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Abstract

In this paper, we investigate achievable rates for datastnéssion from sources to sinks through multiple relay nekaowe
considermyopic codinga constrained communication strategy in which each nodeohly a local view of the network, meaning
that nodes can only transmit to and decode from neighborodesi We compare this witbmniscient codingin which every
node has a global view of the network and all nodes can cotgddaing Gaussian channels as examples, we find that when the
nodes transmit at low power, the rates achievable with te-myopic coding are as large as that under omniscient cdding
a five-node multiple relay channel and close to that underiggient coding in a six-node multiple relay channel. Thessuits
suggest that we may do local coding and cooperation withootpcomising much on the transmission rate. Practicallyppity
coding schemes are more robust to topology changes becausdimy and decoding at a node are not affected when there
are changes at remote nodes. Furthermore, myopic codingatei$ the high computational complexity and large bufferhory
requirements of omniscient coding.

. INTRODUCTION
A. Multiple Relay Channels and Channel Constraints

The relay channel was first introduced by van der Muelen [1hi;mmwork on three terminal networks. The capacity of a
special class (known as the degraded relay channel) of thg channel was found by Cover and El Gamal [2]. In that paper,
two coding strategies were proposed for the general relaprél, which were subsequently termed decode-forwartegira
and compress-forward strategy. Gupta and Kumar [3] extknide relay channel to the multiple relay channel, whereether
is more than one relay node in the channel. The decode-fdrasad the compress-forward strategies were extended to the
multiple relay channel by Xie and Kumar [4] and Kramadral. [5] respectively. In these strategies, block Markov enogdi
(see [2] for irregular block Markov and [6] for regular blobkarkov) is used. In decoding, forward decoding [2] can beduse
for irregular Markov encoding and backward decoding [7] andew decoding [8] can be used for regular block Markov
encoding.

Consider the five-node Gaussian multiple relay channelctiegbiin Fig[1. Using the decode-forward strategy, node itsspl
its power to send different messages to nodes 2-5 during teaskmission. In decoding, each node decodes messages from
the transmissions of all nodéehindit. As the effect of all nodes’ transmissions is being coasid in the coding design, a
node needs to be aware of the presence of all other nodes drayd¢oknowledge of their codebooks. We see that encoding
and decoding can get complicated, e.g., more processingpuaffering, as the network size grows. We call this uncorirsée
communication on the multiple relay channel with a glob@&wiand complete cooperatimmniscient coding

The simplest approach to data transmission is for a nodentomemicate with only one node at a time. This leads naturally t
multi-hop routing, in which each node sends data to the nedenn the route and decodes data from the previous node in the
route. The transmissions of the other nodes are treatedise. Wde term this highly constrained communicatpmint-to-point
coding

In this paper, we look at the compromise between omniscieding and point-to-point coding. We study how encoding
and decoding are done when a naggesonly a few other nodes. We term this constrained commuiicatiith a local view
and limited cooperatiomyopic codingWe determine achievable rates of multiple relay channetieumyopic coding, using
regular block Markov encoding and window decoding. Howetlex encoding and decoding techniques differ from that doun
in the literature (in [4] and [8]) as the nodes have limitedwi We note that point-to-point coding and omniscient cgdine
limiting cases of myopic coding.

B. Practical Advantages of Myopic Coding

Under omniscient coding, any topology change in the netwlorkexample node failure or mobility, requires reconfigima
of coding and decoding at every node in the network. This is tuthe fact that a node considers the transmission of all
other nodes in its encoding and decoding processes. Myapimg, however, does not suffer from this problem. Using the
five-node multiple relay channel as an example, BHg. 2 dgpigo-hop myopic coding, where a node oslgesnodes within
two hops away. Under this coding, when node 4 fails, no chamgequired at node 1, which is three hops away.

Besides being robust to topology changes, myopic codingrefadditional practical advantages over omniscient gpdin
Since a node only needs to send signals to a few neighboridgsndess computation is required at that node. Also, a node
needs less memory for data buffering and codebook storageasling is done over a smaller decoding window size.
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Fig. 1. Omniscient coding in a five-node Gaussian multiplayrehannel.
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Fig. 2. Two-hop myopic coding in a five-node multiple relayanhel.

C. Contributions

We fist derive achievable rate regions for the multiple redbgnnel under two myopic coding constraints, namely ong-ho
coding and two-hop coding. We use the concept of regularkblMarkov encoding to construct encoding methods for each
node under one-hop coding and two-hop coding. For decogiegjse the concept of window decoding, where the decoding
of a message symbol is done over a few transmission blocks.

