loss in this case is worse than half a

bit per degree of freedom, i.e, greater than 1
2 min(nt, nr) = nr

2 .
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Fig. 2. The Capacity loss for a MIMO channel with arbitrary noise for nt = 10.

We believe the bound of Theorem 1is not tight, and the distance from the true curve of the worst loss of (12)

is still unknown. Nevertheless, for the case of Gaussian noise, we show below a tighter bound which can actually

be achieved, and hence can be considered as a lower bound for the worst loss of (12).

B. Capacity Loss for Gaussian Noise

The bound in Theorem 1 takes into account two effects. One is the loss of “shaping gain” due to Gaussian input

being mismatched to the higher order statistics of the noise, and the other is the loss of “beamforming gain” (or
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the “isotropic transmission loss”) due to uncorrelated input being mismatched to the matrix H and to the noise

covariance. In this section we focus on the second effect by restricting attention to channels with Gaussian noise.

Theorem 2: (Bound for Gaussian noise) If the additive noise NG in the MIMO channel (9) is Gaussian with

arbitrary correlation, then

C(H,NG, P )− 1
nt

I(X∗; HX∗ + NG) ≤ C∗
G, (18)

where

C∗
G =

{
nr

2nt
log2 ( nt

nr
), nr ≤ [[nt/e]]

g(nt), nr ≥ [[nt/e]]
(19)

bit per input dimension; here g(·) is given by the integer maximization

g(nt) , 1
2nt

max
n∈Z

{
n log2

(nt

n

)}
, (20)

and [[nt/e]] is the n ∈ Z that maximizes (20)1. Equality in (18) can be arbitrary approached for any channel matrix

with rank min{nr, [[nt/e]]} (i.e, full rank for nr ≤ [[nt/e]], and rank [[nt/e]] otherwise) in the limit of high SNR.

Proof: The proof is given in Appendix E.

A simple example for equality in Theorem 2 is the MISO case discussed in the Introduction, when the loss

at high SNR is 1
2nt

log(nt) bit per dimension; see (7) and (8). In the general MIMO case, equality in Theorem

2 is achievable if we choose the rank of the channel matrix H (the number of effective non-zero sub-channels)

as close as possible to the integer [[nt/e]] which maximizes (20). Since the rank of H is an integer in the range

0, . . . ,min{nr, nt}, we arrive at the two cases of (19). For example, assume that nr ≤ [[nt/e]] and the channel

matrix H has nr identical non-zero values on the main diagonal and zero elsewhere. Assume further that the noise is

white and weak (the SNR is high). Thus, the capacity per input vector is ≈ nr

2 log2
P
nr

and it is achieved by dividing

the power P equally among the nr non-zero sub-channels. On the other hand, the i.i.d. input X∗ spreads its power

evenly among all the nt transmit antennas, hence its rate is ≈ nr

2 log2
P
nt

, and the capacity loss is ≈ nr

2 log2
nt

nr
bit

per input vector as claimed in the Theorem.

Figure 3 illustrates the bound C∗
G with respect to the number of channel outputs nr (receive antennas), compared

to the bound C∗ of Theorem 1. It can be seen that the bound for Gaussian noise is strictly less than that for arbitrary

noise. Yet, for nr ¿ nt the bounds are quite close, so they provide a tight characterization for the worst loss Lmax

in (12).

If we omit the integer restriction in (20), then the maximum in the second case of (19) is achieved by nt/e, and

C∗
G takes a simpler form, which is slightly less tight for small number of transmit antennas:

CG =

{
nr

2nt
log2

(
nt

nr

)
, nr ≤ nt/e

1
2

log2(e)
e , nr ≥ nt/e.

(21)

1Numerically it was found that for any practical purpose (nt ≤ 106) the maximum is achieved by [nt/e], i.e., the integer nearest to nt/e.

However, a proof for any nt is missing.
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Fig. 3. The bounds on the capacity loss versus the number of outputs nr for nt = 10.

From (21) it is apparent that for a Gaussian MIMO channel the capacity loss of i.i.d Gaussian input is at most
log2(e)

2e ' 0.265 bit per channel use per input dimension, similarly to the result of [17].

In order to understand the behavior of the bound C∗
G for small number of transmit antennas nt, we have drawn

in Figure 4 the bounds ntC
∗
G and ntCG (in bits per input vector) with respect to nt for nr = 2. We observe that the

graph of ntCG in (21) is monotonic and it has two regions: (i) for nt ≤ enr it is linear with nt, (ii) for nt ≥ enr

it is logarithmic with nt. The graph of ntC
∗
G has a ripple in region (i) due to the integer constraint on the rank of

H; it increases logarithmically inside the intervals where [[nt/e]] is fixed, and it “jumps” between these intervals.

The bound above holds for an arbitrary channel matrix and noise correlation. In some scenarios we may have

some prior knowledge regarding the channel parameters. In these cases the capacity loss may be smaller, or we

can find a better robust input. One example is when the SNR is high and the matrix H is full rank. A tight

characterization for the loss in this case is given in the following Proposition

Proposition 1: (Loss for full rank channel matrix) If the channel matrix H in (9) has full rank, and the noise

is Gaussian, then the capacity loss is approximately

C(H, NG, P )− 1
nt

I(X∗; HX∗ + NG) '
{

nr

2nt
log2

(
nt

nr

)
, nr ≤ nt

0, nr ≥ nt

(22)

bit per input dimension, and the approximation becomes tight as P →∞.

Proof: The proof is given in Appendix F.
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Fig. 4. The bounds (19) and its approximation (21) as function of nt for nr = 2.

It should be noted that the capacity loss in the region nr ≥ nt approaches zero because for high SNR and full rank

channel matrix, i.e, when rank(H) = nt, the optimum (water filling) input becomes i.i.d Gaussian input becomes

the optimal.

In many communication scenarios the entries of the channel matrix are drawn randomly and independently, thus

the channel matrix has full rank with probability one. It follows from the discussion above, that at high SNR the

capacity loss is equal with high probability to that in the deterministic case of (22). The dashed curve in Figure

3 shows this capacity loss. For nr > [[nt/e]], the loss in the random channel case is clearly much lower than the

worse case of Theorem 2 because the number of degrees of freedom in the channel is most likely larger than the

worst value of [[nt/e]]. As for the general SNR case, we can still make a high probability claim in the random

matrix case if the number of receive antennas is much larger than the number of transmit antennas. By the weak

law of large numbers, vectors with i.i.d components become orthogonal with equal norm in the limit of infinite

dimension. Hence, the columns of the channel matrix become orthonormal up to a scale factor, and i.i.d Gaussian

input becomes optimal. Thus, for any SNR the capacity loss goes to zero as the number of receive antennas increases

to infinity.

