
ar
X

iv
:c

s/
05

06
04

2v
1

 [c
s.

IT
]

12
 J

un
 2

00
5

Tree-Based Construction of LDPC Codes
Deepak Sridhara, Christine Kelley, and Joachim Rosenthal1

Institut f̈ur Mathematik,
Universiẗat Z̈urich,

CH-8057 Z̈urich, Switzerland.
email: {cak, rosen, sridhara}@math.unizh.ch

Abstract— We present a construction of LDPC codes that have
minimum pseudocodeword weight equal to the minimum dis-
tance, and perform well with iterative decoding. The construction
involves enumerating a d-regular tree for a fixed number of
layers and employing a connection algorithm based on mutually
orthogonal Latin squares to close the tree. Methods are presented
for degreesd = ps and d = ps+1, for p a prime, – one of which
includes the well-known finite-geometry-based LDPC codes.

I. I NTRODUCTION

Low Density Parity Check (LDPC) codes are widely ac-
knowledged to be good codes due to their near Shannon-
limit performance when decoded iteratively. However, many
structure-based constructions of LDPC codes fail to achieve
this level of performance, and are often outperformed by ran-
dom constructions. (Exceptions include the finite-geometry-
based LDPC codes (FG-LDPC) of [1], which were later
generalized in [2].) Moreover, there are discrepancies between
iterative and maximum likelihood (ML) decoding performance
of short to moderate blocklength LDPC codes. This behavior
has recently been attributed to the presence of so-called
pseudocodewordsof the LDPC constraint graphs, which are
valid solutions of the iterative decoder which may or may not
be optimal [3]. Analogous to the role of minimum Hamming
distance,dmin, in ML-decoding, the minimal pseudocodeword
weight, wmin, has been shown to be a leading predictor of
performance in iterative decoding. Furthermore, the errorfloor
performance of iterative decoding is dominated by minimal
weight pseudocodewords. Although there exist pseudocode-
words with weight larger thandmin that have adverse affects
on decoding, pseudocodewords with weightwmin < dmin are
especially problematic [4].

The Type I-A construction and certain cases of the Type II
construction presented in this paper are designed so that the
resulting codes have minimal pseudocodeword weight equal
to the minimum distance of the code, and consequently, these
problematic low-weight pseudocodewords are avoided. The
resulting codes have minimum distance which meets the lower
tree bound originally presented in [5], and sincewmin shares
the same lower bound [4], [6], and is upper bounded bydmin,
the proposed constructions havewmin = dmin. It is worth
noting that this property is also a characteristic of some ofthe
FG -LDPC codes [2], and indeed, the projective-geometry-
based codes of [1] arise as special cases of our Type II

1This work was supported by NSF Grant No. CCR-ITR-02-05310.

construction. Furthermore, the Type I-B construction presented
herein is a modification of the Type I-A construction, and
it yields a family of codes with a wide range of rates and
blocklengths that are comparable to those obtained from finite
geometries.

We now present the tree bound onwmin derived in [6].
Theorem 1.1: LetG be a bipartite LDPC constraint graph

with smallest left (variable node) degreed and girth g. Then
the minimal pseudocodeword weightwmin (for the AWGN/BSC
channels) is lower bounded by

wmin ≥

{

1 + d+ d(d − 1) + d(d− 1)2 + . . . + d(d− 1)
g−6

4 ,
g

2
odd

1 + d + d(d− 1) + . . . + d(d − 1)
g−8

4 + (d− 1)
g−4

4 ,
g

2
even

This bound is also the tree bound on the minimum distance
established by Tanner in [5]. And since the set of pseudocode-
words includes all codewords, we havewmin ≤ dmin. In the
following sections we present two construction techniquesof
LDPC codes wherein for certain cases,wmin = dmin.

II. PRELIMINARIES

The connection algorithms for the tree constructions Type
I-B and Type II are based on mutually orthogonal Latin
squares. A well-known construction of a family of mutually
orthogonal Latin squares of orderps, a power of a prime,
may be found in [7]. LetM (1),M (2), . . . ,M (ps

−1) denote
ps − 1 mutually orthogonal Latin squares (MOLS) of order
ps. Let the rows (and columns) of each square be indexed
by the integers0, 1, 2, . . . , ps − 1. Without loss of generality,
assume that the first column of each of the Latin squares
is [0, 1, 2, . . . , ps − 1]T . In addition, define a new square of
size ps × ps, denotedM (0), where each column ofM (0) is
[0, 1, 2, . . . , ps − 1]T .

