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Abstract— Recently, a Quantum Key Exchange protocol that In [4], a QKE protocol, which we denote by GP0O, was pre-
uses squeezed states was presented by Gottesman and Préskil  sented that resembles BB84 but solves the problem of prepar-

this paper we give a generic security proof for this protocal The ing single photons. GP0OO works with infinite-dimensional
method used for this generic security proof is based on recén

work by Christiandl, Renner and Ekert. squeezed states, which can be prepared by a laser. The
' squeezing parameter determines the amount of squeezing
|. INTRODUCTION of a squeezed state. The more squeezing, the more difficult

In a Quantum Key Exchange (QKE) protocol there are thr@e squeezed state is to prepare, therefore we need a lower
parties; Alice and Bob who want to exchange a secret kbpund forr. In [4] it was proved that the protocol is secure
and a malicious third party, Eve. Eve has access to unlimitéde < 11% hence ifr > 0.289. In this paper we apply the
guantum computational power and she can monitor but rggneric security proof to GP0OO and find the same thresholds.
alter all public communication between Alice and Bob. Alicé\ generic security proof is advantageous because it can give
and Bob can access a quantum communication channel (were insight in the security of similar protocols. Furtheg
assume that this channel is lossless) and an authenticatdtidiscuss some remaining security issues of GP0O. Ripall
public channel. we pay some attention to transmitting more than one bit per

Following a certain QKE protocol, Alice and Bob transmisqueezed state.
guantum states over their quantum communication channel
and perform measurements on their respective quantuns state _
From the measurements they extract bit values. By communiLeta € Cand¢ = re withr € R and¢ € [0, 7). To every
cation over the authenticated public channel, Alice and Bgb« there corresponds a squeezed state denoted,by. It
agree which bits will be used for secret key generation. Th&gtisfies with equality the Heisenberg uncertainty refetiith
estimate the bit error rate of these key bits with anotherrespect to the position and momentum operatond p if
round of public communication. Alice and Bob then applgnd only if ¢ = 0 so ¢ = r € R. That is, 0,0, = 3.
information reconciliation and privacy amplification teetkey In fact, if we measure the position or the momentum of
bits so that they end with a shared bit strifg the squeezed statg = r,«), then the measured value

In [1], a generic security proof is proposed by which ther p is distributed according to a Gaussian distribution with
security of a wide class of QKE protocols is proved. It is liase/ariance equal to respectively; = %€2T or 03 = %6_%-
on the fact that privacy amplification is equally secure whef¥e say that- is the squeezing parameter and that) is a
an adversary’s memory for data storage is quantum rather tiainimum uncertainty squeezed staterlk 0, theno? < o
classical ([2]). The generic security proof gives Alice @uab
a threshold! for the bit error rate. This means that i€ < d,
then K is unconditionally secure. The generic security proof
is applicable to QKE protocols that involve quantum systems
with a finite number of degrees of freedom (in [1] and in [5] ) X ) P
it was proved that BB84 is secure fer< 11%). It does not
immediately apply however to QKE protocols using quantum
systems with an infinite number of degrees of freedom. T~

BB84 ([3]) is a QKE protocol that works with two-
dimensional quantum bits (qubits) which are encoded bylasing
photons polarized in one out of two non-orthogonal bases. Thig. 1. Measurement probability distributions for measgrihe position or
unconditional security of BB84 is based on Alice’s abilitye momentum of a squeezed state squeezed inaad b)p.
to prepare single photons, something that is still extrgmel
difficult. and the squeezed state is “squeezedinlf r > 0, then

Il. SQUEEZED STATES
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the squeezed state is “squeezed”pir(see Fig[lL). After a IV. BIT EXTRACTION PROBABILITIES FORGPOO

measurement of position valueor momentum valug, the |t alice and Bob use different bases, then the value mea-
squeezed state coIIap_ses to respectively a position é&ensgreq by Bob has a Gaussian distribution centeredl Zhis
|z) or a momentum eigenstalg). distribution is shown as the graph on the left in Fijy. 4 for
a = 1+/m. The marked area pictures the values dér which
_ ) b—a € C and represents the probability that Alice and Bob
First we fix 7 > 0. All squeezed states are squeezed Wilfhd the same bit. This probability equalss if a = %\/; In
squeezing parameter = —7 (for squeezing inz) or r = 7 fact, this probability is maximal it. = 2n./7, is equal to0.5
(for squeezing irp). We divide the real numbers into two setsf ; — (25, + 3)v/7 and is minimal ifa = (2n + 1)y/7. This
means that if all values fop are equally likely, then the bit
LO extracted by Bob is on average random. The corresponding
I 27 -7 0 JT 27 cases in the protocol can therefore be discarded. If Aligk an
1

