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Abstract—Random binning arguments underlie many error, even with known statistics. This is easiest to see by
results in information theory. In this paper we introduce example. Supposeis a sequences of independent identi-
and analyze a novel type of causal random binning — 41y distributed (i.i.d.) uniform binary random variables,

“sequential” binning. This binning is used to get stream- . .
ing Slepian-Wolf codes with an “anytime” character. At related toy through a memoryless binary symmetric

the decoder, the probability of estimation error on any Cchannel with crossover probabiligy< 0.5. The Slepian-
particular symbol goes to zero exponentially fast with WolIf sum-rate bound isH (x,y) = 1 + H(p) < 2.
delay. In the non-distributed context, we show equivalent But, since the individual encoders only see uniformly
results for fixed-rate streaming entropy coding. Because gistrihuted binary sources, they do not know when the
of space constraints, we present full derivations only for R .
the latter, stating the results for the distributed problem. SOUICES aré _behavmg_ jointly aprlcaIIy_. Therefpre, they
We give bounds on error exponents for both universal and have no basis on which to adjust their encoding rates.
maximum-likelihood decoders. For this reason, variable-rate approaches do not yield
zero-error Slepian-Wolf coding.
Motivated by work in “anytime” channel coding [5],
Consider the “lossless” entropy coding of a discretge ask whether we can design a streaming Slepian-Wolf
memoryless source. One approach is to use a fixeg{stem. We relax the demand for zero probability of error
length block code, and accept some probability of encogith a random delay (as in variable-length coding) and
ing error. Errors occur when the realized source sequenggtead ask for an exponentially decreasing probability of
is sufficiently atypical that it is not indexed by the codegrror for all decoding delays. To build toward this goal,
The probability of such an event can be made as sm@le introduce a sequential binning scheme in Section
as desired by using a sufficiently long block lengthy. we use it to build a streaming fixed-rate universal
This block-length induces an end-to-end system delaatropy code. Using a sequential version of a minimum
An alternate approach is to use a variable-length codgntropy decoding rule, the probability of decoding error
These codes achieve a zero-error probability by usigécreases exponentially in the delay for all sources
longer codewords to encode more atypical sequenc@gth entropies below the rate of the code. In Section
These codes are characterized by variable delay — fofjp we state our results for streaming Slepian-Wolf
fixed communication rate, the more atypical the souregstems under both universal and maximum-likelihood
sequence, the more bits to encode, and therefore {ivL) decoding. Derivations will appear in [2]. Finally,
longer the delay before decoding. in Section IV we discuss and illustrate some of the
Both fixed and variable-length codes can be madgfferences between streaming and block coding systems.
universal over all stationary memoryless sources with
an entropy lower than the target coding rate. For fixed-
length codes, the encoder can simply “bin” the obdl. STREAMING ENTROPY CODING VIA SEQUENTIAL
served sequence. The decoder can then use a minimum RANDOM BINNING
empirical entropy rule to decode universally, without
knowledge of source statistics. In the universal variable- Source Model: A sequence of i.i.d. random symbols,
length case, it is the encoder that traditionally does af, i = 1,2, ... is observed at the encoder. The distribu-
explicit or implicit estimation of statistics so that it cantion of eachx; is denoted byp,, wherep,, (z) = px(z)
assign longer codewords to less likely sequences.  for all i. At time [ the encoder transmits a message
Now consider lossless entropy coding in the contexb; which is a function ofx! = [x;,x,...,x] to the
of Slepian-Wolf codes [6]. In Slepian-Wolf coding, wedecoder wheren; € {1,...,exp[R,]}. For convenience
cannot use variable-rate codes to get a zero probabilitywé measure rate in nats and for simplicity we assume
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that R,/In2 is an integef. a® i z*
Goal: For any timen > n, the decoder wants to | 00000101 100001111 /01000101
make an estimate™ = x"~2 = Da(my, ma, ..., my), S(2%|2%) = S(@%a®) =8 | §(2%|a%) =1
where A is the decoding delay. We waiitr[x"~2 # S(a®|z®) = S(@%z%) =1 | S(z®2%) =1
x"~4] to decay exponentially i\ for all n and A. S(a%) = S(@°) =1 S(z%) =1
Sequential Binning Encoder: The encoder works by | 7(z®) =0000 | (&%) =0 m(z%) =0

randomly assigning “parity bits” in a causal manner to ) ) ) ) )
. . Fig,.1. Example of scoring mechanism and prefix assignment. In this

each possible source sequence. At each time step, e@gmlplexilax — 28, 505(a3,.) = 4 andn(z3,,) = 000 0.

possible source sequence so far is assighgdin 2 new

parity bits where the parities are all Bernouylli-5).