It follows from Theorem 2 that the bound C∗
G on the capacity loss is tight, in the sense that there exists a “worst”

channel matrix and noise correlation such that the loss is exactly C∗
G. On the other hand, in Theorem 1 we bounded

from above the capacity loss for any linear additive noise MIMO channel by C∗. Hence, the maximal capacity loss

Lmax of (12) must be between these two constants (C∗
G and C∗).
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Corollary 1: The worst capacity loss of i.i.d Gaussian input (12) is limited to the region

C∗
G ≤ Lmax ≤ C∗. (23)

C. Per-Antenna (Subset) Power Constraint

We now show that the bounds above apply also to the case of individual power constraints [19]. Specifically,

assume that the transmit antennas are partitioned into m subsets with nti antennas in subset i, where
∑m

i=1 nti = nt.

In this scenario we assume a separate power constraint Pi for each subset i. If nti = 1 for all i, then each antenna

has an individual power constraint. For m = 1 there is only one subset, and the problem reduces to the sum power

constraint considered in Theorems 1 and 2 above. We investigate the capacity loss of Gaussian input which is

uncorrelated and uniform within the antennas in each subset. This is in contrast to the optimal input, which is not

necessarily Gaussian (if the noise is not Gaussian) and it allows any correlation and any power allocation between

antennas in the subset as long as the power constraint is satisfied. The motivation for this setting is two fold: (i) it

generalizes the sum power constraint considered in Theorems 1 and 2, and (ii) it can easily be applied to the case

of MIMO-MAC for which the subsets represent the users, as we shall see in Section III-A.

Specifically, assume the channel model

Y = HX + N, (24)

like in (9), where X = [XT
1 XT

2 . . . XT
m]T ∈ Rnt×1 and the i-th subset channel input is Xi ∈ Rnti×1. The power

constraints are given by

E||Xi||2 ≤ Pi, i = 1 · · ·m. (25)

The capacity is given in this case by

C(H,N,P) , 1
nt

sup
{X:E||Xi||2≤Pi,i=1,...m}

I(X;HX + N) (26)

bit per input dimension, where P = [P1, . . . , Pm]T . The uncorrelated piecewise-uniform input which we want to

examine is denoted by XD; it has a diagonal covariance matrix, with diagonal elements which are constant over

subsets. Thus, XD ∼ N (0, RxD), where

RxD = diag





P1

nt1
, . . . ,

P1

nt1︸ ︷︷ ︸
nt1

,
P2

nt2
, . . . ,

P2

nt2︸ ︷︷ ︸
nt2

, . . . ,
Pm

ntm
, . . . ,

Pm

ntm︸ ︷︷ ︸
ntm





. (27)

Lemma 3: (Bounds for per-antenna power constraint) The capacity loss of uncorrelated piecewise-uniform

Gaussian input in the MIMO channel (24) under individual (per-subset) power constraint (25) is bounded by the

same universal constants as in the case of a sum power constraint. That is, for arbitrary noise

C(H,N,P)− 1
nt

I(XD; HXD + N) ≤ C∗, (28)

and for Gaussian noise

C(H,NG,P)− 1
nt

I(XD;HXD + NG) ≤ C∗
G, (29)
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bit per input dimension, where C∗ = C∗(nt, nr) and C∗
G = C∗

G(nt, nr) are given in (17) and (19), respectively.

Equality in (29) holds in the limit of high SNR for any channel matrix whose rank is min{nr, [[nt/e]]}.

Proof: The proof is given in Appendix G.

Interestingly, the bounds of Lemma 3 are independent of the partition into subsets and the power constraints.

D. Multi-rate SISO inter-symbol interference channels

As discussed in the Introduction, the worst capacity loss for SISO additive colored Gaussian noise channels is at

least log2(e)/2e bit per channel use, as shown in [17]. In view of the duality between frequency, time and spatial

domains, the above results can be applied to extend the result of [17] to multi-rate SISO inter-symbol interference

(ISI) channels with additive colored Gaussian noise. Consider a complex time domain channel where its (complex)

input sampling rate is qfs and its (complex) output sampling rate is pfs, where q and p are integers and fs is some

common reference sampling rate. The system consists of a p-factor up-sampling block (interpolator), factored by

a discrete time channel at sampling rate of qpfs, and a q-factor down-sampling block (decimator). The output is

contaminated by i.i.d (complex) Gaussian noise at sampling rate pfs.

The duality between spatial domain and frequency domain takes the following form: the input frequencies and

output frequencies in this SISO ISI channel play the role of the multiple inputs and multiple outputs in a MIMO

channel. Using this duality, and by the linear relation between input and output, the multi-rate ISI channel may be

modelled as a complex input complex output MIMO channel Y = HX+N, where H ∈ Cr×t. Since the frequency

domain is continuous, the channel matrix has infinite dimensions (t, r →∞) with fixed ratio, i.e, r
t = p

q . Applying

the result of Theorem 2 for the case where the input and output are complex and due to the infinite dimensions of

H (the integer effects in (19) are negligible), we conclude that the capacity loss of i.i.d Gaussian input is bounded

by

C∗
G(q, p) =

{
p
q log2

(
q
p

)
, p ≤ q/e

log2 e
e , p ≥ q/e

(30)

bit per second per Hertz. This bound is tight and can be arbitrarily approached by a channel filter whose equivalent

matrix H has rank min{r, t/e} in the limit of high SNR. For p = q (a single rate channel) the loss is bounded by
log2 e

e bit per second per Hertz in agreement with [17, Proposition 1].

III. THE MULTI-USER CASE

In this section we present upper bounds on the sum-capacity loss for using uncorrelated Gaussian input over a

MIMO multiple access channel (MAC) (with arbitrary noise), and for using i.i.d Gaussian input over a Gaussian

MIMO broadcast channel (BC). As discussed in the Introduction, we have two types of sum-rate losses in these

scenarios: (i) the uncorrelation loss due to the transmission being uncorrelated between the inputs, and (ii) the

non-cooperation loss due to lack of cooperation between the users (see, e.g., [24]). The latter loss is measured with
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respect to the same channel in a point-to-point configuration. We emphasize again that in the MIMO-BC case the

implication of the bound is weaker, as the transmitter is assumed to know the exact channel matrix in order to

achieve the target mutual information.

A. The Sum-Capacity Loss for a MIMO Multiple Access Channel

ntm

nr

Ŵ1 . . . Ŵm

Wm

W1 1
Enc1

Encm

Dec

1

1

nt1

Fig. 5. The MIMO-MAC model.

