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Abstract— In order to understand the performance of a code
under maximum-likelihood (ML) decoding, it is crucial to kn ow
the minimal codewords. In the context of linear programming
(LP) decoding, it turns out to be necessary to know the minimal
pseudo-codewords. This paper studies the minimal codewords
and minimal pseudo-codewords of some families of codes derived
from projective and Euclidean planes. Although our numerical
results are only for codes of very modest length, they suggest that
these code families exhibit an interesting property. Namely, all
minimal pseudo-codewords that are not multiples of a minimal
codeword have an AWGNC pseudo-weight that is strictly larger
than the minimum Hamming weight of the code. This observation
has positive consequences not only for LP decoding but also for
iterative decoding.

I. I NTRODUCTION

Our motivation for looking at minimal codewords and
minimal pseudo-codewords (PCWs) is twofold. On the one
hand we would like to be able to give performance guarantees
of the LP decoder, on the other hand, the connection made
by Koetter and Vontobel [1], [2] between iterative decoding
and LP decoding suggests that results for LP decoding have
immediate implications for iterative decoding. In this paper we
focus solely on certain families of codes based on projective
and Euclidean planes. One of the reasons why these families
are worthwhile study objects is that in the past, several groups
of authors have experimentally observed that codes from these
families can perform very well under iterative decoding, see
e.g. [3], [4]. Another reason is that these families of codeshave
concise descriptions and large automorphism groups which
may potentially be used to simplify their analysis.

More precisely, the codes under investigation are the fam-
ilies of codes that were called type-I PG-LDPC and type-I
EG-LDPC codes in [4]. Type-I PG-LDPC codes are defined
as follows. Letq , 2s for some positive integers and consider
a (finite) projective planePG(2, q) (see e.g. [5]) withq2+q+1
points andq2 + q+1 lines: each point lies onq+1 lines and
each line containsq+1 points.1 A standard way of associating
a parity-check matrixH of a binary linear code to a finite
geometry is to let the columns ofH correspond to the set of
points, to let the rows ofH correspond to the set of lines, and
finally to define the entries ofH according to the incidence
structure of the finite geometry. In this way, we can associate
to the projective planePG(2, q) the codeCPG(2,q) with parity-
check matrixH , HPG(2,q) whose parameters are:

1Note that the “2” in PG(2, q) stands for the dimensionality of the
geometry, which in the case of planes is2.

length n = q2 + q + 1
dimension k = n− 3s − 1
minimum Hamming distance dmin = q + 2
uniform column weight ofH wcol = q + 1
uniform row weight ofH wrow = q + 1
size ofH n× n

Type-I EG-LDPC codes are defined as follows. Letq , 2s

for some positive integers and consider a (finite) Euclidean
planeEG(2, q) (see e.g. [5]) withq2 points andq2 + q lines:
each point lies onq+1 lines and each line containsq points.
We essentially use the same procedure as outlined above in
order to associate a parity-check matrix to a finite geometry.
But before doing this, we modify the Euclidean plane slightly:
we select a point ofEG(2, q) and remove it together with the
q+1 lines through it. Doing so, we obtain anEG(2, q)-based
codeCEG(2,q) with parity-check matrixH , HEG(2,q) whose
parameters are:

length n = q2 − 1
dimension k = n− 3s + 1
minimum Hamming distance dmin = q + 1
uniform column weight ofH wcol = q
uniform row weight ofH wrow = q
size ofH n× n

Both families of codes have the nice property that with
an appropriate ordering of the columns and rows, the parity-
check matrix is a circulant matrix, meaning thatCPG(2,q)

and CEG(2,q) are cyclic codes. This fact can e.g. be used
for efficient encoding. Such symmetries can also substantially
simplify the analysis; let us point out that the automorphism
groups ofCPG(2,q) andCEG(2,q) actually contain many more
automorphisms besides the cyclic-shift automorphism implied
by the cyclicity of the codes.

The structure of the rest of the paper is as follows. Sec. II
discusses ML and LP decoding and Secs. III and IV introduce
minimal codewords and minimal PCWs, respectively. The aim
of these earlier sections is to set the stage for Sec. V and to
enable the reader to appreciate the numerical results presented
therein for certain selected codes. Finally, in Sec. VI we state
some concluding remarks.