III. T REE-BASED CONSTRUCTION: TYPE I

In the Type I construction, first ad-regular tree of alternating
variable and constraint node layers is enumerated from a root
variable node (layerL0) for ℓ layers. Ifℓ is odd (respectively,
even), the final layerLℓ−1 is composed of variable nodes
(respectively, constraint nodes). Call this treeT . The treeT
is then reflected across an imaginary horizontal axis to yield
another tree,T ′, and the variable and constraint nodes are
reversed. That is, if layerLi in T is composed of variable
nodes, then the reflection ofLi, call it L′

i, is composed of
constraint nodes in the reflected tree,T ′. The union of these
two trees, along with edges connecting the nodes in layers
Lℓ−1 and L′

ℓ−1 according to a connection algorithm that is

http://arxiv.org/abs/cs/0506042v1

described next, comprise the graph representing a Type I
LDPC code. We now present two connection schemes that
can be used in this Type I model, and discuss the resulting
codes.

A. Type I-A

For d = 3, the Type I-A construction yields ad-regular
LDPC constraint graph having1 + d + d(d − 1) + . . . +

d(d − 1)
g−4

2 variable and constraint nodes, and girthg. The
treeT has g

2 layers. To connect the nodes inL g

2
−1 to L′

g

2
−1,

first label the variable (resp., constraint) nodes inL g

2
−1

(resp., L′
g

2
−1) when g

2 is odd, as v0, v1, . . . , v2
g

2
−2

−1
,

v
2

g

2
−2 , . . . , v2·2

g

2
−2

−1
, v

2·2
g

2
−2 , . . . , v3·2

g

2
−2

−1
(resp.,

c0, c1, . . . , c3·2
g

2
−2

−1
). The nodes v0, v1, . . . , v2

g

2
−2

−1

form the0th class, the nodesv
2

g

2
−2 , . . . , v2·2

g

2
−2

−1
form the

1st class, and the nodesv
2·2

g

2
−2 , . . . , v3·2

g

2
−2

−1
form the

2nd class; classify the constraint nodes in a similar manner.
In addition, define three permutationsπ(·), τ(·), τ ′(·) of the
set{0, 1, . . . , 2

g

2
−2 − 1} as follows. The nodes inL g

2
−1 and

L′
g

2
−1 are connected as follows:

1) For i = 0, 1, and j = 0, 1, . . . , 2
g

2
−2 − 1, the variable

nodev
j+i·2

g

2
−2 is connected to nodesc

π(j)+i·2
g

2
−2 and

c
τ(j)+(i+1)·2

g

2
−2 .

2) For i = 2, andj = 0, 1, . . . , 2
g

2
−2−1, the variable node

v
j+i·2

g

2
−2 is connected to nodesc

π(j)+2·2
g

2
−2 andcτ ′(j).

The permutations for the casesg = 6, 8, 10, 12 are given
below. The above construction can be extended for higherg in
a natural way and we are working on an explicit closed form
expression for the permutationsπ, τ, τ ′ for higherg.

g = 6, π = τ = τ
′

= (0)(1), the identity permutation.

g = 8, π = (0)(2)(1, 3), τ = (0)(2)(1, 3), τ ′ = (0, 2)(1)(3).

g = 10, π = (0)(2)(4)(6)(1, 5)(3, 7), τ = (0)(2)(4)(6)(1, 7)(3, 5),

τ
′ = (0, 4)(2, 6)(1, 3)(5, 7).

g = 12, π = (0)(4)(8)(12)(2, 6)(10, 14)(1, 9)(3, 15)(5, 13)(7, 11),

τ = (0)(4, 12)(8)(2, 6, 10, 14)(1, 15, 13, 11)(3, 9, 7, 5),

τ
′ = (0, 8)(4, 12)(2, 14)(6, 10)(1, 3, 5, 7)(9, 11, 13, 15).