Since parity bits are assigned causally, if two sourasf each sequence is the minimum of all its preliminary

sequences share the same lerigpinefix, then their first scores

IR,/ In 2 parity bits must match. Subsequent parities are S(x)=_ min_  S(X|X). (2)

drawn independentf.The set (or “bin”) of sequences X€B; (x),%#%

that share the same parities as the lengtheurcex A sequence gets a high score if it is only beaten by

is denotedB,.(x). Consider some other possible sourceequences that share long prefixes with it. Each sequence

sequencex. If, for example,i! = x!, but#;,1 # x4.1 7 € B,(x) is assigned a final prefix defined as

then there ar@ —[ opportunities for the parities of and o\ _ ~S(%) 3

x to differ. Therefore, by the parity generation process, m(x) =27 (3)

Pr[x € B,(x)] = exp{—(n — )R }. A sequence’s prefixr(x) is the the shortest longest
Decoder: We use a “competitive minimum-entropy-prefix thatx shares with any other sequengethat is

suffix” decoding rule. The decoding rulg”~2 = also in its bin, and which also has a lower suffix entropy.

Da(my,...,my,) starts by first identifying candidatelf S(x) < S(x), and z°®) = 75X ie. n(x) is a

sequences whose parities match the received bit streprefix of 7(X) then we use the notation(x) C 7(X) to

up to timen. If we observex = x, this is{x s.t.x € denote this subsequence relationship. In fact, we show

B.(x)}. We score each of these sequences in a two-stage_emma 1 that ifS(x) < S(x) thenn(X) C 7(X).

manner. We get3,(x)| — 1 preliminary scores for each We now define the maximum-scoring sequence as

x € B,(x) by comparing it to each sequenges 5, (x)

n o _ _
according to the function Pmax = fegl;n(i? S(x). )
~ Lot H(zp,) = H(_:z"+1) - If there is a tie in (4), one maximum-scoring candidates
S(x[x) = and wherez! = Z',Z;,.1 # Zi;1 (1) s selected randomly. This does not effect our results.
n else The source estimate at timeis*
where, e.g.H (77, ) is the empirical suffix entropy of mea Janss i S(al,) >n—A, 5
x. If this entropy is greater than or equal to thatxpfits * " Jerror else ()

score is the length of the longest shared prefix. Else, if . o o
its entropy is strictly less, its scoresis® The final score AN €xample of the scoring mechanism is given in Fig. 1.
In this example,S(z8|2%) < S(z8|2®), S(z8|z8) =
INote that we can always transform a source with a non-nearh5(z%|2%), and S(z828) < S(28|z®). This shows that
integer entropy into another with near-integer entropy by grouping thge preliminary scores by themselves do not yield an

right numbers of source symbols together into super-symbols to form . . .
a new source with nearly-integer entropy. ordering. An alternate approach is to decode to the min-

2We call these “parity bits” as they can be generated using an infinitg1um entropy sequence. This gives an ordering and does
constraint-length time-varying convolutional code. not require a two-stage decoding approach. However, a

3Note that maximum likelihood decoders perform a similar suffixFerm that is polynomial im (not A) ends up multiplying
comparison implicitly since, for a memoryless source, the shared pre

has the same probability. Thus the sequence with the higher probabiiiE/e exponential decay (i) of the error probability.
suffix is always more likely. On the other hand, for empirical entropfThis is why we introduce the suffix-decoding rule.

decoders, the sequence that has the lower suffix entropy does Notrhe central characteristics of the decoding rule that
necessarily have the lower overall empirical entropy. Say that the

shared prefix is the all-zeros sequence. Consider two suffixes, the € €Xploit is encapsulated in the following lemma:
ones suffix, and a suffix that is half ones and half zeros, both of which

are equal in length to the prefix. Although the all-ones suffix has zero “We could instead have uséd Cmax) = T(Xhax) OF X™ = X[
empirical entropy, the sequence that results when the all-ones suffixisth of which would generally yield a longer estimate. We choose the
concatenated together with the all-zeros prefix has a higher empiricairrent definition (5) to simplify the decoding error — either we get all

entropy than the half-half suffix and the all-zeros prefix. symbols correct up to time — A, or we get an error.



