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Abstract— This paper provides details about experiments in
realistic, urban, and frequency flat channels with space-time
coding that specifically examines the impact of the number of
receive antennas and the design criteria for code selectionon the
performance. Also the performance characteristics are examined
of the coded modulations in the presence of finite size array
geometries. This paper gives some insight into which of the
theories are most useful in realistic deployments.

I. I NTRODUCTION

Over the past several years, there has been a great deal of
research to improve performance of wireless communications
in fading environments by exploiting transmitter and/or re-
ceiver diversity. The pioneering work by Telatar [1], Foschini
and Gans [2] showed that multiple antennas in a wireless
communication system can greatly improve performance. For
Lt transmit antennas andLr receive antennas in Rayleigh
fading, it was shown that with spatial independence there
are essentiallyLtLr levels of diversity available and there
aremin (Lt, Lr) independent parallel channels that could be
established. These information theoretic studies spawnedtwo
lines of work; one where the number of independent channels
is large [3] and one where the number of independent channels
is small [4], [5]. With eight years of intensive engineering
research and development effort after these insights, MAR
techniques are making a significant impact on how wireless
services are provided. Examples include the nascent 802.11n
standard and 3G and 4G mobile telecommunications systems.
The efforts in this area have reached the point where re-
searchers are calling the area mature.

A. Open Problems in Space-Time Signaling

The open problems in MAR communications relate to
situations where more sophisticated and detailed aspects of
communication systems need to be modeled and understood.
For example performance is not easily understood in channel
models that are not well modeled as Gaussian/Rayleigh, or
where the scattering is not rich or isotropic, or where time-
varying parameters, or system non-idealities impact system
performance. These problems are not well addressed by simu-
lation or analysis as the sophistication of the problem prohibits
analysis in most cases and the utility of simulation is limited
to the accuracy of the models used for simulation.

This paper examines a small subset of the open issues in the
literature and reports on experiments that attempt to resolve
these issues on real systems and real channels. The focus here
is on the following systems

1) Land Mobile Wireless – Mobility and multipath typical
of this environment will be the focus of the study
presented in this paper.

2) Frequency flat channels– A vast majority of the work
in space-time signaling has used frequency flat models.
This corresponds to relatively narrowband transmission
in a traditional land mobile wireless channels.

3) Linear Modulations – Only linear modulations will be
the focus of the study presented in this paper.

4) Short Packet Communication– The packet lengths of
the system presented in the paper will be approximately
300 symbols. This type of system is typical of speech
communication systems or short packet data (paging).

Within this fairly focused area this paper will address:

1) Signal Design and Number of Receiver Antennas–
With a small number of receive antennas the theory
indicates signal design is dominated by the Hamming
distance and the product measure of the pair–wise signal
error matrix. With a large number of receive antennas the
signal design is dominated by the Euclidean distance of
the pair–wise codeword difference. The question at what
number of receive antennas is the transition between
these two design environments manifested and how
significant is the difference in realistic environments.

2) Impact of Spatial Correlation – Code performance is
very much a function of the spatial correlation between
the transmission paths [6]. Consequently it is useful to
see if any interesting characteristics are produced in
realistic array geometries that impact the choice of coded
modulations in practice.

This paper is organized with Section II overviewing the
models, Section III detailing the design paradigms, Section
IV presenting the experimental system, Section V providing
the experimental results, and Section VI concludes.

II. SIGNAL MODELS

For linear modulation the signal at theith transmit antenna
is modeled as

Xi(t) =

Nf
∑

l=1

Xi(l)u(t− (l − 1)T ) (1)

whereu(t) is a Nyquist pulse shape andXi(l) is the mod-
ulation symbol on theith antenna at symboll and Nf is
the length of the frame. If the fading is slow enough, the
sampled matched filter outputs are the sufficient statisticsfor
the demodulation and the output samples of the matched filter
for the kth symbol are given as aLr × 1 vector

~Y (k) = H(k)
√

Es
~X(k) + ~N(k) (2)
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whereEs is the energy per transmitted symbol;Hij(k) is the
complex path gain from transmit antennaj to receive antenna
i at timekT ; ~X(k) is theLt×1 vector of symbols transmitted
at symbol timek; ~N(k) is the additive white Gaussian noise
vector of sizeLr×1. The noise is modeled as an independent
circularly symmetric zero-mean complex Gaussian random
variable with varianceN0/2 per dimension.