When g
2 is odd, the minimum distance of the resulting code

meets the tree bound, and hence,dmin = wmin. When g

2 is
even,dmin is strictly larger than the tree bound; we believe
however, thatwmin is equal todmin in this case as well.
Figure 1 illustrates the general construction procedure and
Figure 2 shows a girth 10 Type I-A LDPC constraint graph.

B. Type I-B

For d = ps, p a prime, the Type I-B construction yields
a d-regular LDPC constraint graph having1 + d + d(d −
1) variable and constraint nodes, and girth6. The treeT
has 3 layersL0, L1, and L2. L2 (resp.,L′

2) is composed
of ps sets {Si}

ps
−1

i=0 of ps − 1 variable (resp., constraint)
nodes in each set; the setSi corresponds to the children
of branch i of the root node. LetSi (resp., S′

i) contain
the variable (resp., constraint) nodesvi,1, vi,2, . . . , vi,ps−1

L’l−1

L l−1

L 0

L 1

L 2

L’2

L’1

L’0

v0v1v2v3v4v5

c0c1c2c3c4c5 2l−1
c

2l−1
c +1

2l−2
v 2l−2

v +1
2l−1
v 2l−1

v +1

2l−2
c +12l−2

c

Fig. 1. Tree construction of Type I-A LDPC code.

c1 c2 c3 c4 c5 c6 c7c8 c9 c10 c11 c12 c13 c14 c15c16 c17c18 c19 c20 c21c22 c23c0

v1 v2 v3 v4 v5 v6 v7v8 v9 v10 v11 v12 v13 v14 v15v16 v17v18 v19 v20 v21v22 v23v0

Fig. 2. Type I-A LDPC constraint graph having degreed = 3 and girth
g = 10.

(resp., ci,1, ci,2, . . . , ci,ps−1). To use MOLS of orderps in
the connection algorithm, an imaginary node,vi,0 (resp.,ci,0)
is temporarily introduced into each setSi (resp, S′

i). The
connection algorithm proceeds as follows:

1) Let xt(i, j) denote the(j, t)th entry of the squareM (i)

defined in Section II. Fori = 0, . . . , ps − 1 and j =
0, . . . , ps − 1, connect variable nodevi,j to constraint
nodesc0,x0(i,j), c1,x1(i,j), . . . , cps−1,xps−1(i,j).

2) Delete all imaginary nodes{vi,0, ci,0}
ps

−1
i=0 and the edges

incident on them.
3) For i = 1, . . . , ps − 1, delete the edge connectingv0,i

to c0,i.
The resultingd-regular constraint graph represents the Type I-
B LDPC code. Figure 3 illustrates the construction procedure
and Figure 4 provides a specific example of a Type I-B LDPC
constraint graph withd = 4; the squares used for constructing
this graph are
[

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

]

,

[

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

]

,

[

0 2 3 1

1 3 2 0

2 0 1 3

3 1 0 2

]

,

[

0 3 1 2

1 2 0 3

2 1 3 0

3 0 2 1

]

.

The Type I-B algorithm yields LDPC codes having a wide
range of rates and blocklengths that are comparable to, but
different from, the two-dimensional LDPC codes from finite
Euclidean geometries [1], [2]. The Type I-B LDPC codes
are ps-regular with girth six, blocklengthN = p2s + 1, and
distancedmin ≥ ps + 1. For degrees of the formd = 2s, the
resulting Type I-B codes have very good rates, above 0.5, and
perform well with iterative decoding.

IV. T REE-BASED CONSTRUCTION: TYPE II

In the Type II construction, first ad-regular treeT of
alternating variable and constraint node layers is enumerated

v1,1v1,0
v1,2 vp −1,0s svp −1,1 svp −1,p −1s

c1,1c1,0 c1,2 c1,p −1 cp −1,0s cp −1,1s cp −1,p −1ss

v0,p −1sv0,2v0,1

c0,1c0,0 c0,2 c0,p −1
s

sv1,p −1

s

v0,0

Fig. 3. Tree construction of Type I-B LDPC code. (Shaded nodes are
imaginary nodes and dotted lines are imaginary lines.)

