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Abstract

In this paper, we investigate achievable rates for data transmission from sources to sinks through multiple relay networks. We
considermyopic coding, a constrained communication strategy in which each node has only a local view of the network, meaning
that nodes can only transmit to and decode from neighboring nodes. We compare this withomniscient coding, in which every
node has a global view of the network and all nodes can cooperate. Using Gaussian channels as examples, we find that when the
nodes transmit at low power, the rates achievable with two-hop myopic coding are as large as that under omniscient codingin
a five-node multiple relay channel and close to that under omniscient coding in a six-node multiple relay channel. These results
suggest that we may do local coding and cooperation without compromising much on the transmission rate. Practically, myopic
coding schemes are more robust to topology changes because encoding and decoding at a node are not affected when there
are changes at remote nodes. Furthermore, myopic coding mitigates the high computational complexity and large buffer/memory
requirements of omniscient coding.

I. I NTRODUCTION

A. Multiple Relay Channels and Channel Constraints

The relay channel was first introduced by van der Muelen [1] inhis work on three terminal networks. The capacity of a
special class (known as the degraded relay channel) of the relay channel was found by Cover and El Gamal [2]. In that paper,
two coding strategies were proposed for the general relay channel, which were subsequently termed decode-forward strategy
and compress-forward strategy. Gupta and Kumar [3] extended the relay channel to the multiple relay channel, where there
is more than one relay node in the channel. The decode-forward and the compress-forward strategies were extended to the
multiple relay channel by Xie and Kumar [4] and Krameret al. [5] respectively. In these strategies, block Markov encoding
(see [2] for irregular block Markov and [6] for regular blockMarkov) is used. In decoding, forward decoding [2] can be used
for irregular Markov encoding and backward decoding [7] or window decoding [8] can be used for regular block Markov
encoding.

Consider the five-node Gaussian multiple relay channel depicted in Fig. 1. Using the decode-forward strategy, node 1 splits
its power to send different messages to nodes 2-5 during eachtransmission. In decoding, each node decodes messages from
the transmissions of all nodesbehind it. As the effect of all nodes’ transmissions is being considered in the coding design, a
node needs to be aware of the presence of all other nodes and tohave knowledge of their codebooks. We see that encoding
and decoding can get complicated, e.g., more processing andbuffering, as the network size grows. We call this unconstrained
communication on the multiple relay channel with a global view and complete cooperationomniscient coding.

The simplest approach to data transmission is for a node to communicate with only one node at a time. This leads naturally to
multi-hop routing, in which each node sends data to the next node in the route and decodes data from the previous node in the
route. The transmissions of the other nodes are treated as noise. We term this highly constrained communicationpoint-to-point
coding.

In this paper, we look at the compromise between omniscient coding and point-to-point coding. We study how encoding
and decoding are done when a nodeseesonly a few other nodes. We term this constrained communication with a local view
and limited cooperationmyopic coding. We determine achievable rates of multiple relay channels under myopic coding, using
regular block Markov encoding and window decoding. However, the encoding and decoding techniques differ from that found
in the literature (in [4] and [8]) as the nodes have limited view. We note that point-to-point coding and omniscient coding are
limiting cases of myopic coding.

B. Practical Advantages of Myopic Coding

Under omniscient coding, any topology change in the network, for example node failure or mobility, requires reconfiguration
of coding and decoding at every node in the network. This is due to the fact that a node considers the transmission of all
other nodes in its encoding and decoding processes. Myopic coding, however, does not suffer from this problem. Using the
five-node multiple relay channel as an example, Fig. 2 depicts two-hop myopic coding, where a node onlyseesnodes within
two hops away. Under this coding, when node 4 fails, no changeis required at node 1, which is three hops away.

Besides being robust to topology changes, myopic coding offers additional practical advantages over omniscient coding.
Since a node only needs to send signals to a few neighboring nodes, less computation is required at that node. Also, a node
needs less memory for data buffering and codebook storage asdecoding is done over a smaller decoding window size.
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Fig. 1. Omniscient coding in a five-node Gaussian multiple relay channel.

Fig. 2. Two-hop myopic coding in a five-node multiple relay channel.

C. Contributions

We fist derive achievable rate regions for the multiple relaychannel under two myopic coding constraints, namely one-hop
coding and two-hop coding. We use the concept of regular block Markov encoding to construct encoding methods for each
node under one-hop coding and two-hop coding. For decoding,we use the concept of window decoding, where the decoding
of a message symbol is done over a few transmission blocks.