Lemma 1:If S(x) < S(x) thenw(x) C m(x). disjoint subsets determined by the first symbol in which
Proof: The proof makes use of two aspects of ththey differ fromx. Thus, Pr[S(x) <n—A]=...
scoring function. First, thaf(x) < S(x|x) for all x by

definition (2). And second, thahin{S(x|%), S(x[x)}is =>_ > Pr[S(x) <n— Alx] px(x) @)
the length of the longest shared prefixsofand x. P, xeTp,
First consider the case whef(x|x) < S(x). Under n—A-1
this assumption we have => 3 Y PrExsti =a' d A,
P, x€Tp, I=1
(%) @ 550 £ 50 © zsei) € 556 = 1), S(x[%) = 1, % € By (x)[x] px(x) (8)
n—A—1
The first equality (a) is the definition ofr(x). The < Z Z min|[1, Z Pr[x € B, (x)]] px(x)
first subsequence relationshi{p) comes fromS(x) < I=1 P, x€Tp, %stal = ol
S(x|x) for all x by definition (2). The equality(c) il;&é)w';f'
comes from the assumption tha{x|x) < S(x). This e A1
implies thatS(x|x) is the length of the longest shared _ .
prefix of x andx and therefore that their firs§(x|x) zz; Pl; . l; min{l, i zl; .
symbols match. The second subsequence inequaljty n; et R
also follows from the assumption th&i(x|x) < S(x). H@40) S H@lyy)
Second, consider the case whéiix|x) > S(X). exp{—(n — )Ry }] px(x) 9)

Note that this implies that the length of the longest n—4&-1
shared prefis,, = min{S(x/%), S(x[x)} > S(x).We = >, > Z min[l, >

therefore have =1 PLpPn—l  aleT, pn=l st
"l+1 T pr—l H(F‘"*Z) < H(P”fl)
L _ -(a):S: :(b):S*(C)—S* B
pomin= gomin 7 35 = p(x) J 75 2 725 = 1(x) Z exp{—(n — )R, }] px(x) (20)
. _ &, €T pn—
The relation(a) follows from spi, > S(x), and (b ) AL

by the given thatS(x) > S(x). Since spin > S(x e
and we are given that(x) > S(x) in the statement Z: PLXP; ’ l; min[1 ) »
— ety

of the lemma, therefore,,;, > S(x). Therefore since Py € Tom_i
zsmin = Zomin we also haver®®) = z5%) which we I
: ' exp{—(n — )[Ry — H(P"™")]}] px(x) (11)

apply in (c). o n—A-1

Lemma 1 proves that the prefixe$x) for x € B,(x) < 141Xl —(n—DI.
have a well-defined order. This means that that fist) l:Zl (n ) Z Z p{=(n =1
symbols of the estimate are correct, whéfex) is the iy |4+ - -
score of the random source Thus, decoding errors |Ro—H(P" )" +D(P""|Ipx) + H(P" )]} (12)
can only occur wherb(x) < n — A. Of course,S(x) n At e
is random. In the remainder of this section we bound= Z (n—1+1)1 Z exp{~(n—1)...
Pr[S(x) < n — A] by a decaying exponent iA. =1 prt .

Theorem 1:Given a rateR, > H(p,), then for all inf[D(gllpx) + |Be — H (@)1} (13)
E < E,.(R,) there is a constan’ > 0 such that n—A—1

Pr[x"2 # x""2] < Kexp{—AE} forall n,A >0 < Z (n—1+1)?*exp{—(n — E,(R,)} (14)

where =

pr=tap  €Tpn—

no—1
Er(Ro) = nf D(gllps) + [Re =H@I", ©) <3 Ky exp{—(no+ A —1)[E(R) =]} (15)