Consider the m users MIMO-MAC shown in Figure 5. User i has nti transmit antennas, so the total number of

transmit antennas over all users is

nt =
m∑

i=1

nti. (31)

The channel output is given by

Y =
m∑

i=1

HiXi + N, (32)

where Y ∈ Rnr×1, N ∈ Rnr×1 is the noise vector (which is not necessarily Gaussian) and where Xi ∈ Rnti×1

and Hi ∈ Rnr×nti for i = 1, . . . m, are the channel inputs and channel matrices, respectively. Each user has a

power constraint E||Xi||2 ≤ Pi, i = 1, . . . , m. The same model (with Gaussian noise) was considered in [25] for

information rate maximization using an “iterative water filling algorithm”.

Let S ⊆ {1, 2 . . . , m}. Let Sc denote the complementary subset, and let X(S) = {Xi : i ∈ S}. The capacity

region of a general MIMO-MAC [1] is the closure of the convex hull of the rate vectors satisfying,

∑

i∈S

Ri ≤ I(X(S);Y|X(Sc)), ∀S ⊆ {1, 2, . . . ,m}, (33)

for some distribution P (X) =
∏m

i=1 P (Xi). Even in the Gaussian noise case there is no closed form expression

for this region [25].

The sum capacity of the MIMO-MAC (32) can, nevertheless, be expressed in a simple form

Csum
MAC(H,N,P) , sup

{X:E||Xi||2≤Pi,EXiXT
j =0,∀i6=j}

I(Y;X1, . . . ,Xm)

= sup
{X:E||Xi||2≤Pi,EXiXT

j =0,∀i6=j}
I(X; HX + N), (34)
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bit per (vector) channel use. Here X = [XT
1 XT

2 . . . XT
m]T ∈ Rnt×1, where Xi and Xj are independent for i 6= j

(i, j ∈ {1 . . .m}), and H is the equivalent channel matrix, that is H = [H1 H2 . . . Hm].

Compare the MIMO-MAC (32) with a point-to-point MIMO channel with a per subset power constraints (25),

assuming that both have the same channel matrix H . Assume further that the partition into input subsets of the

corresponding MIMO point-to-point channel is identical to the partition of the MIMO-MAC users with the same

individual power constraints. Since the power allocation between subsets (users) is inflexible in both problems, the

loss in MIMO-MAC is due on one hand to users being unable to cross-correlate their transmissions which we call

“non-cooperation loss”, and on the other hand due to restricting each user to i.i.d (Gaussian) transmission over its

own inputs, which we call “uncorrelation loss”. Specifically, the non-cooperation loss Lnon−coop is defined as

Lnon−coop , CP2P (H,N,P)− Csum
MAC(H,N,P), (35)

bit per channel use, where

CP2P (H,N,P) = sup
{X:E||Xi||2≤Pi,i=1,...m}

I(X; HX + N), (36)

is the capacity in bit per channel use of the corresponding MIMO point-to-point channel with per subset power

constraint (26), and where the subscript P2P was added to distinguish between the two cases. The uncorrelation

loss Lun−corr is defined as

Lun−corr , Csum
MAC(H,N,P)− I(XD; HXD + N), (37)

bit per channel use, where XD is given in (27). The total loss (the sum of these two losses) is the information loss

of MIMO-MAC with uncorrelated input with respect to the corresponding MIMO point-to-point capacity, i.e.,

Lun−corr + Lnon−coop = CP2P (H,N,P)− I(XD; HXD + N). (38)

Since the rate achieved by uncorrelated input XD is the same for MIMO-MAC and MIMO point-to-point channel

with per subset power constraint, from Lemma 3 we have the following bounds.

Theorem 3: (Bounds for MIMO-MAC) The total loss, i.e, the sum of uncorrelation loss (37) and non-cooperation

loss (35), for MIMO-MAC with arbitrary noise is bounded by

Lun−corr + Lnon−coop ≤ ntC
∗. (39)

For MIMO-MAC with Gaussian noise NG, we have a tighter bound:

Lun−corr + Lnon−coop ≤ ntC
∗
G. (40)

In both cases the bounds are in bit per (vector) channel use, and C∗
G and C∗ are given in (19) and (17), respectively,

with nt =
∑m

i=1 nti. Equality in (40) holds for any channel matrix with rank min{nr, [[nt/e]]} in the limit of high

SNR.

Proof: The proof is given in Appendix H.
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Since the losses Lun−corr and Lnon−coop are non negative values, the bounds apply to each of them separately.

For a fixed nt, the larger the number of users, the larger is the portion of the total loss due to non-cooperation; the

larger the number of antennas per each user, the larger is the portion of the total loss due to uncorrelation. For a

single user (m = 1) Lun−coor is maximal, while for single antenna per user (nti = 1) Lnon−coop is maximal.

B. The Sum-Capacity Loss for a Gaussian MIMO Broadcast Channel

nrm

W1 . . . Wm

Enc

1

nt

1

1

Ŵm

Ŵ1
Dec1

Decm

nr1

Fig. 6. The MIMO-BC model.

The MIMO-BC is a non-degraded broadcast channel for which the capacity region is still unknown in general.

Hence, we only consider here the Gaussian MIMO-BC, whose capacity region was found recently in [26]. As in

the MIMO-MAC, we consider two types of losses: the uncorrelation loss and the non-cooperation loss; however,

in a MIMO-BC these losses have a slightly different meaning. To get any meaningful capacity, we must assume

knowledge of the channel matrix at the transmitter. So in this sense our motivation here is not transmission to an

unknown channel, but evaluation of a simple signaling scheme.

Consider the Gaussian MIMO-BC with m users, as shown in Figure 6. User i has nri receive antennas, so there

are a total of nr =
∑m

i=1 nri receive antennas over all users. The channel model is given by

Yi = HiX + Ni, i = 1, . . . ,m , (41)

where Yi ∈ Rnri×1 and Ni ∈ Rnri×1, are the channel output and the Gaussian noise, respectively, associated with

user i. Without loss of generality we can assume that ENiNT
i = Inr i. The channel input is X ∈ Rnt×1, the channel

matrices are Hi ∈ Rnri×nt i = 1 . . . m, and the power constraint is E||X||2 ≤ P . We bound the sum-capacity loss

due to using i.i.d Gaussian input, relative to the optimal sum-capacity that was shown in [21], [27], [28].

Both the optimal scheme that achieves the sum capacity and the sub-optimal scheme that uses i.i.d Gaussian

input can be realized by the dirty paper coding (DPC) scheme shown in Figure 7 (for simplicity we consider a

two users scheme, i.e, m = 2). In this scheme, the first user eliminates the interference induced by the second user

using a DPC technique, while the second user considers the interference from the first user as additive noise, in

which case we have a standard MIMO point-to-point encoder and decoder.