We compare achievable rates under myopic coding to that under omniscient coding. We show that when nodes transmit at
low power, the achievable rate region under two-hop coding is the same as (in a five-node multiple relay channel) and close
to (in a six-node multiple relay channel) that achievable under omniscient coding. The achievable rate region under one-hop
coding is close to that achievable under omniscient coding in a five-node channel but far below that under omniscient coding
in a six-node channel.

We then extend the analysis tok-hop myopic coding, wherek > 2 is a positive integer. We construct encoding and decoding
algorithms fork-hop coding and derive an achievable rate region. We also show that achievable rates under myopic coding
are bounded away from zero even as the total number of nodes inthe network grows large.

II. CHANNEL MODEL AND NOTATIONS

Fig. 3 depicts aT -node multiple relay channel, with node 1 being the source node and nodeT being the destination node.
Nodes 2 toT −1 are relay nodes. The messageW is generated at node 1 and is to be sent to the sink at nodeT . A memoryless
multiple relay channel can be completely described by the channel distribution

p∗(y2, y3, . . . , yT |x1, x2, . . . , xT−1) (1)

on Y2 × Y3 × · · · × YT , for each(x1, x2, . . . , xT−1) ∈ X1 × X2 × · · · × XT−1. In this paper, we only consider memoryless
channels, which means

p∗(yn
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n
T |x

n
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2 , . . . ,x

n
T−1) =

n
∏

i=1

p∗(y2,i, y3,i, . . . , yT,i|x1,i, x2,i, . . . , xT−1,i) (2)

wherexn
j = (xj,1, xj,2, . . . , xj,n) is an ordered vector ofxj of sizen.

Standard terms, such as codebook, error probability, typical sequences, and achievable rates, are the same as those defined
in [9]. When the terms carry different meanings, they will beexplicitly defined. We define myopic coding as follows.

Definition 1: k-hop myopic coding is defined as constrained communication among nodes in the multi-terminal network
satisfying the following:

• In encoding, a node can only transmit messages that it has decoded or compressed from the pastk blocks of received
signal.

• A node can only store a decoded message in its memory over at most k blocks.
• In decoding, a node can only decode/process one message using only k blocks of received signal.



Fig. 3. A T -node multiple relay channel.

We note that the notion of the “view” of a node, meaning how many other nodes a node can see, is embedded in the definition
itself. This definition allows myopic coding to be easily extended to other types of channels, for instance, the broadcast multiple
relay channel and the multiple access relay channel [10]. Also, the rationale of myopic coding stems from the advantage of
having less processing and less storage at a node.

III. A CHIEVABLE RATES UNDER DIFFERENT CODING

Let R be the set of all relay nodes,R = {2, 3, . . . , T − 1}, and letπ(·) be a permutation onR. Defineπ(1) = 1, π(T ) = T
andπ(i : t) = {π(i), π(i+ 1), . . . , π(t)}.

A. One-Hop Myopic Coding

Under one-hop coding, each node only sends signals to the node in front of it and decodes signals from the nodebehind
it. We assume perfect echo cancellation, which means that a node is able to cancel the effect of its own transmission in its
received signals. Using non-constructive coding [11], node t can receive information up to the following rate.

Rt ≤ max I(Xt−1;Yt|Xt) (3)

for t ∈ {2, . . . , n} andXT = 0. The maximization is over the distributionp(x1)p(x2) · · · p(xT−1). Since all information must
pass through all nodes in order to reach the destination, theoverall rate is constrained by

R ≤ max
π(·)

max
p(·)

min
t∈{2,...,T}

I(Xt−1;Yt|Xt). (4)

B. Two-Hop Myopic Coding

Instead of just transmitting to one node in front, a node might want to help the node in front to transmit to the node that is
two hops away. The nodes can do that in two-hop myopic coding.Equivalently, in blocki, a node transmits data that it has
decoded in blocksi−1 andi−2. In decoding, it decodes one message using only two blocks ofreceived signals. We consider
B+ T − 2 transmission blocks, each ofn uses of the channel. A sequence of independentB indices,w(b) ∈ {1, 2, . . . , 2nR},
b = 1, 2, . . . , B will be sent overn(B+T − 2) uses of the channel. AsB → ∞, the rateRnB/n(B+T − 2) → R for anyn.

1) Codebook Generation:In this section, we describe how codebooks at each node are generated.