I1l. B1T ENCODING AND DECODING SCHEME FORGPO0O0

Fig. 2. Bit encoding interval€y and L.

of intervalsLy and£; as in Fig[2. Alice samples € R from
the GaussiarP, (a) with mean0 and variance} e?':

-/n 0 a /7 21 a-/m af%ﬁr a 1a—1;ﬁr a—%ﬁ
1 a? . ¢ _
Pa(a) = = exp [——} (1)
( ) Vet e Fig. 4. Bit correct probability if a) different basis are dsanda = %\/E

o "
If a € Ly, Alice extracts bit0, otherwise she extracts hit and b) the same basis is used arfd-a = 5v/7 .

She prepares a squeezed state squeezedinp at random.

If she squeezes im, she sends to Bob Bob use the same basis, then the probability that they find
. the same bit is dependent on the distance betweethe
— o4 — gr/1 — p—A4AT
| — 7, a) with (r) =a'=avl-e value from which Alice extracts her bit, and, the mean
(p) =0
b= value of Bob’s squeezed state. This is illustrated in thelgra

If she squeezes ip, she sends to Bob the squeezed state on the right in Fig[¥# fora’ — a = iﬁ. We denote the
(@) =0 average probability that Alice and Bob find the same bit, igive
|7, o) with { o, — that they use the same basis, by- ¢,. For illustration, this
(p) =d'=avl-c probability is0.89 if # = 0.289 and if # — o it will approach
For every squeezed state Alice computes and annoumees 1. Note that even if Alice and Bob use the same basis then,
amod /7 where0 < ¢ < +/m. Note that there exists anin contrast to BB84, they find the same bit with probability
ng € 7Z such thata = n.+/7 + ¢. Every value forg should be smaller thanl. This means that because of using squeezed
equally likely because theR(a € Ly|¢) = P(a € Ly) = 0.5 States, additional quantum noise is introduced. (
such thatp leaks no information to Eve (we further discuss
this in Sectior IX). _ o
For every squeezed state Bob decides at random to measui/e give the description of the protocol. At the end of the
the position or the momentum. Suppose that the outcomeR§ptocol, just before information reconciliation and gy

his measurement isand denote the difference of Alice’s and@MPplification, Alice and Bob each have arbit string respec-
Bob's value bys = b — a. Note thath — ¢ = na\/7 -+ 6. tively X andY . After information reconciliation and privacy

Bob extracts bit valu® if b — ¢ = nq+/7 +  rounded to the amplification they have a shared secure k&gf lengthk < n.
nearest integer multiple of/7 is an even multiple of /7 and 1) Alice prepares approximatelyn squeezed states. For

V. THE PROTOCOLGPOO

bit value 1 otherwise. every squeezed state she decides to squeeze diim p
at random. She prepares the squeezed states according to
C the encoding scheme described in the previous sections.

For every squeezed state she extracts a bit value. She
sends the squeezed states to Bob.

2) For each squeezed state, Bob decides to measure the
position or the momentum at random.