We compare achievable rates under myopic coding to thatrumdeiscient coding. We show that when nodes transmit at
low power, the achievable rate region under two-hop codénthé same as (in a five-node multiple relay channel) and close
to (in a six-node multiple relay channel) that achievabldermomniscient coding. The achievable rate region underhope
coding is close to that achievable under omniscient coding five-node channel but far below that under omniscientropdi
in a six-node channel.

We then extend the analysis dehop myopic coding, wherg > 2 is a positive integer. We construct encoding and decoding
algorithms fork-hop coding and derive an achievable rate region. We alsw shat achievable rates under myopic coding
are bounded away from zero even as the total number of nodée inetwork grows large.

II. CHANNEL MODEL AND NOTATIONS

Fig.[d depicts ar-node multiple relay channel, with node 1 being the souradereand nodd’ being the destination node.
Nodes 2 tdl'— 1 are relay nodes. The messddeis generated at node 1 and is to be sent to the sink at Todememoryless
multiple relay channel can be completely described by thenohl distribution

p*(yQ,y:},---,yT|I1,I2,...,JJT_1) (1)
onYs x Y3 x --- x Yr, for each(zy,za,...,27-1) € X1 X Xy x --- x Xp_1. In this paper, we only consider memoryless
channels, which means

n
PH(Y2, ¥, YPIXT, X5, X)) = Hp*(yz,i, Ys,is - YTyl T1,05 T2sis - - TT—1,4) (2)
i=1
wherex’ = (z;1,;.2,...,2;,) is an ordered vector of; of sizen.

Standard terms, such as codebook, error probability, & @equences, and achievable rates, are the same as thosal defi
in [9]. When the terms carry different meanings, they will élicitly defined. We define myopic coding as follows.

Definition 1: k-hop myopic coding is defined as constrained communicatioang nodes in the multi-terminal network
satisfying the following:

« In encoding, a node can only transmit messages that it hasdddoor compressed from the pasblocks of received

signal.
« A node can only store a decoded message in its memory over sttiniocks.
« In decoding, a node can only decode/process one messageamink blocks of received signal.
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Fig. 3. A T-node multiple relay channel.

We note that the notion of the “view” of a node, meaning how ynather nodes a node can see, is embedded in the definition
itself. This definition allows myopic coding to be easily extled to other types of channels, for instance, the broadudsple
relay channel and the multiple access relay channel [1GoAthe rationale of myopic coding stems from the advantdge o
having less processing and less storage at a node.

Il1l. ACHIEVABLE RATES UNDER DIFFERENT CODING

Let R be the set of all relay node® = {2,3,...,7— 1}, and letr(-) be a permutation oR. Definen(1) =1, n(T) =T
andn(i:t) = {mw(i),7(i+1),...,m(t)}.
A. One-Hop Myopic Coding

Under one-hop coding, each node only sends signals to the indtont of it and decodes signals from the nodehind

it. We assume perfect echo cancellation, which means thaide is able to cancel the effect of its own transmission in its
received signals. Using non-constructive coding [11],ebdan receive information up to the following rate.

Rt S InaXI(Xt_l;}/AXt) (3)

fort € {2,...,n} and Xy = 0. The maximization is over the distributigr{z1)p(z2) - - - p(xr—1). Since all information must
pass through all nodes in order to reach the destinationgubeall rate is constrained by
R< in  I(Xi—1; Y| Xe). 4
< I e gy T Wl X @
B. Two-Hop Myopic Coding
Instead of just transmitting to one node in front, a node rmigént to help the node in front to transmit to the node that is
two hops away. The nodes can do that in two-hop myopic codiiggivalently, in blocki, a node transmits data that it has
decoded in blocks— 1 andi — 2. In decoding, it decodes one message using only two blockscefved signals. We consider
B+ T — 2 transmission blocks, each ofuses of the channel. A sequence of independgirtdices,w(b) € {1,2,...,2"%},
b=1,2,..., B will be sent ovem(B + T — 2) uses of the channel. AB — oo, the rateRnB/n(B+T —2) — R for anyn.
1) Codebook Generationin this section, we describe how codebooks at each node aerajed.
« First, fix the probability distribution

p(u17u27 s UT—1,21, 225 - - - 7'7;T—1) = p(U1)p(U2) o 'p(UT_l)p(I1|U1, uz)p(x2|uQ,ug)p(xT_1|uT_1), (5)

for eachu; € U;.