• First, fix the probability distribution

p(u1, u2, . . . , uT−1, x1, x2, . . . , xT−1) = p(u1)p(u2) · · · p(uT−1)p(x1|u1, u2)p(x2|u2, u3)p(xT−1|uT−1), (5)

for eachui ∈ Ui.
• For eacht ∈ {1, . . . , T − 1}, generate2nR independent and identically distributed (i.i.d.)n-sequences inUn

t , each drawn
according top(ut) =

∏n

i=1 p(ut,i). Index them asut(wt), wt ∈ {1, . . . , 2nR}.
• DefinexT−1(wT−1) = uT−1(wT−1).
• For eacht ∈ {1, . . . , T − 2}, define a deterministic function that maps(ut,ut+1) to xt:

xt(wt, wt+1) = ft
(

ut(wt),ut+1(wt+1)
)

. (6)

• Steps 2 to 4 are repeated to generate a new independent set of codebooks. These two codebooks are used in alternate
transmission blocks.

We see that in each transmission block, nodet, t ∈ {1, . . . , T − 2}, sends messages of two blockswt (new data) andwt+1

(old data). In the same block, nodet+ 1 sends messageswt+1 andwt+2. Note that a node cooperates with the nodein front
by repeating the transmissionwt+1. Subscriptt represents new data that is being sent by nodet.



Fig. 4. A two-hop encoding strategy.

Fig. 5. Decoding at nodet of messagewb−t+2.

2) Encoding: Fig. 4 shows the encoding process for two-hop coding. The encoding steps are as follows:

• In the beginning of block 1, the information source emits thefirst source letterw1. Here, we use superscript to indicate the
time index of the source letter. That is, the source emitsw1, w2, . . . , wb at the beginning of block1, 2, . . . , b respectively.
Note that there is no new information after blockB. We definewB+1 = wB+2 = · · · = wB+T−2 = 1.

• In block 1, node 1 transmitsx1(w
1, w0). Since the rest of the nodes have not received any information, they send the

dummy letterxi(w
2−i, w1−i), i ∈ {2, . . . , T − 1}. We definewb = 1, for b ≤ 0.

• At the end of block 1, assuming that node 2 correctly decodes the first signalw1, it transmitsx2(w
1, 1).

• Generalizing, in blockb ∈ {1, . . . , B+T−2}, nodet, t ∈ {1, . . . , T−1}, would have decoded data(w1, w2, . . . , wb−t+1)
and it sendsxt(w

b−t+1, wb−t).

3) Decoding and Achievable Rates:All nodes except node 2 decode one message over two blocks of the received signal.
As depicted in Fig. 5, nodet decodes the messagewb−t+2 over blocks(b−1) andb. It can be shown that the rate at which the
messageW is decodable at nodet is I(Ut−2, Ut−1;Yt|Ut, Ut+1). It can be shown that the probability of error can indeed be
made as small as desired if the rate constraint above is satisfied. The proofs, given in [10], are omitted due to space limitations.

Theorem 1:In a T -node memoryless multiple relay channel, under two-hop coding, the following rate is achievable,

R ≤ max
π(·)

max
p(·)

min
t∈{2,...,T}

I(Ut−2, Ut−1;Yt|Ut, Ut+1), (7)
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Fig. 6. Achievable rates under different coding constraints in a five-node multiple relay channel.

whereU0 = UT = UT+1 = 0 and the maximization is taken over all joint distributions of the form

p(x1, x2 . . . , xT−1, u1, u2 . . . , uT−1, y2, y3 . . . , yT )

= p(u1)p(u2) · · · p(uT−1)p(x1|u1, u2)p(x2|u2, u3) · · ·

p(xT−1|uT−1)p
∗(y2, . . . , yT |x1, . . . , xT−1). (8a)

C. Omniscient Coding

Omniscient coding was considered by Xie and Kumar [4]. Usingthe decode-forward strategy, they showed that the following
rate is achievable,

R ≤ max
π(·)

max
p(·)

min
1≤t≤T−1

I(Xπ(1:t);Yπ(t+1)|Xπ(t+1;T−1)). (9)

The first maximization allows us to arrange the order of the relay nodes in which the data flows through them. The second
maximization is over all possible distributionsp(x1, x2, . . . , xT−1). The minimization is on the rate at which each relay node
receives. This is because each node needs to fully decode every message.

IV. PERFORMANCECOMPARISON ONGAUSSIAN CHANNELS

For the purpose of comparison, we study the performance of the different schemes on Gaussian channels of the form,

Yt =

T−1
∑

i=1
i6=t

√

κd−η
it Xi + Zt, t = 2, 3, . . . , T (10)

whereXi is a random variable with power constraintE[X2
i ] ≤ Pi andZt is the receiver noise, which is a zero mean Gaussian

random variable with varianceNt. We use the standard path loss model for signal propagation,wheredit is the distance
between nodei and nodet, κ is a positive constant,η is the path loss exponent, andη ≥ 2 with equality for free space
transmission. Also, we consider networks where the nodes are arranged in a straight line.