3) Bob confirms having received the squeezed states. Alice
If we define the decoding intervél as in Fig[B, then Alice and Bob announce which bases they used.

and Bob find the same bit f = b—a € C. This is because if 4) Alice and Bob discard the cases where they did not

§ € C, thenn,+/7+4 rounded to the nearest integer multiple of use the same basis. From the remaining approximately

/7 is equal ton, /7. They find different bits ith = b—a ¢ C. 4n/2 = 2n bits Alice choosesn to serve as check

3 T
- *%ﬁf 0 J/m %ﬁ

Fig. 3. Bit decoding interval.



bits and n to serve as key bits. For the squeezeshomentum eigenstates) are as follows ([4])
states corresponding to these check and key bits, Alice 1 A2
computesp. Alice sends ally’s and the chosen positions |¢) = ﬁ//exp ——a?
- 1 B
ex

of the check and key bits to Bob such that Bob can 2

extract check and key bits from his measured values. P |5 (;Cb — /1= A4xa)2] |Ta, 2p)dapde,
Alice and Bob's resulting key bit strings até andY'. L 2A i .
5) Alice and Bob announce their check bits to estimate the — _ L//ex _A_2 2
bit error ratee. I P | 2 p“_
6) If ¢ < 11%, then information reconciliation and privacy 1 7 \2
amplification follow such that Alice and Bob end with XP 7oA (pb +tVv1i-A pb) ]|pa’pb>dpbdpa

a shared secret kel . .
e where( < A? < 1. For A% < 1, |¢) is an entangled state.

needs additional informatiop about the squeezed states t@\jice measures the position of her part, she measures puositi
extract bit values from his measured values. Noigeig not yajuez, with probability
only caused by the channel or by Eve, but also by the natural

. A
noise of squeezed states)( If # — oo, thene, — 0 and Py(z,) = —=exp [-A%z2].
GPO0O0 approaches the continuous versiorB@84. VT
By this measurement, she prepares for Bob the state
VI. THE GENERIC SECURITY PROOF 1 1 2
AT / exp [—m (0= V1= Alza) | ),

The generic security proof [1] can be applied to a genenifich is a squeezed state squeezed: iwith mean position

QKE protocol equivalent to an entanglement based protoc\c/) lue vI— Adz, and mean momentum value If Alice
A dealer prepares entangled states and sends one part of the

. easures the momentum of her part, she measures pglue
entangled state to Alice and the other part to Bob. Let the . part, PR
measurements that Alice and Bob randomly apply to thev'vrIth probability 7%, (pa) = Px(pa). By this measurement, she

) Yy apply 10 | repares for Bob a squeezed state squeezedviith mean
received quantum states be the POVI&indG and let the bit T L

te of the bit tracted f th ts bet momentum value-v/1 — A Pa and mean positio®.

grgr rtﬁeot ? I;Zex Ftace rc;m de m(a_le)l§ur(tar|]”r1en N If we chooseA? = ¢~27, then the entanglement based
. te fetse 0 a,: enilyoE]grre]\ ?Tf Ifjsctrrl1 I:\gf € guan u(rjn protocol is equivalent to GP0O; from E@l 1 we see that
S ?he ° Wotst)(;;em]s:) orgw 'g tlh 0 thS tapgs_tmealsur? sz(a:a) = P,(z,) = Pa(zq) and the squeezed states produced
WIth réspec ®/ory @y, then the o bits extracte by Alice’s measurements in the entanglement based version
from the measurement have bit error probabitityThusR is

th t of all ible densit tors d bing theuad tare equal to the squeezed states sent by Alice in GP0O. Note
€ set of all possible densily operators describing theuelut y, . 4 he entanglement based version, the mean momentum

state of Alice and Bob, given that the bit error rate is eqaal L - :
L . alue is —v1 — Atp, rather thany/1 — Atp,. This means
€. Let Z be a projective measurement on the density opera{ [ Pa *

. ) ) at Alice extracts a bit value and calculateBom —p,, rather
p € R with outcome des_crlbed by the rand_om variableLet than fromp, if she measured the momentum and fremif
X _andY be _random vgnaples such that Allpes and Bob’s bghe measured the position. Alice and Bob find the same bit if
strings consist of: realizations of these variables. The secrel ¢ or pr — (—pa) = pb + pa €C
key rateR is now given by ([1]) b e pe Pa) =Pb T Pa &L
VIIl. G ENERIC SECURITY PROOF OFGP0O0
R = H(X)-H(X[Y)-arg,cpmaxH(Z). (2) Lete be the bit error probability of the check bits. Let the
) _ o ~ density operatop € R; if of both parts ofp the position
The rate might be improved by conditioning on additiongy measured or the momentum, then the probability that the

information W, known only by Alice and Bob and gainedextracted bits differ is equal ta This can be formulated by
during privacy amplification. The rate then becomes