c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 c3,1 c3,2 c3,3c0,1 c0,2 c0,3c0,0 c1,0 c2,0 c3,0

v0,1 v0,2 v0,3v0,0 v1,1 v1,2 v1,3v1,0 v2,1 v2,2 v2,3v2,0 v3,1 v3,2 v3,3v3,0

Fig. 4. Type I-B LDPC constraint graph having degreed = 4 and girth
g = 6.

from a root variable node (layerL0) for ℓ layers, as in Type I.
The treeT is not reflected; rather, a single layer of(d−1)ℓ−1

nodes is added to form layerLℓ. If ℓ is odd (resp., even), this
layer is composed of constraint (resp., variable) nodes. The
union ofT andLℓ, along with edges connecting the nodes in
layersLℓ−1 andLℓ according to a connection algorithm that
is described next, comprise the graph representing a Type II
LDPC code. We now present the connection scheme that is
used for this Type II model, and discuss the resulting codes.
The connection algorithm forℓ = 3 and ℓ = 4 proceeds as
follows.

A. ℓ = 3

The d constraint nodes inL1 are labeledB0, B1, . . . , Bps

to represent thed branches stemming from the root
node, and thed(d − 1) variable nodes in the third
layer L2 are labeled as B0,0, B0,1, . . . , B0,ps−1,
B1,0, . . . , B1,ps−1, . . ., Bps,0, . . . , Bps,ps−1. The p2s

constraint nodes in the final layerLℓ = L3 are labeled
A0,0, A0,1, . . . , A0,ps−1, A1,0, A1,1, . . . , A1,ps−1, . . .,
Aps−1,0, Aps−1,1, . . . , Aps−1,ps−1.

1) The constraint nodes inL3 are grouped intod− 1 = ps

classes ofd − 1 = ps nodes in each class. Similarly,
the variable nodes inL2 are grouped intod = ps +
1 classes ofd − 1 = ps nodes in each class. Those
nodes descending fromB0 form the 0th class, those
descending fromB1 form the first class, and so on.

2) Each of the variable nodes descending fromB0 is
connected to all the constraint nodes of one class.

That is, B0,0 is connected toA0,0, A0,1, . . . , A0,ps
−1,

B0,1 is connected toA1,0, A1,1, . . . , A1,ps−1, and in
general,B0,k is connected toAk,0, Ak,1, . . . , Ak,ps−1

which correspond to the constraint nodes in thekth

class.
3) Let xt(i, j) denote the(j, t)th entry ofM (i−1).
4) Then connect the variable nodeBi,j to the constraint

nodes
A0,x0(i,j), A1,x1(i,j), A2,x2(i,j), . . . , Aps

−1,xps−1(i,j).

Figure 5 illustrates the construction procedure and Figure6
provides an example of a Type II LDPC constraint graph with
degreed = 4 and girthg = 6; the squares used for constructing
this example are

M (0) =
[

0 0 0

1 1 1

2 2 2

]

, M (1) =
[

0 1 2

1 2 0

2 0 1

]

, M (2) =
[

0 2 1

1 0 2

2 1 0

]

.

The ratio of minimum distance to blocklength of the codes
is at least 2+ps

1+ps+p2s , and the girth is six. For degreesd of
the form d = 2s + 1, the tree bound on minimum distance
and minimum pseudocodeword weight [5], [6] is met, i.e.,
dmin = wmin = 2 + 2s, for the Type II,ℓ = 3, LDPC codes.

B. Relation to finite geometry codes

The codes that result from thisℓ = 3 construction
correspond to the two-dimensional projective-geometry-based
LDPC (PG LDPC) codes of [2]. With a little modification
of the Type II construction, we can also obtain the two-
dimensional Euclidean-geometry-based LDPC codes of [2].

Since a two-dimensional Euclidean geometry may be ob-
tained by deleting certain points and line(s) of a two-
dimensional projective geometry, the graph of a two-
dimensional EG-LDPC code [2] may be obtained by perform-
ing the following operations on the Type II,ℓ = 3, graph:

1) In the treeT , the root node along with its neighbors,
i.e., the constraint nodes in layerL1, are deleted.

2) Consequently, the edges from the constraint nodes
B0, . . . , Bps to layerL2 are also deleted.