II. ML AND LP DECODING

In this section we briefly review ML and LP decoding.
Consider a binary linear codeC of lengthn and dimensionk
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that is used for data transmission over a memoryless binary-
input channel. The codeword that is transmitted will be called
x whereas the received vector will be calledy. Based on the
received vector, we can define the log-likelihood ratios (LLRs)
to beλi , log

(

pYi|Xi
(yi|0)/pYi|Xi

(yi|1)
)

, i = 1, . . . , n. ML
decoding can then be cast as

x̂ , argmin
x∈C

n
∑

i=1

xiλi, (1)

Letting conv(C) be the convex hull ofC in R
n, the above ML

decoding rule can also be formulated as

x̂ , arg min
x∈conv(C)

n
∑

i=1

xiλi. (2)

Unfortunately, for most codes of interest, the description
complexity of conv(C) grows exponentially in the block
length and therefore finding the minimum in (2) with a linear
programming solver is highly impractical for reasonably long
codes.2

The next step is to use a standard approach from optimiza-
tion practice: we replace the minimization overconv(C) by a
minimization over some easily describable polytopeP that is
a relaxation ofconv(C):

x̂ , argmin
x∈P

n
∑

i=1

xiλi. (3)

If P is strictly larger thanconv(C) then the decision rule
in (3) obviously represents a sub-optimal decoder. A relaxation
that works particularly well for LDPC codes is given by
the following approach [6], [7]. LetC be described by an
m×n parity-check matrixH with rowsh1,h2, . . . ,hm. Then
the polytopeP , P(H), in this context also called the
fundamental polytope [1], is defined as

P ,

m
⋂

i=1

conv(Ci) with Ci ,

{

x ∈ {0, 1}n
∣

∣

∣
hix

T = 0 mod 2
}

.

Note thatP is a convex set within[0, 1]n that containsconv(C)
but whose description complexity is much smaller than the
one of conv(C). Points in the setP will be called PCWs.
Because the setP is usually strictly larger thanconv(C), it
can obviously happen that the decoding rule in (3) delivers
a vertex ofP that is not a codeword. Such vertices are the
reason for the sub-optimality of LP decoding (cf. [1], [7]).
Note thatP(H) is a function of the parity-check matrixH
that describes the codeC; different parity-check matrices for
the same code might therefore lead to different fundamental
polytopes.

III. M INIMAL CODEWORDS

Although ML decoding is often impractical, knowing
bounds on the block error rate of an ML decoder can help
in assessing the performance of sub-optimal but practical
decoding algorithms.

Definition 1 (cf. e.g. [8], [9]): Let C be a binary linear
code of lengthn. Forx ∈ C, let DML

x
,

{

λ ∈ R
n
∣

∣ x′ ·λT ≥

2Exceptions to this observation include for example the class of convolu-
tional codes with not too many states.

x · λT for all x′ ∈ C \ {x}
}

be the region in the LLR space
where the ML decoder decides in favor of the codewordx.3

�

In the following, we will assume that we use a binary
linear codeC for data transmission over a binary-input output-
symmetric channel. For this setup, when studying the ML
decoder in (1) or (2), we can without loss of generality assume
that the zero codeword was sent, because all decision regions
are congruent.

Our interest in the following definition will become apparent
in Th. 3 below.

Definition 2: Let the support of a vectorx be defined as
supp(x) ,

{

i
∣

∣xi 6= 0
}

and letC be a binary code. A non-zero
codewordx ∈ C is calledminimal if and only if its support
does not (strictly) contain the support of any other non-zero
codeword as a proper subset. The set of all minimal codewords
of C will be denoted byM(C). �

Theorem 3 (cf. e.g. [9]):Let C be a binary linear code of
length n. The decision regionDML

x of a codewordx ∈ C
shares a facet with the decision regionDML

0
of the zero

codeword if and only ifx ∈ M(C). �

Therefore, knowing the minimal codewords of the codeC
is sufficient in order to assess its ML decoding performance.
(Further results about minimal codewords can e.g. be found
in [8]–[11].)