The transmitted vector X is a linear combination of the vectors U1 ∈ Rnu1 and U2 ∈ Rnu2 , i.e, X = B1U1 +

B2U2, where B1 is an nt×nu1 matrix and B2 is an nt×nu2 matrix. The information for the first user and for the
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second user are carried by the vectors U1 and U2 respectively, where U1 ∼ N (0, Inu1
) and U2 ∼ N (0, Inu2

) are

independent vectors. We define the matrix B which is given by B = [B1 B2]. The channel outputs are given by

Y1 = H1X + N1 = H1B1U1 + H1B2U2 + N1 (42)

Y2 = H2X + N2 = H2B1U1 + H2B2U2 + N2. (43)

The second user considers H2B1U1 + N2 as additive noise, while for the first user the transmitter performs DPC

and pre-cancels H1B2U2 treating it as known interference.

The above description is common for both the optimal and the sub-optimal schemes. We now consider each

scheme separately. In the sum capacity achieving scheme the matrices B1 and B2 should be optimized such that

the input covariance matrix Rx achieves the sum capacity [21]. We assume that the channel matrices H1 and H2

have rank nr1 and nr2 , respectively. We also assume that nt ≥ nr1 + nr2 = nr (the extension for the general

dimensions is straightforward). The vector U1 has nu1 = nr1 elements and U2 has nu2 = nr2 elements. The matrix

B1 is an nt × nr1 matrix and B2 is an nt × nr2 matrix, therefore B is an nt × nr matrix. Using such B, we can

generate an input covariance matrix with rank nr at most, as required by the optimal solution.

The sub-optimal scheme generates i.i.d Gaussian transmission, hence the matrix B is determined such that

Rx = P
nt

Int
. The vectors U1 and U2 have nt elements each, i.e, nu1 = nu2 = nt. The matrices B1 and B2 are

nt×nt matrices, therefore B is an nt× 2nt matrix (for m users B is an nt×mnt matrix). In this case the matrix

B is not optimal which results in transmission in redundant dimensions.

Unlike in the MIMO point-to-point channel and the MIMO-MAC cases, here the transmitter must know the

channel matrices Hi of the users to pre-cancel the cross interferences between them [21], [20], [27]. In fact, for

certain channels the BC capacity without knowing the channel matrix at the transmitter is close to zero. Even

when the channel matrix is known, the sum-capacity achieving input distribution requires complex computations

[21]. Furthermore, it also requires knowing the variances of the receivers’ noises. This motivates us to bound the

sum-capacity loss for using a fixed i.i.d Gaussian codebook.

++

“
ENiN

T
i = Inri
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”

Dec1

Dec2

N

DPC

ENC

ENC

B.Former

X

nr

Ŵ2
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Fig. 7. The two users transmission scheme using dirty paper coding scheme.

A general input covariance matrix Rx for a Gaussian MIMO-BC has the following operational meaning [21]. For
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any Rx, there exists Gaussian noise called least favorable noise NLFN , so that the mutual information I(X; HX+

NLNF ) associated with a Gaussian input with covariance matrix Rx can be achieved over the BC using the above

DPC scheme. In particular, for the optimal Rx this inner bound and the Sato outer bound [29] for the MIMO

Gaussian case become tight. The sum-capacity of the Gaussian MIMO-BC [21] is

Csum
BC (H,N, P ) =

min Rnº0
Rnii

=Inri

max Rxº0

tr(Rx)≤P

1
2 log2

(
det(HRxHT +Rn)

det(Rn)

)
, (44)

where Rx is the auto-correlation matrix of X, and H is a concatenation of the users’ channel matrices Hi, i.e,

H = [HT
1 HT

2 . . . HT
m]T . The noise is a concatenation of the user noises Ni, i = 1, . . . ,m, that is N =

[NT
1 NT

2 . . . NT
m]T and Rn is the auto-correlation matrix of N. In [21] the sum-rate for any input was derived.

For i.i.d Gaussian input X∗ ∼ N (0, P
nt

Int) the sum-rate in bit per input dimension achievable by the input is given

by,

Rsum
BC (H,N,X∗) ,

min Rnº0
Rnii

=Inri

1
2 log2

(
det(HRx∗HT +Rn)

det(Rn)

)
. (45)

An equivalent expression for the sum-capacity (44) using Gaussian BC and Gaussian MAC duality was given in

[27],

Csum
BC (H,N, P ) =

supPm
i=1 tr(Rxi

)≤P

Rxi
º0

1
2 log2 det

(
I +

∑m
i=1 HT

i Rxi
Hi

)
.

(46)

The capacity region of BC depends only on the noises marginal distribution. In our model the noises are Gaussian

with ENiNT
i = Inri

, i = 1 . . . , m. Therefore, for Gaussian noises with NW ∼ N (0, Inr
) the sum-capacity and

the rate region is not changed. On the other hand, if we let the noises to have a correlation, then the point-to-point

capacity can become infinite while the MIMO-BC sum-capacity remains constant. Therefore, it is meaningless

to compare the sum capacity of the Gaussian MIMO-BC to the capacity of MIMO point-to-point channel with

correlated Gaussian noise, and we define the non-cooperation loss as

Lnon−coop , CP2P (H,NW , P )− Csum
BC (H,N, P ), (47)

bit per channel use, where

CP2P (H,NW , P ) = sup
X:E||X||2≤P

I(X; HX + NW ). (48)

Therefore, the non-cooperation loss amounts to the loss of sum capacity of Gaussian MIMO-BC with respect to

the same MIMO channel in a point-to-point configuration with uncorrelated Gaussian noise (note that N, NW have

the same covariance matrix diagonals). The uncorrelation loss is defined as the loss of i.i.d Gaussian input with

respect to the sum capacity of Gaussian MIMO-BC, i.e,

Lun−corr , Csum
BC (H,N,P)−Rsum

BC (H,N,X∗), (49)
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bit per channel use. This quantity represents the loss due to lack of correlation between transmit antennas. In the

following Theorem we use the notation C∗
G(nt, nr) = C∗

G which shows the dependence on the number of transmit

and receive antennas.

Theorem 4: (Bound for MIMO-BC) The uncorrelation loss (49) in Gaussian MIMO-BC (41), is bounded by

Lun−corr ≤ ntC
∗
G(nt, nr), (50)

bit per (vector) channel use, where C∗
G is defined in (19). Equality in (50) holds for any channel matrix with rank

min{nr, [[nt/e]]} in the limit of high SNR. The non-cooperation loss (47) is bounded by

Lnon−coop ≤ nrC
∗
G(nr, nt) =

{
nt

2 log2 (nr

nt
), nt ≤ [[nr/e]]

nrg(nr), nt ≥ [[nr/e]]
(51)

bit per channel use. Equality in (51) holds for any channel matrix with rank min{nt, [[nr/e]]} in the limit of high

SNR.

Proof: The proof is given in Appendix I.