/ / (Ta,Ta + 2|p|Ta, g + x)dxdr, = 1—€ (4)

R = H(X|W)-H(X|Y) - arg,cr max H(Z|W). (3) —o0 Jaec

The generic security proof consists in finding the maximum /_OO /mECC (a0 Ta + 2lpl2a, Ta + 2)drdre = e )

error ratee such thatR is still positive and hence the extracted o

secret keyK is secure. / / . (Pas —Pa + P|pIPar —Pa + p)dpdp, = 1—€ (6)
—o0 JpE

VIl. ENTANGLEMENT BASED VERSION OFGP00 / / . (Pas —Pa + PIPIPas —Pa + P)dpdpa = € (7)

—00 pe c

To be able to apply the generic proof to GP0O, we regawhere e.g9.(zq,z, + z|p|zq, 2z, + x) IS the probability that
it as an entanglement based protocol. The entangled staidéise measures position value, and Bob measures position
prepared by the dealer (given in both position eigenstatds avalue x, + x.



As projective measuremeng€ we choose the continu- which is positive fore < 11%. This means that GP0O is secure
ous Bell measurement which is given by the projectoibe < 11%. Because the noise generated by squeezed states

{J¢(z,p)) (¥ (z,p)||z,p € R} with (es) contributes to the total noise we havee; < e. With
oo calculations we find that, < 11% if # > 0.289. This means
[Y(z,p)) = / ePr|zy, xy + x)d, that GP0OO can only be secure if squeezed states are squeezed
ey with squeezing parametér> 0.289.
= / e'*Pe |paa —Pa + p>dpa-
—oo IX. RANDOMIZATION ISSUE OF¢.
If we define

In GP0O, Alice announce$ = a mod /m. For uncondi-

Aap = (Y (. p)|plY (2, p)), tional security it has to hold thdt(a € Lo|¢) = P(a € Lo) =
then)\,, is the probability that if Alice and Bob both measurd)-5 because then Alice can safely announcsince it leaks no
the position, then the difference of their outcomesrisnd information to Eve. The probability’(a € Lo|¢) is maximal
if they both measure the momentum, then the sum of thét¢ = 0, equal t00.5 if ¢ = 3+/7 and minimal atp = /7.
outcomes equalg. If z = 2, — 2, € C Or p = py + p, € C, FOr# = 0.280 we find e.g. thatP(a € Lo|¢ = 0) = 0.745
then Alice and Bob extract the same bit and:if C orp ¢ ¢~ Which is rather high; it means thatleaks a significant amount
they extract different bits. of information to Eve about the bit extracted by Alice. Study

We let Z, the random variable that describes the outcome 8fill has to be done in whether the generic security method
the projective measuremest, describe whether or not Alice allows ¢ to be non perfectly random. We considered three
and Bob will find the same bit, given that they both use thHeossible, alternative, solutions.
same basis. This leads to four different values (situajitors ~ One way to solve the problem, is to enlarge the lower
Z; we obtain the four probabilities corresponding to the foltound for#. For example, ifi > 1.5, then P(a € Lol¢ =

different values ofZ by grouping the probabilitiea,, in the 0) ~ 0.5 and no information leaks to Eve. Becauskecomes
following way considerably large, this solution is not favorable.

A1 :/ / Azpdadp A3 :/ Azpdadp
peC JzeC peC JxgC

Ao :/ / Azpdxdp A4 :/ / Azpdxdp.
pgC JzeC pgC JazgC

For illustration,)\; is the probability that if Alice and Bob both
measure the position, they find the same bit and if they both

measure the momentum, they find different bits. EGEI#p,6, SmoE vmo0Jr 2/m 3k
can be rewritten as ] ) o
Fig. 5. Discrete approximation aP (a).
AM+A = 1—¢ A3+XM = €

AM+XA3 = 1—¢€ A+M = €

. . . A different solution that we considered is to make a discrete
With these relations, A; andAs can be expressed in M, b proximation of Alice’s sampling distributiof (a) as in
of \4. The entropy of the random variabl is given by bp ping A