3) At this stage, the remaining variable nodes have degree
ps, and the remaining constraint nodes have degree
ps+1. Now, a constraint node from layerL3 is chosen,
say, constraint nodeA0,0. This node and its neighboring
variable nodes and the edges incident on them are
deleted. Doing so removes exactly one variable node
from each class ofL2, and the degrees of the remaining
constraint nodes inL3 are lessened by one. Thus, the
resulting graph is nowps-regular with a girth of six, has
p2s−1 constraint and variable nodes , and corresponds to
the two-dimensional Euclidean-geometry-based LDPC
codeEG(2, ps) of [2].

C. ℓ = 4

1) The tree T is now enumerated for four layers,
with the nodes in L0, L1, and L2 labeled as
in the ℓ = 3 case. For i = 0, . . . , ps, the
constraint nodes in theith class ofL3 are labeled
Bi,0,0, Bi,0,1, . . . , Bi,0,ps−1, Bi,1,0, Bi,1,1, . . . , Bi,1,ps−1,
. . ., Bi,ps−1,0, . . . , Bi,ps−1,ps−1.

B 0 B 1 B p

B 0,0 B 0,p −1 B 1,0 B 1,p −1 B p ,0 B p ,p −1

A 0,p −1A 0,0 A 1,p −1 A p −1,0A 1,0 A p −1,p −1

B 0,1

B

s

s ss s s

s s s s s

Fig. 5. Tree construction of girth 6 Type II (ℓ = 3) LDPC code.

B 0

B 0,0 B 1,0
B 1,1 B 1,2 B 2,0 B 2,1 B 2,2 B 3,0 B 3,1 B 3,2

B 3B 2B 1

B 0,1 B 0,2

A 2,0 A 2,1A 2,2A 0,2A 0,0 A 0,1 A 1,0 A 1,1 A 1,2

B

Fig. 6. Type II LDPC constraint graph having degreed = 4 and girthg = 6.
(Shaded nodes highlight a minimum weight codeword.)

2) Thep3s variable nodes in the final layerL4 are labeled
A0,0,0, A0,0,1, . . . , A0,0,ps−1, A0,1,0, A0,1,1, . . . , A0,1,ps−1,
. . . Aps−1,0,0, Aps−1,0,1, . . . , Aps−1,0,ps−1,
. . . , Aps−1,ps−1,0, Aps−1,ps−1,1, . . . , Aps−1,ps−1,ps−1.

3) For 0 ≤ i ≤ ps − 1, 0 ≤ j ≤ ps − 1, connect the
variable nodeB0,i,j , that is in the0th class ofL3, to
the constraint nodesAi,j,0, Ai,j,1, . . . , Ai,j,ps

−1.

4) Let xt(i, k) = M (i−1)(k, t), the (k, t)th entry of
M (i−1), and letyt(i, j) = M (i)(j, t), the (j, t)th entry
of M (i∗), wherei∗ = i mod ps.

5) Then, for1 ≤ i ≤ ps, 0 ≤ j, k ≤ ps − 1, connect the
variable nodeBi,j,k to the constraint nodes

A0,x0(i,k),y0(j,k), A1,x1(i,k),y1(j,k), . . . , Aps
−1,xps−1(i,k),yps−1(j,k).

The Type II,ℓ = 4, LDPC codes have girth eight, minimum
distancedmin ≥ 2(ps+1), and blocklengthN = 1+ps+p2s+
p3s. (We believe that the tree bound on the minimum distance
is actually met for all the Type II,ℓ = 4, codes, i.e.dmin =
wmin = 2(ps+1).) Figure 7 illustrates the general construction
procedure. Ford = 3, the Type II, ℓ = 4, LDPC constraint
graph as shown in Figure 8 corresponds to the(2, 2)-Finite-
Generalized-Quadrangles-based LDPC (FGQ LDPC) code of
[8]; the squares used for constructing this code are

M (0) =
[

0 0

1 1

]

, M (1) =
[

0 1

1 0

]

.

We believe that the Type II,ℓ = 4, construction results in
other FGQ LDPC codes for other choices ofd. The Type
II construction algorithm can be modified for largerℓ by
involving more iterations of the MOLS in the connection
scheme, as will be discussed in a forthcoming paper.