Note that in the non-cooperation loss the number of transmit and receive antennas switch roles. The uncorrelation

loss of Gaussian MIMO-BC is the same as the capacity loss of Gaussian MIMO point-to-point for the composite

channel matrix H ∈ Rnr×nt . The sum-rate loss of i.i.d Gaussian input over Gaussian MIMO-BC with respect to

the capacity of MIMO point-to-point with i.i.d Gaussian noise is given by Lnon−coop +Lun−corr, therefore we have

that,

Lnon−coop + Lun−corr = CP2P (H,NW ,P)−Rsum
BC (H,N,X∗) ≤ ntC

∗
G(nt, nr) + nrC

∗
G(nr, nt), (52)

bit per channel use. Although, as shown in Theorem 4, each of the bounds for Lnon−coop and Lun−corr can be

tight separately, we are not certain whether the bound for total loss Lnon−coop + Lun−corr can ever be tight.

In Figure 8 the bounds Lnon−coop, Lun−corr and Lnon−coop + Lun−corr in bit per input dimension are shown for

nt = 10 with respect to the number of receive antennas nr. We are already familiar with the uncorrelation loss

from the Gaussian MIMO-MAC and from the Gaussian MIMO point-to-point channel. The non-cooperation loss

in the region of [[nr/e]] ≤ nt is almost linear with nr. (This is the same as the curve in Figure 4, only here nr and

nt switch roles.) For [[nr/e]] ≥ nt the non-cooperation loss per input dimension increases logarithmically with nr.

The same scenario as in Figure 8 is shown in Figure 9, however now the losses are normalized to min{nr, nt}
(number of degrees of freedom) and are drawn with respect to nr (i.e, the losses drawn in bit per degree of

freedom). For nr ≤ nt the degree of freedom is dominated by nr, although the uncorrelation loss (in bit) increases

logarithmic with nr, the uncorrelation loss per degree of freedom decreases until it becomes fixed loss per degree

of freedom in nr = nt. On the other hand, the non-cooperation loss for nr ≤ nt has quite fixed contribution for

each degree of freedom. However, for nr ≥ nt each additional degree of freedom increases the loss logarithmic.
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Fig. 8. The Gaussian MIMO-BC losses per input dimension for nt = 10.

IV. DISCUSSION

We investigated the robustness of uncorrelated Gaussian input for linear additive noise MIMO channels. We

presented two uniform upper bounds on the capacity loss for using this input. The first bound holds for any noise

(not necessarily Gaussian) while the second bound holds for (correlated) Gaussian noise. We also extended these

bounds to the sum-capacity loss in the MIMO multiuser case.

These bounds imply that the capacity loss is additive, meaning that we do not lose degrees of freedom due to

using the robust input. Furthermore, since the bounds are independent of the SNR, the fractional capacity loss

becomes negligible as the SNR and hence the capacity increase.

These results may be extended in several directions. The first direction is a bound on the loss in the capacity

region in the multiuser case; this can be accomplished by applying the same techniques of Theorems 3 and 4 for

the sum-rate loss to all possible subsets of users with respect to the capacity region of Gaussian MIMO-MAC and

Gaussian MIMO-BC, respectively. Another interesting direction is the capacity loss of robust input for the case

where there is partial side information on the channel at the transmitter.

In this work we limited our discussion to capacity as a measure for the channel quality, and as we saw the results

are quite optimistic. However, the decoder error probability and the outage capacity seem to be more sensitive of

having the CSI at the transmitter. In particular, efficient coding techniques can use the CSI at the transmitter, in

order to improve the error probability and the outage capacity.
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APPENDIX

A. Bounds for the additive noise SISO channels

In this Appendix we complement the result of [17], and give tighter bounds for the capacity loss in a few special

cases. Consider the additive (general) noise SISO channel Y = X + N with power constraint EX2 ≤ P and noise

variance σ2
n, where C denotes the channel capacity and the signal to noise ratio is SNR = P

σ2
n

. Let RG denote the

achievable rate by a Gaussian input XG ∼ N (0, P ), i.e, RG = I(XG; XG + N). The following bounds hold:

1. C −RG ≤ D(N ||NG).

2. C −RG ≤ 1
2 log2 (1 + 1/SNR).

3. C −RG ≤ C

where D(·||·) is Kullback Leibler distance (divergence) and NG is a Gaussian noise with the same variance as N .

Proof:
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1. The capacity C is given by

C = max
X:EX2≤P

I(X; X + N) (53)

= max
X:EX2≤P

h(X + N)− h(N) (54)

≤ 1
2

log2

(
2πe(P + σ2

n)
)− h(N) (55)

=
1
2

log2

(
2πe(P + σ2

n)
)− h(NG) + h(NG)− h(N) (56)

=
1
2

log2 (1 + SNR) + D(N ||NG) (57)

≤ RG + D(N ||NG), (58)

where (55) follows since X ∼ N (0, P ) maximizes h(X+N); (57) follows directly from the identity D(N ||NG) =

h(NG)−h(N). Finally, (58) follows from the inequality RG = I(XG;XG +N) ≥ I(XG;XG +NG) [1, p263].

2. From (57) we know that,

C ≤ log2 (1 + SNR) + D(N ||NG). (59)

On the other hand, RG can be written as,

RG = h(XG + N)− h(N) (60)

≥ h(XG)− h(N) (61)

= h(XG)− h(NG) + h(NG)− h(N) (62)

=
1
2

log2 (SNR) + D(N ||NG), (63)

where (61) follows again from h(XG+N) ≥ h(XG); (63) follows from D(N ||NG) = h(NG)−h(N). Therefore,

using (59) and (63) we have that,

C −RG ≤ 1
2

log2

(
1 +

1
SNR

)
(64)

3. The bound is true because RG ≥ 0.

Similar bounds can be shown for the MIMO point-to-point channels.

B. Proof of Lemma 1

For any independent random variables W,T, Z, it was shown in [17] that

I(W ;W + Z) ≤ I(T ; T + Z) + I(W ; W + T ). (65)

This inequality can be generalized to random vectors as well. Specifically, replacing W,T, Z by the following

quantities W → HX, Z → N, T → HX′, we have that

I(HX;HX + N) ≤ I(HX′; HX′ + N) + I(HX; HX + HX′). (66)
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Since I(X;AX + N) = I(AX;AX + N) for any A ∈ Rnr×nt , (66) can be written as

I(X′;HX′ + N) ≥ I(X; HX + N)− I(X; HX + HX′). (67)

Noting that I(X;HX + HX′) ≤ supZ:E||Z||2≤P I(Z;HZ + HX′) and using the definition in (14), inequality (67)

becomes

I(X′; HX′ + N) ≥ I(X; HX + N)− ntC
∗(H,X′), (68)

for any X. In particular, it holds for an input X that achieves the capacity C(H,N, P ), and the Lemma follows.