IV. T HE FUNDAMENTAL CONE AND

M INIMAL PSEUDO-CODEWORDS

For LP decoding of a binary linear code that is used for data
transmission over a binary-input output-symmetric channel, it
is sufficient to consider the part of the fundamental polytope
P around the vertex0, cf. [1]. (See also [6], [7] that discuss
this so-called “C-symmetry” property.)

Definition 4 ([1], [7]): Let C be an arbitrary binary linear
code and letH be its parity-check matrix. We letJ , J (H)
be the set of row indices ofH and we letI , I(H) be the set
of column indices ofH, respectively. For eachj ∈ J , we let
Ij , Ij(H) ,

{

i ∈ I | hji = 1
}

. We define thefundamental
coneK(H) of H to be the set of vectorsω ∈ R

n that satisfy

∀i ∈ I : ωi ≥ 0,

∀j ∈ J , ∀i ∈ Ij :
∑

i′∈Ij\{i}

ωi′ ≥ ωi.

�

The fundamental cone defined in Def. 4 is exactly the part of
the fundamental polytopeP around the vertex0 and stretched
to infinity. We note that ifω ∈ K(H), then alsoα ·ω ∈ K(H)
for anyα > 0. Moreover, for anyω ∈ K(H) there exists an
α > 0 (in fact, a whole interval ofα’s) such thatα·ω ∈ P(H).

For a given binary linear codeC with parity-check matrixH,
the importance of the setK(H) lies in the following fact. Let
DLP

0
,

{

λ ∈ R
n
∣

∣ ω ·λT ≥ 0 for all ω ∈ P(H)\{0}
}

be the
region where the LP decoder decides in favor of the codeword
0.4 It can easily be seen thatDLP

0
=

{

λ ∈ R
n
∣

∣ ω · λT ≥
0 for all ω ∈ K(H) \ {0}

}

. Therefore, when studying LP

3Note that during ML decoding, ties between decoding regionscan either
be resolved in a random or in a systematic fashion.

4Note that during LP decoding, ties between decoding regionscan either
be resolved in a random or in a systematic fashion.



decoding it is enough to knowK(H); all vectorsω ∈ K(H)
will henceforth be called PCWs.

Definition 5 ([1]): Let C be an arbitrary binary linear code
described by the parity-check matrixH whose fundamental
cone isK(H). A vectorω ∈ K(H) is called aminimal PCW
if the set{α ·ω | α ≥ 0} is an edge ofK(H). Moreover, the
set of all minimal PCWs will be calledMp(K(H)).5 �

For a given binary linear codeC with parity-check matrixH,
the importance of the setMp(K(H)) lies in the following fact.
From basic cone properties (cf. e.g. [12]), it can easily be seen
thatDLP

0 =
{

λ ∈ R
n
∣

∣ ω ·λT ≥ 0 for all ω ∈ Mp(K(H))
}

.
Therefore, the setMp(K(H)) completely characterizes the
behavior of the LP decoder.

Definition 6: Let C be an arbitrary binary linear code de-
scribed by the parity-check matrixH. The additive white
Gaussian noise channel (AWGNC) pseudo-weight [13] of
a PCW ω ∈ K(H) is defined to bewAWGNC

p (ω) =
||ω||21/||ω||22, where ||ω||1 and ||ω||2 are theL1- and L2-
norm ofω, respectively.6 �

The significance ofwAWGNC
p (ω) is the following: it can be

shown that the squared Euclidean distance from the point+1

in signal space (which corresponds to the codeword0) to the
plane

{

λ ∈ R
n | ω · λT = 0

}

is wAWGNC
p (ω).