« Foreacht € {1,...,7 — 1}, generate™ independent and identically distributed (i.i.@.)sequences it¥*, each drawn
according top(u;) = [[;—, p(us ;). Index them as; (wy), wy € {1,...,2" %}

. DefinexT_l(wT_l) = uT_l(wT_l).

o For eacht € {1,...,T — 2}, define a deterministic function that mafs;, u;+1) to x;:

Xt (Wi, wip1) = ft(ut(wt)aut+l(wt+l))' (6)

o Steps 2 to 4 are repeated to generate a new independent sedeifooks. These two codebooks are used in alternate
transmission blocks.

We see that in each transmission block, nedec {1,...,T — 2}, sends messages of two blocks (new data) andv;;
(old data). In the same block, node- 1 sends messages 1 andw;.o. Note that a node cooperates with the nadéront
by repeating the transmissian.,. Subscriptt represents new data that is being sent by node



Block 1 Block 2 Block 3 Block 4

Time

Node 1 | x/(w',1) x, (W2, w') X, (W, w?) x,(Ww?)
Node 2 | x(1,1) x,(Wh,1) X, (W2, w') X, (W, w?)
Node 3 | x(1,1) x,(1,1) x,(W',1) X,(W2,w')
Node 4 | x,(1,1) x,(1,1) x,(1,1) x,(Wh,1)

Fig. 4. A two-hop encoding strategy.
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Fig. 5. Decoding at node of messagav®—t12.

2) Encoding: Fig.[4 shows the encoding process for two-hop coding. Theding steps are as follows:

« In the beginning of block 1, the information source emitsfitet source letters!. Here, we use superscript to indicate the
time index of the source letter. That is, the source emitsw?, ..., w® at the beginning of block, 2, ..., b respectively.
Note that there is no new information after blogk We definew?*! = w82 = ... = wB+7-2 =1,

« In block 1, node 1 transmits; (w',w®). Since the rest of the nodes have not received any informati®y send the
dummy letterx; (w?~% w=%), i € {2,...,T — 1}. We definew® = 1, for b < 0.

« At the end of block 1, assuming that node 2 correctly decodeditst signaho®, it transmitsxz (w?, 1).

« Generalizing, in block € {1,..., B+T—2}, nodet, t € {1,...,T—1}, would have decoded data', w?, ...
and it sendsc; (w?—tH wb ).

3) Decoding and Achievable Rateall nodes except node 2 decode one message over two blockse atteived signal.
As depicted in Figl15, nodedecodes the messagé—'*2 over blocks(b— 1) andb. It can be shown that the rate at which the
messagdV is decodable at nodeis I(U;—2, Us—1;Y:|Us, Ury1). It can be shown that the probability of error can indeed be
made as small as desired if the rate constraint above idisdti$he proofs, given in [10], are omitted due to space &tions.

Theorem 1:In aT-node memoryless multiple relay channel, under two-hopngpdhe following rate is achievable,

I(Utf%Utfl;YHUtaUthl)a (7)

\ wb7t+1)

R < maxmax min
() p() te{2,...T}
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Fig. 6. Achievable rates under different coding constginta five-node multiple relay channel.

whereUy = Ur = Ury1 = 0 and the maximization is taken over all joint distributiorfstioe form

P(»”C179€2 s, IT—1,UL, U2 .., UT—1,Y2, Y3 - - ,yT)
= p(u1)p(u2) - - p(ur—1)p(w1|u1, ug)p(w2|uz, us) - - -
p(rr_1lur—1)p* (Y2, ... yrlT1, ..., or1). (8a)

C. Omniscient Coding
Omniscient coding was considered by Xie and Kumar [4]. Usiregdecode-forward strategy, they showed that the follgwin

rate is achievable,

R< I}rl(a§( I;l(&)X 1S1t1%i,¥71 I(Xﬂ'(ltt); Yﬂ'(t+l) |X7r(t+l;Tfl))' (9)

The first maximization allows us to arrange the order of tHayr@odes in which the data flows through them. The second
maximization is over all possible distributiop$x;, xo, ..., z7r_1). The minimization is on the rate at which each relay node
receives. This is because each node needs to fully decodg message.

IV. PERFORMANCE COMPARISON ONGAUSSIAN CHANNELS
For the purpose of comparison, we study the performanceeofliffierent schemes on Gaussian channels of the form,

T-1
Ve =Y \rdy"Xi+Z;, t=23,...,T (10)
ot
whereX; is a random variable with power constraiitX?] < P; and Z; is the receiver noise, which is a zero mean Gaussian
random variable with varianc&’;. We use the standard path loss model for signal propagatibere d;; is the distance
between node and nodet, « is a positive constant; is the path loss exponent, amd> 2 with equality for free space
transmission. Also, we consider networks where the nodesaanged in a straight line.