C. Proof of Lemma 2

Without loss of generality we can assume that the nr ×nt channel matrix H is full rank with orthonormal rows

and nr ≤ nt. To see that, let G be an arbitrary nr × nt matrix with rank r ≤ min(nt, nr). Then, there exists a

transformation T ∈ Rr×nr which when applied to any vector GZ is information lossless. In particular:

I(Z; GZ + GX′) = I(Z; TGZ + TGX′). (69)

Note that the matrix T is not unique; a natural selection of T can be a matrix that chooses r rows of G that are

linearly independent. The equivalent channel matrix G̃ = TG is an r×nt full rank matrix. Using a Gram Schmidt

process, G̃ can be written as G̃ = RH , where R ∈ Rr×r is a non-singular lower triangular matrix and H ∈ Rr×nt

is full rank with orthonormal rows; thus

I(Z; GZ + GX′) = I(Z;RHZ + RHX′) (70)

= I(Z;HZ + HX′), (71)

where (70) follows from (69), and (71) follows from the fact that multiplication by non-singular square matrix R−1

does not change the mutual information. We see that we can always transform the channel to be orthonormal with

nr ≤ nt, without loss of information.

We now turn to show the following lower bound:

nr

2nt
log2(1 +

nt

nr
) ≤ sup

H
C∗(H,X′), ∀X′. (72)

Among all the eigenvalue decompositions of Rx′ , we will be interested in the following decomposition: Rx′ =

QΛx′Q
T where Q is an nt× nt unitary matrix, and Λx′ is an nt× nt diagonal matrix with positive elements with

increasing order on the diagonal. Let H̃ = WQT where W is an nr×nt diagonal matrix with unit elements. Note
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that H̃ is full rank with orthonormal rows. We have

nt sup
H

C∗(H,X′) ≥ ntC
∗(H̃,X′) (73)

= sup
Z:E||Z||2≤P

I(H̃Z; H̃Z + H̃X′) (74)

≥ I(H̃Z′; H̃Z′ + H̃X′) (75)

= I(Z̃; Z̃ + X̃) (76)

≥
nr∑

i=1

I(Z̃i; Z̃i + X̃i) (77)

≥ 1
2

nr∑

i=1

log2

(
1 +

P/nr

σ2
X̃i

)
(78)

=
nr

2

nr∑

i=1

1
nr

log2

(
1 +

P/nr

σ2
X̃i

)
(79)

≥ nr

2
log2

(
1 +

P/nr
1
nr

∑nr

i=1 σ2
X̃i

)
(80)

≥ nr

2
log2

(
1 +

P/nr
1
nr

P nr

nt

)
(81)

=
nr

2
log2

(
1 +

nt

nr

)
, (82)

where in (73) we replaced the maximization by a specific H = H̃;

(74) is equivalent to the definition of C∗(H,X′) given in (14);

in (75) we replaced the maximization by a specific Z = Z′ ∼ N (0, P
nt

Int
);

in (76) we defined X̃ , H̃X′, and Z̃ , H̃Z′; we observe that the covariance matrix Rx̃ = WΛx′W
T is an nr×nr

diagonal matrix with diagonal elements Rx̃i,i
= Λx′i,i

, σ2
x̃i

for i = 1 . . .nr (where we use Ai,j to denote the i, j-th

element of a matrix A), and that Z̃ ∼ N (0, P
nr

Inr
) due to the orthonormality of Q and the structure of W ;

(77) follows since the mutual information over an additive noise channel with memoryless input is minimized when

the noise is also memoryless, in which case we can write the vector mutual information as the sum of scalar mutual

informations;

(78) follows from the fact that Gaussian noise has the lowest capacity over all additive noise channels [1, p.488];

(80) follows from Jensen’s Inequality since log(1 + 1/x) is convex (∪) with respect to x;

finally, (81) follows because tr(Rx′) ≤ P from (15), and since σx̃1 , . . . , σx̃nr
are the lowest nr out of nt eigenvalues

of Rx′ , which together imply that
∑nr

i=1 σ2
x̃i
≤ P nr

nt
. Hence (72) is proved.

Now, we show that equality in (72) is achieved for X′ = X∗, i.e.,

sup
H

C∗(H,X∗) =
nr

2nt
log2(1 +

nt

nr
), (83)

which proves Lemma 2. For X′ = X∗, (14) becomes

C∗(H,X∗) =
1
nt

sup
Z:E||Z||2≤P

I(Z; HZ + HX∗). (84)
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Since X∗ ∼ N (0, P
nt

Int
), the optimum is achieved by Z with Gaussian distribution, thus

C∗(H,X∗) =
1
nt

sup

{
1
2

log2

|HRzH
T + P

nt
HHT |

| Pnt
HHT |

}
.

s.t : Rz º 0 (85)

tr(Rz) ≤ P

Let us define D , HRzH
T + P

nt
Inr

. The rows of H are orthonormal, i.e, HHT = Inr
, hence the denominator in

(85) is constant, while the numerator is given by

|HRzH
T +

P

nt
Inr
| ≤

nr∏

i=i

Dii (86)

≤
(

1
nr

nr∑

i=1

Dii

)nr

(87)

=

(
tr(HRzH

T ) + P
nt

nr

nr

)nr

(88)

≤
(

P + P nr

nt

nr

)nr

(89)

=

(
P

nr
+

P

nt

)nr

, (90)

where (86) follows from the Hadamard Inequality [1, p.502]; (87) follows from the Arithmetic-Geometric Mean

Inequality; (89) follows from the fact that tr(HRzH
T ) ≤ P , since H has orthonormal rows. Substituting (90) in

(85) and using that HHT = Inr
, we have

C∗(H,X∗) ≤ 1
2nt

log2

(
P
nr

+ P
nt

P
nt

)nr

(91)

=
nr

2nt
log2

(
1 +

nt

nr

)
. (92)

Therefore (83) follows from (92) and (72), and Lemma 2 as well.

D. Proof of Theorem 1

In the case nr ≤ nt, the theorem follows directly from (83). As for the case nr > nt, from (71) in the proof

of Lemma 2, we showed that with no loss of information, any channel can be transformed into a channel whose

number of outputs nr is not more than the number of inputs nt. Since the bound C∗ is monotonically increasing

in the number of outputs in the range 1 ≤ nr ≤ nt, the capacity loss is no more than the value of the bound at

nr = nt, which is C∗ = 1
2 bit per input dimension.