Definition 7: Let C be an arbitrary binary linear code.
We define thecodeword weight enumeratorand theminimal
codeword weight enumeratorto be the polynomials

χ
CW
C (X) ,

∑

x∈C

X
wH(x) and χ

MCW
C (X) ,

∑

x∈M(C)

X
wH(x)

,

respectively. �

Definition 8: Let C be an arbitrary binary linear code de-
scribed by the parity-check matrixH. We define theminimal
PCW AWGNC pseudo-weight enumeratorto be the polynomial
(with potentially non-integer exponents)

χ
MPCW,AWGNC
H

(X) =
∑

[ω ]∈Mp(K(H))

X
wAWGNC

p (ω)
,

where the summation is over all equivalence classes of mini-
mal PCWs.7 �

Definition 9: Let C be an arbitrary binary linear code de-
scribed by the parity-check matrixH and letM′

p(K(H)) be
the set of all minimal PCWs that arenot multiples of minimal
codewords. We call the real-valued quantity

g(H) , min
ω∈M′

p(K(H))
w

AWGNC
p (ω)− w

min
H (C(H))

the pseudo-weight spectrum gap ofH. �

Using Cor. 8 in [1] one can show that for a randomly
constructed(wcol, wrow)-regular code with3 ≤ wcol < wrow

the pseudo-weight spectrum gap becomesstrictly negative
with probability one as the block length goes to infinity.
However, using Th. 1 in [14] one can show that for the
PG(2, q)- andEG(2, q)-based codes (with square parity-check
matrix as discussed in Sec. I) the pseudo-weight spectrum
gap is non-negative. In fact, we will see that for the codes

5Note that this definition implies that0 /∈ Mp(K(H)).
6We setwAWGNC

p (x) , 0 for x = 0. Note that forx ∈ {0, 1}n we have
wAWGNC

p (x) = wH(x), wherewH(x) is the Hamming weight ofx.
7Two PCWsω,ω′ ∈ K(H) are in the same equivalence class if there

exists anα > 0 such thatω = α ·ω′.

investigated in Sec. V the pseudo-weight spectrum gap is
significantly positive. We note that by applying simple per-
formance bounding techniques it can be shown that the larger
the gap is, the closer is the LP decoding performance (and
potentially also the iterative decoding performance [1]) to the
ML decoding performance as the SNR goes to infinity.

Before we turn to some numerical results about minimal
codewords and minimal PCWs, let us mention some related
work by Kashyap and Vardy [15] which discusses results that
characterize (minimal) stopping sets for finite-geometry-based
codes. This is of some relevance to this paper because it is
well-known that the support set of any PCW is a stopping
set and that for any stopping set there exists a PCW whose
support set equals that stopping set [1], [7].

V. NUMERICAL RESULTS

In this section we present minimal PCWs, weight enumer-
ators, and the pseudo-weight spectrum gap for some short
PG(2, q)- andEG(2, q)-based codes.

A. Type-I PG-LDPC code forq = 2

ThePG(2, 2)-based codeCPG(2,2) of type I has parameters
[n=7, k=3, dmin=4] and can be represented by the following
circulant parity-check matrix of size7× 7:

HPG(2,2) =

















1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

















.

The setM(C) of minimal codewords consists of the following
codewords:
(1, 0, 0, 1, 0, 1, 1), (1, 1, 0, 0, 1, 0, 1), (1, 1, 1, 0, 0, 1, 0), (0, 1, 1, 1, 0, 0, 1),

(1, 0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 1, 0), (0, 0, 1, 0, 1, 1, 1).

Obviously, all of them have Hamming weight4 and they are
all cyclic shifts of each other. Because the code has23 = 8
codewords in total, it turns that this code is special in the
following sense: there are no non-zero codewords that are not
minimal codewords.

The setMp(K(H)) of minimal codewords contains all the
elements fromM(C) plus the following PCWs that are not
codewords (we show one representative per equivalence class):
(1, 2, 2, 1, 2, 1, 1), (1, 1, 2, 2, 1, 2, 1), (1, 1, 1, 2, 2, 1, 2), (2, 1, 1, 1, 2, 2, 1),

(1, 2, 1, 1, 1, 2, 2), (2, 1, 2, 1, 1, 1, 2), (2, 2, 1, 2, 1, 1, 1).

All these minimal PCWs that are not codewords turn out to
be cyclic shifts of each other and to have AWGNC pseudo-
weight 100

16 = 6.25. The weight enumerators for this code are
therefore:

χ
CW
CPG(2,2)

(X) = X
0 + 7X4

,

χ
MCW
CPG(2,2)

(X) = 7X4
,

χ
MPCW,AWGNC
HPG(2,2)

(X) = 7X4 + 7X6.25
.