Figures 6 and 7 show achievable rates under one-hop coding, two-hop coding, and omniscient coding in a five-node and a
six-node Gaussian multiple relay channels respectively. We make the following observations.

• As expected, the achievable rates under myopic coding are not more than that under omniscient coding. However, at low
SNR, we see that myopic coding is close to omniscient coding.

• We note that achievable rates increase significantly from one-hop to two-hop coding. This suggests that for a multiple
relay channel with many nodes, myopic coding with ”short” view is sufficient.

• We defineρi = Rmyopic/Romniscient where i = 1, 2 for one-hop and two-hop coding respectively. When the number of
nodes increases,ρ1 andρ2 decrease. This is because more nodes are ignored in myopic coding when the channel size
gets larger. However, in a six-node channel, two-hop codingcan still achieveρ2 > 0.8 for transmit SNR smaller than
1dB.
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Fig. 7. Achievable rates under different coding constraints in a six-node multiple relay channel.

V. EXTENDING TO k-HOP CODING

Now, we generalize two-hop coding tok-hop coding wherek ∈ {1, . . . , T − 1}. The proof is given in [10] but omitted here.
Theorem 2:In a T -node memoryless multiple relay channel, usingk-hop coding, the following rate is achievable.

R ≤ max
π(·)

max
p(·)

min
t∈{2,...,T}

I(Ut−k, . . . , Ut−1;Yt|Ut, . . . , Ut+k−1) (11)

whereU2−k = U3−k = · · · = U0 = UT = UT+1 = · · · = UT+k−1 = 0 and the maximization is taken over all joint
distributions of the form

p(x1, x2 . . . , xT−1, u1, u2 . . . , uT−1, y2, y3 . . . , yT ) =
T−1
∏

i=1

p(ui)
k
∏

i=1

p(xT−i|uT−i, . . . , uT−1)
T−k−1
∏

i=i

p(xi|ui, . . . , ui+k−1)

× p∗(y2, . . . , yT |x1, . . . , xT−1). (12a)

VI. M YOPIC CODING IN LARGE NETWORKS

Since the transmission beyond the view of a node is treated asnoise, one concern with myopic coding is whether the rate
vanishes as the number of nodes grows. We analyze two-hop coding in a T -node multiple relay channel, assuming that the
nodes are equally spaced at 1m apart and transmit at powerP ′. Considering the reception of nodet, the signal power is given
by

Psig(t) =
(

√

3−ηαt−3P +
√

2−η(1− αt−2)P
)2

+
(

√

2−ηαt−2P +
√

1−η(1− αt−1)P
)2

> 0. (13a)

whereP = κP ′.
The noise power isPnoise(t) = Nt < ∞ and the interference power is given by

Pint(t)

P
= 3−ηαt−3 +

t−1
∑

k=4

1

kη
+ 1−ηαt+1 +

T−t−1
∑

k=2

1

kη

+ 2

t−2
∑

k=3

√

(1− αt−k)αt−(k+1)

kη(k + 1)η
+ 2

T−t−3
∑

k=1

√

αt+k(1− αt+k+1)

kη(k + 1)η
. (14a)

Noting that0 ≤ αt ≤ 1, ∀t and simplifying (14a), we get

Pint(t)

P
< 6

T
∑

k=1

1

kη
< 6ζ(η). (15)



Here ζ(η) =
∑∞

k=1
1
kη is the Riemann zeta function, which is a decreasing functionof η. Since, the path loss exponent is

always greater than 2,Pint(t) < 6ζ(2)P = π2P . Hence, we can always find set of{α1, . . . , αT−2} such that the reception
rate at every nodet, ∀t ∈ {2, 3, . . . , T }, is

Rt =
1

2
log

[

1 +
Psig(t)

Pint(t) +Nt

]

> 0. (16)

When more nodes are included in the “view” in myopic coding,Psig increases andPint decreases. In general, assuming
that the nodes are roughly equally spaced, the achievable rates underk-hop myopic coding (k ≥ 2) are bounded away from
zero even as the network size grows to infinity.

VII. C ONCLUSION

In this paper, we compare myopic coding, i.e., local view andlimited cooperation, and omniscient coding, i.e., global view
and complete cooperation, on multiple relay channels. We compute achievable rates for myopic coding in aT -node multiple
relay channel, using regular block Markov encoding and window decoding. Our experiments with five-node and six-node relay
channels showed a significant rate improvement from one-hopto two-hop coding and that two-hop coding can be as good
as omniscient coding. These observations demonstrate the benefits of local cooperation and that only a small fraction ofthe
nodes need to cooperate. This suggests that local coding design may be good enough without compromising rate.
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