E. Proof of Theorem 2

We assume a MIMO channel model where Y = HX + NG. Since the capacity of this channel is finite the

correlation matrix of NG is nonsingular, therefore there is an equivalent information lossless model Y = H̃X+N∗
G

where the noise distribution is N∗
G ∼ N (0, Inr

).
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The Singular Value Decomposition (SVD) [30] of H̃ is

H̃ = Q2∆QT
1 , (93)

where Q2 ∈ Rnr×nr and Q1 ∈ Rnt×nt are unitary matrices and ∆ ∈ Rnr×nt is a diagonal matrix. Using the unitary

transformations Ỹ = QT
2 Y and X = Q1X̃ at the decoder and encoder respectively, the capacity is given by

C(H̃,N∗
G, P ) =

1
nt

max
E||X||2≤P

I(X; H̃X + N∗
G) =

1
nt

max
E||X̃||2≤P

I(X̃;∆X̃ + Ñ), (94)

where Ñ = QT
2 N∗

G, hence Ñ ∼ N (0, Inr
). The power constraint is E||X||2 = E||X̃||2 ≤ P . Let r be the rank

of the matrix H̃ , i.e r = rank(H). We assume that the r non-zero elements on the diagonal of the matrix ∆ are

∆11, . . . ,∆rr. The capacity is given by

C(H̃,N∗
G, P ) =

1
nt

max
E||X′||2≤P

I(X′; RX′ + N′), (95)

where

Rij = ∆ij , i, j = 1, . . . , r

X ′
i = X̃i, i = 1, . . . , r

N ′
i = Ñi, i = 1, . . . , r.

Note that the R is diagonal matrix and N′ ∼ N(0, Ir). By multiplying the receiver input with R−1, the equivalent

model corresponds to a parallel channels model with colored noise, where the noise covariance matrix is Λ =

diag(λ1 . . . λr) where λi = 1
R2

ii
≥ 0. The capacity of parallel channels is achieved using water filling optimization

[1], which is given by

C(H̃,N∗
G, P ) =

1
2nt

r∑

i=1

log2

(
1 +

(ν − λi)+

λi

)

s.t :
r∑

i=1

(ν − λi)+ ≤ P. (96)

On the other hand, the rate achieved using i.i.d Gaussian input X∗ ∼ N (0, P
nt

Int
) is given by,

I(X∗; H̃X∗ + N∗
G) =

1
2

log2

|H̃ p
nt

Int
H̃T + Inr

|
|Inr

| (97)

=
1
2

log2 |
p

nt
HHT + Inr

| (98)

=
1
2

log2 |
p

nt
Q2∆∆T QT

2 + Inr
| (99)

=
1
2

log2 |Q2(
p

nt
∆∆T + Inr

)QT
2 | (100)

=
1
2

log2 |
p

nt
∆∆T + Inr

)|, (101)

where (99) follows from (93). Since ∆∆T = R2, we have that

I(X∗; H̃X∗ + N∗
G) =

1
2

log2

r∏

i=1

(1 +
P

nt
R2

ii). (102)
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Since R2
ii = 1

λi
for i = 1 . . . r, we have

I(X∗; H̃X∗ + N∗
G) =

1
2

r∑

i=1

log2

P
nt

+ λi

λi
. (103)

The capacity loss is given by the difference between (96) and (103), therefore

ntC(H̃,N∗
G, P )− I(X∗; H̃X∗ + N∗

G) =
1
2

r∑

i=1

{
log2

(
λi + (ν − λi)+

λi

)
− log2

(
P
nt

+ λi

λi

)}
(104)

=
1
2

r∑

i=1

{
log2

(
max(λi, ν)

λi
· λi

λi + P
nt

)}
(105)

=
1
2

r∑

i=1

log2

(
max(λi, ν)

λi + P
nt

)
. (106)

Let I , {i : ν − λi > P/nt, i = 1, . . . , r}, where |I| is the cardinality of I, thus

ntC(H̃,N∗
G, P )− I(X∗; H̃X∗ + N∗

G) ≤ 1
2

∑

i∈I
log2

ν

λi + P
nt

(107)

≤ 1
2

∑

i∈I
log2

ν − λi

P
nt

(108)

=
1
2
|I| ·

∑

i∈I

1
|I| log2

ν − λi

P
nt

(109)

≤ 1
2
|I| · log2

( 1
|I|

∑

i∈I

ν − λi

P
nt

)
(110)

≤ 1
2
|I| · log2

nt

|I| (111)

=
nt

2
· |I|

nt
· log2

nt

|I| , (112)

where (108) follows from the property that b ≥ c implies that a+b
a+c ≤ b/c for positive a, b, c; (110) follows from

Jensen’s inequality; (111) follows from the power constraint in (96). Inspecting the function x
nt
· log2

nt

x where x

can take non-negative real values shows that the function is concave with respect to x, and the global maximum is

achieved for x = nt

e . In our case x = |I| which can take only non-negative integers, the maximum is achieved for

|I| = [[nt/e]] where [[·]] is defined in Theorem 2.

First we consider the case nr < [[nt/e]], therefore |I| ≤ r ≤ nr. The function |I|
nt
· log2

nt

|I| is increasing in |I|
at the interval |I| ∈ [0, [[nt/e]]), therefore the capacity loss is maximized by |I| = nr, and it is given by

ntC
∗
G =

nr

2
· log2(

nt

nr
). (113)

In the case nr ≥ [[nt/e]], the capacity loss is bounded by the loss at the global maximum , i.e, |I| = [[nt/e]],

therefore

ntC
∗
G =

1
2
[[nt/e]] log2

( nt

[[nt/e]]

)
. (114)
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The equality in (18) requires channel matrix H with rank r = min{nr, [[nt/e]]} and high SNR. In this case

ν >> λi, i = 1 . . . r, the capacity loss (106) becomes

ntC(H̃,N∗
G, P )− I(X∗; H̃X∗ + N∗

G) ' 1
2

r∑

i=1

log2

(
ν

P/nt

)
(115)

=
min{nr, [[nt/e]]}

2
log2

(
nt

min{nr, [[nt/e]]}
)

, (116)

where (116) follows from substituting r = min{nr, [[nt/e]]} and ν = P/r. Hence Theorem 2 follows.

F. Proof of Proposition 1

The proof is equivalent to the proof of the equality in Theorem 2 as shown in Appendix E, equations (115)-(116).

Note that in this case the channel matrix H is full rank, i.e, r = min{nt, nr}, the capacity loss becomes

ntC(H̃,N∗
G, P )− I(X∗; H̃X∗ + N∗

G) ' 1
2

r∑

i=1

log2

(
ν

P/nt

)
(117)

=
min{nr, nt}

2
log2

(
nt

min{nr, nt}
)

. (118)

Hence, Proposition 1 follows.