Hence, the pseudo-weight spectrum gap isg(HPG(2,2)) =
6.25− 4 = 2.25.

The codes introduced in Sec. I were based on square parity-
check matrices. However, the codePG(2, 2) can also be
described by a parity-check matrixH′

PG(2,2) of size 4 × 7



0 2 4 6 8 10 12 14 16 18 20
10

0

10
2

10
4

10
6

AWGNC pseudo−weight

N
um

be
r 

of
 m

in
im

al
 P

C
W

s

Fig. 1. Histogram of the AWGNC pseudo-weight of minimal PCWsof the
PG(2, 4)-based code. (Note that the y-axis is logarithmic.)

which is equivalent to the first four lines of theHPG(2,2). The
minimal PCWs that are not codewords turn out to be (we show
one representative per equivalence class):

(3, 2, 1, 1, 1, 0, 0), (0, 1, 2, 1, 1, 3, 0), (0, 1, 1, 1, 2, 0, 3), (0, 1, 1, 1, 1, 0, 0),

(2, 1, 1, 1, 0, 0, 1), (2, 1, 0, 1, 1, 1, 0), (1, 2, 1, 1, 1, 0, 0), (0, 1, 2, 1, 1, 1, 0),

(0, 1, 1, 1, 2, 0, 1), (0, 1, 1, 1, 0, 2, 1), (1, 0, 1, 1, 1, 2, 0), (1, 0, 1, 1, 1, 0, 2),

(0, 1, 0, 1, 1, 1, 2),

from which follows that

χ
MPCW,AWGNC
H′

PG(2,2)
(X) = 11X4 + 9X4.5

.

Note that the pseudo-weight spectrum gap isg(H′
PG(2,2)) =

4 − 4 = 0. Comparing the enumeratorχMPCW,AWGNC
HPG(2,2)

(X)

with the enumeratorχMPCW,AWGNC
H′

PG(2,2)
(X) it is apparent that the

performance of LP decoding using the second representation
will be worse than the performance of LP decoding using the
first representation. Based on iterative decoder simulations,
MacKay and Davey [16, Sec. 4] observed a similar perfor-
mance hierarchy between different representations of the same
code. (Note that the code under investigation in [16] was the
PG(2, 16)-based code.)

B. Type-I PG-LDPC code forq = 4

The parity-check matrixHPG(2,4) of the PG(2, 4)-based
codeCPG(2,4) has size21×21, uniform column and row weight
5, and yields a code with parameters[n=21, k=11, dmin=6].
The codeword weight enumerator and the minimal codeword
weight enumerator are

χ
CW
CPG(2,4)

(X) = X
0 + 168X6 + 210X8 + 1008X10

+ 280X12 + 360X14 + 21X16
,

χ
MCW
CPG(2,4)

(X) = 168X6 + 210X8 + 1008X10
,

respectively. Looking at these enumerators we see that all
codewords with Hamming weight6, 8, and10 are also mini-
mal codewords. Analyzing the set of all weight-6 codewords
one sees that they all have the same pattern, i.e. they can
all be obtained from a single weight-6 codeword by applying
a suitablePG(2, 4)-automorphism. The same is true for all
other sets of codewords with the same weight. This makes the
classification of all the codewords ofCPG(2,4), and in particular
of the minimal codewords ofCPG(2,4), relatively easy.

Instead of giving the formula forχMPCW,AWGNC
HPG(2,4)

(X), we
simply give its histogram (spectrum), cf. Fig. 1. The gap turns
out to beg(HPG(2,4)) = 9.8− 6 = 3.8.
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Fig. 2. Histogram of the AWGNC pseudo-weight of minimal PCWsof the
EG(2, 4)-based code. (Note that the y-axis is logarithmic.) Top: For15×15
parity-check matrixHEG(2,4), g(HEG(2,4)) =

169
19

−5 ≈ 8.89−5 = 3.89.
Middle: For 9 × 15 parity-check matrixH′

EG(2,4)
, g(H′

EG(2,4)
) = 49

9
−

5 ≈ 5.44 − 5 = 0.44. Bottom: For8 × 15 parity-check matrixH′′
EG(2,4)

,

g(H′′

EG(2,4)
) = 361

77
− 5 ≈ 4.69− 5 = −0.31.