Coherent demodulation refers to the case of finding the
most likely transmitted word when the channel is known.
The optimum word demodulator denoted maximum likelihood
(ML) word demodulator. Denote~B as the transmitted word.
For orthogonal modulations whenH(k) = h(k) the optimum
word demodulator has a simpler form given as

~̂B = argmin
n

Nf
∑

k=1

(

~Y (k)− ~s(n)
)H (

~Y (k)− ~s(n)
)

(3)

where~s(n) =
√
Esh(k)~x

(n)(k) is the vector of noiseless re-
ceived points on each of the antennas,~x(n)(k), aLt×1 vector,
is used to denote the transmitted codeword atkth symbol for
transmitted bit sequencen, ~Y (k) is the received matched filter
output for thekth symbol. The ML demodulator essentially
finds the transmitted symbol or code matrix,X = xn that
produces the minimum distance between the matched filter
outputs,~Y (k) and the channel output,

√
Esh(k)~x

(n)(k). If the
modulation is defined on a trellis then the Viterbi algorithmcan
be used to find this minimum distance transmitted codeword
and if the transmitted codeword is defined by a lattice then a
lattice search algorithm can be used to find the best codeword.

III. OVERVIEW OF CODE DESIGN PARADIGMS

This section will discuss the different design paradigms for
wireless communications that are often invoked by researchers.
Since this experiment is focussed on frequency flat MIMO
signalling the standard assumption in this field is that the
channel is well modeled by Rayleigh fading so the brief
discussion here will focus on the results for Rayleigh fading.
Let X be the two dimensional code word matrix transmitted
by the space-time modem, and the space-time codeX be the
collection of these code words.

The code design criteria forcoherent demodulation in
spatially white Rayleigh fading for systems with a small
receive array size are [5], [4]

• Diversity Advantage: Maximize ∆H(n1, n2) =
rank(xn1

− xn2
) over all pairs of code words,xn1

6= xn2

andxn1
,xn2

∈ X .
• Coding Gain: Maximize the geometric mean of the

nonzero eigenvalues of the signal matrix
Cs = (xn1

− xn2
) (xn1

− xn2
)
H over all distinct pairs

of code wordsxn1
, xn2

∈ X .

The rank is often denoted the Hamming distance and the
geometric mean is often denoted the product measure to show
the relation to single antenna Rayleigh fading design [7]. A
great deal of work has gone into designing codes based on
these design criteria.

For a large receive array size the design criteria changes to
be focussed more on Euclidean distance [8], [9], [10] and this
design criteria can be stated succinctly as

• Euclidean Distance: Maximize over all distinct pairs of
code wordsxn1

, xn2
∈ X the arithmetic mean of the

eigenvalues ofCs = (xn1
− xn2

) (xn1
− xn2

)
H .

A reader should note that the boundary between the two
scenarios is not well defined but has been seen in simulation
to be around 3 or 4 receive antennas where the channels are
modeled as spatially white.

IV. EXPERIMENTAL SYSTEM

The experimental system that has been deployed for this
experiment is a narrowband3 × 4 MAR system. We have
chosen a carrier frequency of 220MHz and a bandwidth of
around 4kHz. All modulations are linear modulation with a
spectral raised cosine pulse shape with an excess bandwidth
of 0.2 and a symbol rate of 3.2kHz. This carrier frequency and
bandwidth allow us to do realistic land mobile testing and still
be confident that the frequency flat assumption will be valid.

A. Radio System

The UnWiReD narrowband testbed is a software defined
real-time3×4 multi-antenna testbed. The information bits are
encoded and pulse shaped by two Analog Devices (ADI) fixed
point digital signal processors (DSP). The baseband signals
are then digitally up converted to 10MHz IF signals. The 3-
TX up converter radio further up converts the IF signals to the
220MHz RF and amplifies it for transmission with a maximum
transmission power of 35dBm.

The receiver chain provides a high performance system for
narrowband MIMO processing. The received signals are down
converted from RF to 10MHz IF signals by a 4-channel down
converter radio and then digitally down converted to baseband
by a 4-channel digital receiver. The 4-channel digital receiver
over–samples the input signals at 64MHz. Overall receiver
dynamic range is greater than 80dB. The overall error vector
magnitude through both the transmit and receive chains is less
than 2%. The demodulation is performed by two floating point
ADI DSPs. The demodulated data, as well as other important
test information, is transferred to a laptop for data recording
and displaying real-time test results. This data provides anear
complete characterization of the system performance.