G. Proof of Lemma 3

Arbitrary noise - for any input X restricted to individual power constraint (25), we have by [17, Lemma 1],

I(X; HX + N)− I(XD; HXD + N) ≤ I(HX; HX + HXD) = I(X; HX + HXD). (119)

In particular, the last inequality holds for the capacity achieving input, that is

ntC(H,N,P)− I(XD; HXD + N) ≤ I(X; HX + HXD) (120)

≤ sup
{Z:E||Zi||2≤Pi, i=1,...m}

I(Z; HZ + HXD), (121)

where the last inequality follows by maximizing I(X; HX + HXD). Let us define H̃ , HR
1/2
xD and X̃D ,

R
−1/2
xD XD, and Z̃ , R

−1/2
xD Z, where R

−1/2
xD is the inverse square root of RxD defined in (24). It can be assumed

that RxD is positive definite matrix ,i.e, Pi/nti > 0, i = 1 . . . m, otherwise all the groups with Pi = 0 can be

omitted. In this case X̃D ∼ N (0, Int
) and Z̃ ∼ N (0, Rz̃) where E||Z̃i||2 ≤ nti, i = 1 . . . m. The capacity loss is

given by

ntC(H,N,P)− I(XD; HXD + N) ≤ sup
{Z̃:E||Z̃i||2nti, i=1...m}

I(Z̃;HZ̃ + H̃X̃D) (122)

≤ sup
{Z̃:E||Z̃||2≤nt}

I(Z̃; HZ̃ + H̃X̃D) (123)

≤ ntC
∗, (124)

where (123) follows since the maximization is taken over a larger set; (124) follows from Theorem 1.
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Gaussian noise - for any input X we have that

ntC(H,NG,P)− I(XD; HXD + NG) =

sup
{X:E||Xi||2≤Pi, i=1...m}

I(X; HX + NG)− I(XD; HXD + NG), (125)

where (125) follows from (26). Since NG has Gaussian distribution, the supremum in (125) is achieved by X

with Gaussian distribution [1, p.488]. Using the definitions of H̃ , X̃D as used for the arbitrary noise, and using

X̃ , R
−1/2
xD X, thus X̃ ∼ N (0, Rx̃) where tr(Rx̃) = nt. Therefore, (125) can be written as

sup
{X̃:E||X̃i||2≤nti,i=1...m}

I(X̃; H̃X̃ + NG)− I(X̃D; H̃X̃D + NG)

≤ sup
{X̃:E||X̃||2≤nt}

I(X̃; H̃X̃ + NG)− I(X̃D; H̃X̃D + NG) (126)

= ntC(H̃,N, P = nt)− I(X̃D; HX̃D + NG) (127)

≤ ntC
∗
G, (128)

where (126) follows since the maximum is taken over a larger set; (127) follows from the capacity definition;

finally, (128) follows from Theorem 2.

The equality in (29) requires channel matrix H with rank min{nr, [[nt/e]]} and high SNR. The inequality (126) is

achieved with equality for high SNR, since i.i.d Gaussian input maximizes the mutual information I(X̃; H̃X̃+NG);

the equality in (128) follows from the equality conditions in Theorem 2.

H. Proof of Theorem 3

The proof of Theorem 3 is followed directly from Lemma 3.

Arbitrary noise - the sum of the uncorrelation loss and noncooperation loss can be written as

Lun−corr + Lnon−coop = CP2P (H,N,P)− I(XD; HXD + N) (129)

≤ ntC
∗, (130)

where (129) follows from the definition in (38); (130) follows from Lemma 3.

Gaussian noise - the same arguments hold for the Gaussian noise, thus

Lun−corr + Lnon−coop = CP2P (H,NG,P)− I(XD; HXD + NG) (131)

≤ ntC
∗
G. (132)

The equality in (50) requires channel matrix H with rank min{nr, [[nt/e]]} and high SNR. In this case the

inequality (132) is achieved with equality due to Lemma 3.
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I. Proof of Theorem 4

Uncorrelation loss - the sum-capacity of Gaussian MIMO-BC is given in (44) where the input and the noise

distributions are Gaussian. Let us define the optimal input Xopt ∼ N (0, Rxopt) and the least favorable noise

Nopt ∼ N (0, Rnopt) which are the min-max solution of (44). The solution of (44) Xopt,Nopt is a saddle point

[21], thus for any input X satisfies the power constraint

I(X; HX + Nopt) ≤ I(Xopt; HXopt + Nopt)

≤ I(Xopt; HXopt + N). (133)

Let N∗ ∼ N (0, Rn∗) be the solution of

Rn∗ = arg min
Rn

I(X∗; HX∗ + N), (134)

where X∗ ∼ N (0, P
nt

Int
), which follows from [21]. The uncorrelation loss of MIMO-BC is given by

Lun−coor = Csum
BC (H,N, P )− I(X∗; HX∗ + N∗)

= I(Xopt;HXopt + Nopt)− I(X∗;HX∗ + N∗) (135)

≤ I(Xopt;HXopt + N∗)− I(X∗; HX∗ + N∗) (136)

≤ sup
{X:E||X||2≤P}

I(X; HX + N∗)− I(X∗;HX∗ + N∗) (137)

≤ ntC
∗
G(nt, nr), (138)

where (136) follows from the right hand side of (133); (137) follows from replacing Xopt by the optimal input

with respect to N∗; finally, (138) follows from Theorem 2.

The equality in (50) requires channel matrix H with rank min{nr, [[nt/e]]} and high SNR. In high SNR |HRxHT +

Rn| ≈ |HRxHT |, and for Rn = Inr
the uncorrelated noise achieves the minimal mutual information for any input.

specifically, Rnopt = Rn∗ = Inr
(the Sato noise in high SNR is i.i.d Gaussian noise), thus

I(Xopt; HXopt + Nopt) = inf
Rn

sup
Rx

I(X; HX + N) (139)

= sup
Rx

I(X; HX + N∗), (140)

which achieves the equality in (136) and (137). Finally for H with rank min{nr, [[nt/e]]} and high SNR, the

equality in (138) is achieved from Theorem 2.

Non-cooperation loss: Let Csum
MAC(H,NG, P ) be the sum capacity of Gaussian MIMO-MAC with sum power

constraint P , i.e,

Csum
MAC(H,NG, P ) = sup

P:
Pm

i=1 Pi≤P
Csum

MAC(H,NG,P). (141)

Let NW ∼ N (0, Inr
). Using the MAC-BC duality [27], [28], the sum capacity of Gaussian MIMO-BC is given
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by,

Csum
BC (H,N, P ) = Csum

MAC(HT ,NW , P ) (142)

≥ CP2P (HT ,NW , P )− nrC
∗
G(nr, nt) (143)

= CP2P (H,NW , P )− nrC
∗
G(nr, nt), (144)

where (143) follows from Theorem 3; (144) follows from reciprocity property [18]. Therefore, the non-cooperation

loss is given by,

Lnon−coop = CP2P (H,NW , P )− Csum
BC (H,N, P ) ≤ nrC

∗
G(nr, nt). (145)

The equality is shown for channel matrix H with rank min{nt, [[nr/e]]} and high SNR, since in this case (143)

is achieved with equality from Theorem 3.
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