=1

and wherglz|T =z if z>0and|z|t =0if z < 0. <K exp{—A[E,(R,) — 1]} (16)
Proof Strategy: To lead to a decoding error, some

other sequenceg must (i) satisfy the parity bits, i.e., After conditioning on the realized source sequence in (7),
x € B.(x), and (ii) must give a scoré(x|x) = | < the remaining randomness is only in the binning. In (8)
n— A. If S(x) >n — A, no such sequence exists. Wave decompose the error event into a number of mutually
bound Pr[S(x) < n — A] by partitioning all possibly exclusive events, and in the following line apply the
misleading sequencegk s.t x € B,(x),x # x}, into union bound. In (9) we reenumerate the possible source



sequences in terms of the shared prefix= # and the a system such thdtr[(x"~2, y"=2) # (X"~2, y" 2]
differing suffixesa], , # #',. We defineP’ and P"~! decays exponentially ir\.

as the types, andp: and 7p.-: as their type classes, For universal decoding we use a weighted joint variant
wherez! € Tp: and ], € Tp.-:. We also rewrite the of the preliminary scoring rule (1). In particular, say that
constraintS(x|x) = [ explicitly asH (i}, ;) < H(x},,). #' =2' %11 # 141, andy* = §*, Gr11 # Yr11. Then,

In (10) by the scoring rule (1), the only suffix@g _, that if I < k, the preliminary score i$(x,y|X,y) =

can cause5(x) to be belown — A are those with lower .

suffix entropy thanH (z}, ) = H(P"'). We sum over [ | it (n—=DH(} |5ih,) + (n — k) H(yp,,) 2

this set. In going from (10) to (11) we first note that th (n = DH @4 5) + (0= k) H (Y54)
argument of the inner-most summation (o¥ér,) does n else

not depend orx. We then use the following ~relatlons:If k < 1, swapz with y andl with k. The rest of the

_ n—I
(i >: 57 €T = [Tpn_i| < exp{(n — )H(P™")}, decoding rule is defined as before. This gives,
which |s a standard bound on the size of the type Theorem 2:Given a rate pair(R,, R,) such that
. xy Lly

class, (i)H (P"~!) < H(P"~!) by the minimum-suffix-
entrop§/ )deE:odmg); rule(and )(m)ythe polynomial bound, . > Hpay): By > Hpy), Bo + By > Hipy),
hen for all E < E (R, Ry) there is a constank™ >

on the number of types{P" '} < (n — 1+ 1)I¥I. 0 such thatPr(xm=2, yn=3) £ (xn=A yn=Ay <
In (12) we use the memoryless property of t.he source exp{—AE} for all n, A > 0 where E, (R, R,) =
to sum out overp,. ('), and pull the polynomial term :
out of the minimization. We also usep,y  (7},) = . . - ~
exp{—(n — D[D(P"!|py) + H(P" )]} for all x € ™% LM;{;E W{AD(qI\yqyIIpr)+AD(qI\yquIpr)...
Tpn— and combine the exponents. As the expression no o+
longer depends on7, ;, in (113) we simplify by using + AR = H(gapylay)] + Ao + By — H(gayyy)]] }’
|Tpn—i| < exp{(n—0)H(P™")}. In (14) we define the . 3 -
error exponenk, (R,) £ inf J[D(q||px)+|Re—H (q)| 7], qw@igfym)\ {AD(qy\qupry) + AD(qy |2z [Pxy) - - -
and use the polynomial bound on the number of types o
In (15) we incorporate the polynomial into the exponent }/\[R = H(gyj0|g2)]+ A Re + Ry — (qy\wa‘m }}
Namely, for alla > 0, b > 0, there exists &' such ~
that 2¢ < Cexp{b(z — 1)} for all z > 1. We then use where0 < A\ <1, A = (1-2), and where the probability
n = ng + A to make explicit the delay-dependent termis taken over both random encoders and the random
Pulling out the exponent i\, the remaining summation source. This distributions, |, and g, are conditional,
is a sum over decaying exponentials, and can be boundgd G, ¢, and g, are marginal distributions, and, e.g.,
by a constant. Together with;, this gives the constant ¢.|,¢, is a joint distribution with a conditional entropy
K, in (16). 1 expressed as#l (¢,|y|qy)-

This proves Theorem 1. Note that the in (16) In the maximum-likelihood context, the decoder se-
does not enter the optimization because- 0 can be lects the most likely pair of sequences, giving
picked equal to any constant. The choiceydéffects the ~ Theorem 3:Given a rate pair(R,, R,), such that

constantX in Theorem 1. Ry > H(pyy), Ry > H(pyx), Re + Ry > H(pyy),
then for allE < E,(R;, R,) there is a constank >
Ill. STREAMING SLEPIAN-WOLF CODING 0, such thatPr[(x"~2,y"2) # (x»4,y" 2)] <