B. Packet Format

The frame for the transmitted signals of this experimental
system was designed to allow many modulations to be tested
in a time interleaved fashion. This comparison is enabled at
the transmitter by implementing a superframe that is repeated
about every 4 seconds. During this superframe a preamble is
sent and 42 different frames of space-time modulations can be
transmitted. The preamble has a signal format that allows high
performance symbol time estimation (a dotting pattern) so that
accurate timing and a course frequency offset can be acquired.
Each of the subsequent frames or data packets are 300 symbols
in length (93.75ms). Modulations are independent from frame
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Fig. 1. The superframe used in the field experiments.

to frame for the experiments documented in this paper. At
the end of the superframe there is a silence period of about
70 symbols. The noise power which can vary significantly
at 220MHz in various scenarios due to man–made noise is
measured every frame and averaged to get a good estimate of
the SNR.

C. Receiver Processing Overview

All of the receiver functions are implemented in real-time in
a digital signal processor. Time estimation is derived by using
a nonlinear open loop timing estimator. Frequency estimation
and frame synchronization are achieved during the first pream-
ble portion of the frame during the decoding. Having a unique
word for frame synchronization allows pilot symbols to be
inserted and used for channel estimation and provides block
boundary synchronization for all coded modulations during
demodulation. The details of the pilot symbol processing are
given in Section IV-D. For coherent demodulation ML re-
ceivers based on a trellis search and on a sphere/lattice decoder
have been implemented. This great flexibility allows many
algorithms to be compared to understand the complexity–
performance trade-offs in real implementations. One of the
powerful characteristics of the programmable implementation
is that the same transmitted data can be used to compare
decoding with the number of receive antennas. In almost
all modulation formats, decoding for any number of receive
antennas (fromLr = 1 to Lr = 4) can be accomplished
in real time. The notable exception to this was the sphere
decoder, real-time sphere/lattice decoding was only able to be
implemented for the2× 2 case.

D. Channel Estimation

Accurate estimation of the channel is crucial for reliable
decoding of coherent coding schemes. Pilot symbol assisted
demodulation (PSAD) is employed when good performance in
high-mobility situations is desired at a reasonable complexity.
Pilot symbol based frame design and channel estimation is
essentially an exercise in sampling and optimal interpolation
of Gaussian processes [11], [12], [5]. Due to the Gaussian
nature of the assumed Rayleigh fading, linear interpolation is
optimal. For a finite frame size, interpolation at the frame
edges performs worse hence it is important to have more
samples at the frame edges. Uniform pilot sampling in the
middle of the frame is optimal as long as the sampling is
above the Nyquist rate of the channel. Guey et al. [5] showed
that orthogonal pilot elements on each transmit antenna have
many desirable characteristics. An orthogonal pilot symbol
pattern maintains good performance (but not orthogonalityat
the receiver) even with high mobility.

The pilot symbol frame structure for this experiment is
optimized for the short frame structure and the rapid fading
that is possible with high mobility. The pilot symbol frame

P P P P P P5P 2P 2P 2P P P5D 3D 5D 3D 3D 5D 5D ...
Edge Part Uniform Part

Fig. 2. The frame design for the pilot symbol processing forLt = 2.

(a) Tx deployment. (b) Rx deployment.

Fig. 3. Example deployment for the outdoor tests.

is optimized separately for different number of transmit an-
tennas. For example, the 2 Tx frame is shown in Figure
2. In this example 72 out of 300 total symbols are used
for training. Hence to maintain a fair comparison with a
modulation/demodulation not needing training for channel
estimation, a code rate increase of roughly 4/3 needs to be im-
plemented for the coherent coding and decoding. The channel
gains between any transmitter-receiver pair are assumed tobe
spatially independent for interpolation filter design. Also, the
channel coefficients are assumed to be constant over a symbol
period but vary from symbol to symbol according to Clarke’s
model [13] which hasRH(m) = J0(2πfDTm) whereJ0 is
the zeroth order Bessel function of the first kind andfD is the
Doppler spread of the channel. An FIR Wiener filter optimized
for Eb/N0 = 30dB and Doppler fading ratefDT = 0.01 is
used for pilot interpolation in the experiments reported inthis
paper.

V. EXPERIMENTAL RESULTS

The experimentation was done on the UCLA campus and
the surrounding West Los Angeles area. The testing reported
in this paper was limited to the scenario where one radio (TX)
was deployed on the top of a 5 story building and one radio
(RX) on a vehicle (a cart or a van). The test consisted of the
receiver radio being driven around the campus area. The speed
of the driving was maintained at a rate of less than 5 miles per
hour as the codes that were tested were all designed for quasi-
static fading. The UCLA campus area is heavily urbanized and
a line of sight was not achieved in any significant portion of
the testing. Unless otherwise specified the receiver array was
square with aλ/2 spacing on each side and the transmitter
array was linear with a2λ spacing. An example of the testbed
deployment is shown in Fig. 3.