B 0 B 1 B p

B 0,0 B 0,p −1 B 1,0 B 1,p −1 B p ,0 B p ,p −1

A 0,0,0 A 0,0,p −1

B 1,p −1,p −1B 1,p −1,0
B 1,0,p −1B 1,0,0B 0,p −1,p −1B 0,p −1,0B 0,0,0 B p ,0,p −1B p ,0,0 B p ,p −1,p −1B p ,p −1,0B 0,0,p −1

A 0,p −1,0 A 0,p −1,p −1 A p −1,p −1,0A p −1,0,0
A p −1,0,p −1 Ap −1,p −1,p −1

B

s

s s s s s s s s

s s s

s s s s s

s s s s s

s s

s s

s s s

s s

Fig. 7. Tree construction of girth 8 Type II (ℓ = 4) LDPC code.

B 0 B 1 B 2

B 0,0 B 0,1 B 1,0 B 1,1 B 2,0 B 2,1

B 0,0,0 B 0,0,1 B 0,1,0 B 0,1,1 B 1,0,0 B 1,0,1 B 1,1,0 B 1,1,1 B 2,0,0 B 2,0,1 B 2,1,0 B 2,1,1

A 0,0,0 A 0,0,1 A 0,1,0 A 0,1,1 A 1,0,0 A 1,0,1 A 1,1,0 A 1,1,1

B

Fig. 8. Type II LDPC constraint graph having degreed = 3 and girthg = 8.
(Shaded nodes highlight a minimum weight codeword.)

V. SIMULATION RESULTS

Figures 9, 10, 11, 12 show the bit-error-rate performance of
Type I-A, Type I-B, Type II girth six, and Type II girth eight
LDPC codes, respectively over a binary input additive white
Gaussian noise channel with min-sum iterative decoding. The
performance of regular or semi-regular randomly constructed
LDPC codes of comparable rates and blocklengths are also
shown. (All of the random LDPC codes compared in this paper
have a variable node degree of three and are constructed from
the online LDPC software available at

http://www.cs.toronto.edu/̃ radford/ldpc.software.html.)
Figure 9 shows that the Type I-A LDPC codes perform

substantially better than their random counterparts. Figure 10
reveals that the Type I-B LDPC codes perform better than
comparable random LDPC codes at short blocklengths; but as
the blocklengths increase, the random LDPC codes tend to
perform better in the waterfall region. Eventually however, as
the SNR increases, the Type I-B LDPC codes outperform the
random ones since, unlike the random codes, they do not have
a prominent error floor. Figure 11 reveals that the performance
of Type II girth-six LDPC codes is also significantly better
than comparable random codes; these codes correspond to
the two dimensional PG LDPC codes of [2]. Figure 12
indicates the performance of Type II girth-eight LDPC codes;
these codes perform comparably to random codes at short
blocklengths, but at large blocklengths, the random codes
perform better as they have larger relative minimum distances
compared to the Type II girth-eight LDPC codes.

As a general observation, min-sum iterative decoding of

http://www.cs.toronto.edu/~

1 2 3 4 5 6 7 8 9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Performance of Type I versus Random LDPCs

Type I, d=3,g=6,N=10,rate=0.400
Random, N=10,rate=0.400
Type I, d=3,g=8,N=22,rate=0.182
Random, N=22,rate=0.182
Type I, d=3,g=10,N=46,rate=0.217
Random, N=46,rate=0.217
Type I, d=3,g=12,N=94,rate=0.148
Random, N=94,rate=0.148

Type I

Random

Fig. 9. Performance of Type I-A versus Random LDPC codes withmin-sum
iterative decoding.

most of the tree-based LDPC codes (particularly, Type I-A,
Type II, and some Type I-B) presented here did not typically
reveal detected errors, i.e., errors caused due to the decoder
failing to converge to any valid codeword within the maximum
specified number of iterations. Detected errors are caused
primarily due to the presence of pseudocodewords, especially
those of minimal weight. We think that the lack of detected
errors with iterative decoding of these LDPC codes is primarily
due to their good minimum pseudocodeword weightwmin.