>
In this section we present random coding error ex- K exp{-AE} forall n, A > 0 where E, (Rq, Ry) =

ponents for streaming Slepian-Wolf systems. The proof
techniques used are extensions of those used for streamin {
ing entropy coding in Section Il. We give results both

for universal and maximum-likelihood decoders. and where the probability is taken over both random en-

In a Slepian-Wolf system the sourcéx,y) iS cqogers and the random source. The functi6hs (p) =
jointly distributed in a memoryless manner Wherg\G (p) + (1 — N)Golp), andG,, (p) = AG,(p) + (1 —

pxnyn (2™, y™) =TI, px.y(2s,v:) for all n. One en- \)Go(p), where
coder observes the™ stream, and causally encodes it

inf  sup G, inf  sup G > 0,
ABEy s NI Aily s yk(p)}

using the sequential random binning strategy presented ) I+p
in Section Il at rate®,.. The second encoder obseryds  G.(p) = pR, —log, | > (Z Doy (2, y)1+p> ,
and uses the same strategy at t&fe We want to design yey \zeX
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o 03f 1 system observing a stream of tertiary i. i. d. symbols with
" o2l { distribution py(a) =0.9, px(b) =0.05 and py(c) =0.05.
At each time, the encoder observes a pair of these
H(x.y) | symbols, and can ser@l bits to the decoder. The best
0 0.428 sumrate, R +R (nats)y  2log2  POssible block-coding error exponent for this system can
o °  be shown by using [1], Theorem 2.15, to equal74
Fig. 2. Error exponent, (R., R,) for a binary-asymmetric example Dits Per symbol pair. Now consider the following ad-hoc
with H(x, y) = 0.428, evaluated along the symmetric-rate liRe = Streaming strategy, which we show results in a much
R,. The source statistics agg,, (0,0) = 0.05, px,,(0,1) = 0.03, higher exponent.
Pry(1,0) = 0.02, andps(1,1) = 0.9. The encoder takes each pair of source symbols and
maps them into either two or four bits as follows. If
1+p the ith source-paix; = (a, a), the encoder outputs0.
= For any other pair the encoder maps it into a four-bit
Gy(p) = pRy = log, Z pr’y(x’y) v prefix Zode, i.e")., the bit-tupletﬁOOOPlO()l,...,1111.
The encoder output is fed into an infinite-length first-
. | in-first-out buffer, the oldest three bits of which are
Go(p)=p(Ra+Ry)—(1+p)1og | > > pey(z,y)™7| . sent to the decoder at each time step, padded by zeros
TEX yeY if the buffer is empty. Note that to stay synchronized
The exponents of Theorems 2 and 3 are generaiye decoder can count symbols to tell when the buffer

smaller than their block-coding counterparts [1], [3]ig empty. Denote the number of bits in the buffer at
However, the difference disappears when one of thgne ; by b;. If x; = (a,a), then b1 = b; — 1, else

sources is observed at the decoder. We also believe thaJ;tl = b; + 1. The stationary distribution ob; exists,
the exponents of Theorems 2 and 3 can be shown 4aq islim, .. Pr[b; =] = ju = 0.7654(0.19/0.81).

be equal using the same techniques that work for others bn, < R,A—4, then by timen, + A, the encoding

comparisons of universal and ML error exponents.  of symbol pairx,,, will certainly have been received by
In Figure 2 we plot the ML error exponent for athe decoder. Thus, in steady-stae[x"—2 # x" 2] <
binary-asymmetric example along the symmetric raqer[bn_A > RA—4] =32 o < 999—2.09R, A
line R, = R,. The maximum difference between thiszor g, — 3 bits per symbol pair, this gives an error
exponent and Gallager's [3] occursiai + R, = 0.6222, exponentE,(3) = 6.27, far larger than the block-
where the difference i8.0011. The maximum difference coding exponent of.474. The streaming exponent can
at any rate pair for this example &003. We do not pe further increased by mapping = (a, a) to 0 instead
claim that our error exponents are optimal, but it igf to (0. A related study of buffer overflow and variable

important to realize that a consequence of our the@sgth coding was made by Jelinek in [4].
rems is thatevery source symba$ eventually decoded

correctly with probability1. Atypical bursts of source ACKNOWLEDGMENT
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