The major findings reported will be the bit error rate
and frame error frame versusEb/N0. The measuredEb/N0

reported in the experiments are computed by the averages



over the entire superframe and all the receive antennas. This
measure gives something closer to the average SNR in high
mobility tests and something closer to the instantaneous SNR
in static testing but the measurement was viewed as the best
compromise in reporting the data. The transmitted power from
all the antennas in each of the experiments was roughly
15dBm.

A. Code Design and Number of Receive Antennas

Here a comparison is made of the performance of the
various proposed design methodologies and resultingR = 2
QPSKLt = 2 andLt = 3 space-time codes on real channels.
Specifically we would like to understand the impact of the
number of receiver antennas on performance. The codes that
are considered are

1) 16 state Yan and Blum (YB) [14] is a code optimized
for Hamming distance and product measure.

2) 32 state Chen, Yuan, and Vucetic (CYV) [10] code is
optimized for Euclidean distance.

3) 32 state superorthogonal code (SO) [15], [16] codes
were optimized for simultaneously for Hamming dis-
tance, Euclidean distance, and product measure.

4) 32 state spatially multiplexed traditional (SMT) codes
[9] were optimized simultaneously for Hamming dis-
tance, Euclidean distance, and product measure.

5) 32 state universal trellis codes [17] were optimized to
give good performance on any channel that can has a
capacity aboveR = 2 bits per channel use.

The general expectation derived from the theory before the
experiment was that codes that were designed for Hamming
distance would work well at small number of receive antennas
and codes that are designed for Euclidean distance would work
well with a large number of receive antennas.

A wide variety of data versus measured average SNR has
been compiled for the drive tests. The results of the frame
error rates (FER) forLt = 2 are summarized in Fig. 4 and
Fig 5. In Fig. 4 as expected the designs which have optimized
Hamming distance and product measure (YB and SO) seem to
do comparatively well. In fact all codes seem to perform very
close to the same level with the universal code having a slight
advantage in performance. This is perhaps not unexpected as
this is the only code not designed under the assumption of
spatially white Rayleigh fading in the group tested. In Fig.5
we observe some unexpected results. The universal code shows
the best performance followed by the SO code. Noticeably
worse performance is observed with both the YB codes and the
CYB codes. This result is also curious in that these codes have
used different design criteria in terms of number of receive
antenna and yet on real channels seem to produce close to
the same performance. Also surprising was the performance
of the (SMT) codes as they did not seem to be able to use the
joint design of both Euclidean or Hamming distance to beat
codes that optimized either metric individually (YB or CYV).
Bit error performance and results forLt = 3 coding schemes
can be markedly different, but this data is not reported here
due to space constraints.
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Fig. 4. FER performance forLr = 1.
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Fig. 5. FER performance forLr = 4.

B. Antenna Spacing Impacts on Code Design

This section reports on a series of experiments whose
goal is to evaluate the impact of antenna separation on
code performance and code design. Two types of signalling
is considered in this section: 1) multiplexing type schemes
(space-time constellations and precoding) and 2) space-time
codes designed to harvest diversity or performance. Three
antenna configurations are considered: 1) 2λ spacing at the
transmitter with 0.5λ spacing at the receiver, 2) 2λ spacing
at the transmitter with 0.25λ spacing at the receiver, andλ
spacing at the transmitter with 0.25λ spacing at the receiver.

For the case of precoding and space time constellations
the Alamouti [18] coding scheme has the most robustness
to different antenna geometries. All constellations considered
here useR = 4 bits per symbol and the comparison for
frame error rate is in Fig. 6 forLt = 2 and Lr = 2. The
Alamouti code must use a 16QAM constellation to achieve this
rate while spatial multiplexing and the threaded architectures
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can use QPSK constellations. When the spacing of the array
is larger (closer to spatial independence) the Golden Code
[19] has the advantage due to the smaller constellation point
differences. As the spacing become closer and the channels
become correlated the Alamouti code has the advantage.
Direct spatial multiplexing with a BLAST like architecture
is clearly lower performance than either of the two considered
architectures and suffers from not achieving full diversity.

For the case of trellis codes, the universal code has the most
robustness to different antenna geometries. All constellations
considered here use aR = 2 bits per symbol and the
comparison for frame error rate is in Fig. 7 forLt = 2 and
Lr = 2. The universal code has good performance in most
cases with moderate degradation due to spatial correlation.
The SO and CYV codes show more significant degradation
due to spatial correlation.

VI. CONCLUSION

The paper has presented field tests and the conclusions that
can be drawn from the field tests for space–time coding with

a variable number of antennas and varying antenna array size.
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