VI. CONCLUSIONS

The Type I construction yields a family of LDPC codes
that, to the best of our knowledge, do not correspond to
any of the LDPC codes obtained from finite geometries or
other geometrical objects. The two tree-based constructions
presented in this paper yield a wide range of codes that
perform well when decoded iteratively, largely due to the
maximized minimal pseudocodeword weight. However, the
overall minimum distance of the code is relatively small.
Constructing codes with larger minimum distance, while still
maintainingdmin = wmin, remains an open problem.

REFERENCES

[1] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite
geometries: A rediscovery and new results”,IEEE Trans. of Information Theory,
vol. IT-47, no. 7, pp. 2711-2736, Nov. 2001.

[2] S. Lin, H. Tang, Y. Kou, J. Xu, and K. Abdel-Ghaffar, “Codes on Finite Geometries”,
Proceedings of the 2001 IEEE Info. Theory Workshop, (Cairns), Sept. 2-7, 2001.

[3] R. Koetter and P. O. Vontobel, “Graph-covers and iterative decoding of finite length
codes”, in Proceedings of the IEEE International Symposium on Turbo Codes and
Applications, (Brest, France), Sept. 2003.

[4] C. Kelley and D. Sridhara, “Pseudocodewords of Tanner Graphs”, Submitted to
IEEE Transactions on Information Theory.

[5] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions
on Information Theory, vol. IT-27, no. 5, pp. 533-547, Sept. 1981.

[6] C. Kelley, D. Sridhara, J. Xu, and J. Rosenthal, “Pseudocodeword-weights and
Stopping sets”, inProceedings of the IEEE International Symposium on Information
Theory, (Chicago, USA), p. 150, June 27 - July 3, 2004.

[7] F. S. Roberts,Applied Combinatorics.Prentice Hall, New Jersey, 1984.
[8] P. O. Vontobel and R. M. Tanner, “Construction of codes based on finite generalized

quadrangles for iterative decoding”, inProceedings of the IEEE International
Symposium on Information Theory, (Washington DC), p. 223, June 24 - 29, 2001.

1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Performance of Type I−B versus Random LDPCs

Type I−B, d=3,g=6,N=10,rate=0.300
Random, N=10,rate=0.300
Type I−B, d=4,g=6,N=17,rate=0.294
Random, N=17,rate=0.294
Type I−B, d=5,g=6,N=26,rate=0.269
Random, N=26,rate=0.269
Type I−B, d=8,g=6,N=65,rate=0.477
Random, N=65,rate=0.477
Type I−B, d=16,g=6,N=257,rate=0.626
Random, N=257,rate=0.626
Type I−B, d=32,g=6,N=1025,rate=0.732
Random, N=1025,rate=0.732

Type I−B

Random

Fig. 10. Performance of Type I-B versus Random LDPC codes with min-sum
iterative decoding.

1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

Performance of Type II versus Random LDPCs (Girth = 6)

Type II, d=3,N=7,rate=0.42
Random, N=7,rate=0.42
Type II, d=5,N=21,rate=0.52
Random, N=21,rate=0.52
Type II, d=9,N=73,rate=0.61
Random, N=73,rate=0.61
Type II, d=17,N=273,rate=0.69
Random, N=273,rate=0.69
Type II, d=33,N=1057,rate=0.77
Random, N=1057,rate=0.77

Type II

Random

Fig. 11. Performance of girth 6 Type II versus Random LDPC codes with
min-sum iterative decoding.

1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Performance of Type II versus Random LDPCs (Girth = 8)

Type II, d=3,N=15,rate=0.333
Random, N=15,rate=0.333
Type II, d=5,N=85,rate=0.412
Random, N=85,rate=0.412
Type II, d=9,N=585,rate=0.444
Random, N=585,rate=0.444
Type II, d=4,N=40,rate=0.325
Random, N=40,rate=0.325

Type II

Random

Fig. 12. Performance of girth 8 Type II versus Random LDPC codes with
min-sum iterative decoding.

	Introduction
	preliminaries
	Tree-based Construction: Type I
	Type I-A
	Type I-B

	Tree-based Construction: Type II
	 = 3
	Relation to finite geometry codes
	= 4

	Simulation Results
	Conclusions
	References