C. Type-I PG-LDPC code forq = 8

Judging from some very preliminary results (based on
random search experiments) the pseudo-weight spectrum gap
g(HPG(2,8)) for the PG(2, 8)-based code seems to be at
least6.0.

D. Type-I EG-LDPC code forq = 4

The parity-check matrixHEG(2,4) of the EG(2, 4)-based
codeCEG(2,4) has size15×15, uniform column and row weight
4, and yields a code with parameters[n=15, k=7, dmin=5].
The codeword weight enumerator and the minimal codeword
weight enumerator are

χ
CW
CEG(2,4)

(X) = X
0 + 18X5 + 30X6 + 15X7

+ 15X8 + 30X9 + 18X10 +X
15

χ
MCW
CEG(2,4)

(X) = 18X5 + 30X6 + 15X7 + 15X8 + 30X9
,

respectively. Looking at these enumerators we see that all
codewords with Hamming weight5, 6, 7, 8, and 9 are
also minimal codewords. Analyzing the set of all weight-
5 codewords one sees that they all have the same pattern,
i.e. they can all be obtained from a single weight-5 codeword
by applying a suitableEG(2, 4)-automorphism. The same is
true for all other sets of codewords with the same weight.

The histograms (spectra) in Fig. 2 correspond to various
parity-check matrices that describeCEG(2,4). Fig. 2 (top)
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EG(2,4)−based code: SPA (after max. 8 Iterations)
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Fig. 3. Word error rate for various decoding algorithms together with some
upper and lower bounds. (See main text for explanations.)

shows the histogram forχMPCW,AWGNC
HPG(2,4)

(X); Fig. 2 (middle)

shows the histogram forχMPCW,AWGNC
H′

PG(2,4)
(X) whereH′

PG(2,4)

is a randomly selected9×15 submatrix (with column weights
at least2) of HPG(2,4); and finally Fig. 2 (bottom) shows
the histogram forχMPCW,AWGNC

H′′

PG(2,4)
(X) whereH′′

PG(2,4) is an

8× 15 submatrix (with five columns having weight only one)
of consecutive rows of the (circulant) matrixHPG(2,4). It
can easily be seen that for the parity-check matrices under
investigation those with more lines lead to more favorable
histograms.

In Fig. 3 we show various decoding simulation results for
data transmission over a binary-input AWGNC and lower
and upper bounds:HEG(2,4)-based sum-product algorithm
decoding,HEG(2,4)-based LP decoding,CEG(2,4)-based ML
decoding, an upper bound on LP decoding based on a union
of events upper bound, an upper bound on ML decoding based
on a union of events upper bound, and a lower bound on ML
decoding based on an inequality by de Caen as presented by
Séguin [17]. It can be seen that thanks to the knowledge of
minimal codewords and minimal PCWs we are able to obtain
bounds that are very tight from a certain SNR value on.

E. How the results were obtained

Let us briefly mention how the results for the minimal
PCWs were obtained. We used the program “lrs” [18] to search
edges in cones. For the codeCPG(2,4) we additionally used the
two-transitivity of the points of a projective plane in order to
formulate a simpler edge-enumeration subproblem which can
be solved efficiently and from which all the minimal PCWs
can be derived. There are various other ways to use the large
automorphism groups of these codes that help in simplifying
the edge-enumerating problem. Properties of minimal code-
words might also be used towards that goal.

VI. CONCLUDING REMARKS

We have investigated the minimal PCWs of some simple
PG(2, q)- andEG(2, q)-based binary linear codes and we have
introduced the notion of a pseudo-weight spectrum gap for a
parity-check matrix, a concept which is certainly worthwhile
to be further explored. Although our numerical results are for
codes of very modest size, to the best of our knowledge this is
the first study that tries toanalyticallyquantify the behavior of
PG(2, q)- andEG(2, q)-based binary linear codes under LP
and iterative decoding. Extending these results to somewhat
longer codes has the potential to explain many experimental
observations made in the past.
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