Figured® and@l7 show achievable rates under one-hop codinghap coding, and omniscient coding in a five-node and a

six-node Gaussian multiple relay channels respectivey.ndke the following observations.

« As expected, the achievable rates under myopic coding @rmare than that under omniscient coding. However, at low
SNR, we see that myopic coding is close to omniscient coding.

« We note that achievable rates increase significantly fromtoop to two-hop coding. This suggests that for a multiple
relay channel with many nodes, myopic coding with "shor#wiis sufficient.

« We definep; = Rmyopic/ Romniscient Wherei = 1,2 for one-hop and two-hop coding respectively. When the nunoffe
nodes increasey; and p, decrease. This is because more nodes are ignored in myagliitgcevhen the channel size
gets larger. However, in a six-node channel, two-hop codauy still achieveps > 0.8 for transmit SNR smaller than
1dB.
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Fig. 7. Achievable rates under different coding constminta six-node multiple relay channel.

V. EXTENDING TO k-HOP CODING

Now, we generalize two-hop coding kehop coding wheré € {1,...,7 —1}. The proof is given in [10] but omitted here.
Theorem 2:In a T-node memoryless multiple relay channel, usirgop coding, the following rate is achievable.

R <maxmax min I(Ui—g,...,Ui—1;Ye|Us, ..., Upyp—1) (12)
w(-) p(-) te{2,....T}
whereUs_ = Us_p = --- = Uy = Ur = Ury1 = -+ = Uryr—1 = 0 and the maximization is taken over all joint
distributions of the form
k T—k—1

p(T1, T2 .., Tro1, UL, Uz U1, Y2, Y5 - YT) = Hp(ui)Hp(xT—iWT—i,---,UT—l) H p(xilti, - Uip—1)
- et

=1
Xp*(yg,...,yT|{E1,...,{ET,1). (12a)
V1. MyYoriC CODING IN LARGE NETWORKS

Since the transmission beyond the view of a node is treatewiag, one concern with myopic coding is whether the rate
vanishes as the number of nodes grows. We analyze two-hdpgcoda 7-node multiple relay channel, assuming that the
nodes are equally spaced at 1m apart and transmit at pBlvé€onsidering the reception of nodgthe signal power is given

by

Pyig(t) = (\/3—’7(1,5_313 + /27 1(1 — Ozt_g)P)z

+ <\/2—770zt_2P +/171(1 — ozt_l)P)2 > 0. (13a)

whereP = kP’
The noise power iF,,:s(t) = N; < co and the interference power is given by

t—1 T—t—1

P (t
$—3 Moy 3+Zk_+1 Ty + Z

1
kn

—t—
— Ok Oét (k+1) Oét+k 1 - Oét+lc+1)
2 . l4a
+ Z K (k + 1) kz \/ Kk + 1) (142)

Noting that0 < oy < 1,Vt and S|mpl|fy|ng [12k), we get

P““ <62H<6§) (15)



Here((n) = >_p—, = is the Riemann zeta function, which is a decreasing funatibn. Since, the path loss exponent is

always greater than 29;,,;(t) < 6((2)P = n2P. Hence, we can always find set 6f;,...,ar_»} such that the reception
rate at every node Vi € {2,3,...,T}, is
1 Py, (%)
Ri=-log |1+ =222 | >0. 16
STl RN O i (16)

When more nodes are included in the “view” in myopic codify;, increases and’,; decreases. In general, assuming
that the nodes are roughly equally spaced, the achievatds wmderk-hop myopic coding X > 2) are bounded away from
zero even as the network size grows to infinity.

VIl. CONCLUSION

In this paper, we compare myopic coding, i.e., local view lkmited cooperation, and omniscient coding, i.e., glohialw
and complete cooperation, on multiple relay channels. Wepttie achievable rates for myopic coding irf'anode multiple
relay channel, using regular block Markov encoding and wimdecoding. Our experiments with five-node and six-nodayrel
channels showed a significant rate improvement from onetbdwo-hop coding and that two-hop coding can be as good
as omniscient coding. These observations demonstrateetiefits of local cooperation and that only a small fractiorthaf
nodes need to cooperate. This suggests that local codingndesy be good enough without compromising rate.
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