Fig.[. It then holds that every value fagris equally likely,
4 the value¢ does not leak information to Eve and if Bob or
H(Z) = _Z/\i logy Ai Eve measures the squeezed state in the incorrect basis, the
=1 extracted bit is on average random. If we use this discrete
and is maximized for\; = 2 and thenH (Z) = 2h(¢). The approximation to calculate the average error probabiity
secret key bit rate becomes (Edj. 2) caused by squeezed states, then we find that for a given
R=1-h(e) — 2h(e) = 1 — 3h(e). squeezing parametet, the value ofe, increases (e.g. if

7 = 0.289 thene, = 0.119). We found thate, < 11% if

This rate is positive foe < 6.1%. 7 > 0.308. Although this discrete approximation seems to
We improve the rate by using the additional informatiomork, it is the case that the protocol resulting from the dise

W = X +Y gained during privacy amplification. It holds thatapproximation has no obvious entanglement based equivalen

anymore such that the generic security proof [1] might not be

HZ\W) = ) PW =0)H(Z|W =1 . oS N .
(Z1W) Lieto,) f ) (A | 2 applicable. We are still investigating the possibilities this
= (1-oh(7%)+en () situation. In the following section we describe how we can
H(Z) — h(e). transmit more than one bit per squeezed state, by making use

. - o of a similar discrete approximation dfs(a).
The entropyH(Z|IV) is maximized forA; = ¢* and then It seems that for unconditional security, the bit encoding

H(Z|W) = h(c). The ratelt becomes (E.I3) and/or decoding strategy of GP0O should be changed such that
R=1—h(e) —h(e) =1 —2h(e) every value ofp becomes equally likely while the sampling



distribution P4 (a) and the squeezed states sent to Bob rematmen Bob extracts bit paim;. This means that Bob extracts
the same (this is the third solution we considered). By kegpibit pair m; ;) moa 4 if 2 —a € Cy, for k € {0,1,2,3}. The
Ps(a) and the squeezed states sent to Bob the same, deeoding interval€y,...,Cs are illustrated in the graph on
resulting protocol has the entanglement based equivakenttlze right in Fig[5.
described in Sectioi"MIl. An idea to do this is to choose If Bob or Eve measures in the incorrect basis, then the
¢ = |a| mod /7 instead ofp = a mod /. message he or she extracts is random because of the discrete
X. SENDING MORE BITS PER SQUEEZED STATE approximation_used foP4(a). Suppose Alice and Bob use
T ] ~ the same basis. Then, the lower bound foseems to be

We describe a method, based on a discrete approximatiQfinparable to that in the one-bit case. Research still has to
of P4 (a), by which we can sendh bits per squeezed statepe done for the exact value of the lower bound for
We show in more detail how to do this far bits, how the e can do similar reasoning for sendiBgits per squeezed
method works for more bits will follow easily from thbits  states. In this case however, it seems that the lower bound fo
case. The main difference with GPQOO is the bit encoding afgk squeezing parameteincreases. This is probably because
decoding scheme. We emphasize that unconditional sedsirityhe discrete approximation dP4(a) becomes too stretched.
not proven yet (see the comment on the discrete approximatifhe jower bound seems to increase even more when we send

Alice and Bob can extradt different messages per squeezed
state, which are given bywy = 00,m; = 01, mo = 10 and XI. CONCLUDING REMARKS

mg2_1 = 11. Alice samplesz from a discrete approximation It has been shown how to use a generic security proof to
of P4(a) such that all messagesw,...m3 are equally prove the security of GP00, a QKE protocol that works with
likely. If a € Ly then Alice extracts bitsny = 00, if squeezed states. We studied a remaining weak point of the
a € Lo then Alice extracts bitsn; = 01 etc. where the protocol and discussed some possible solutions. Elabgrati
encoding intervalsCqo, ..., £q; are illustrated in the graph on one of these possible solutions, we suggested a method to
on the left in Fig.[6. The discrete approximation Bfi(a) transmit more than one bit per squeezed state.
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Fig. 6. Encoding and decoding intervals for sending two. bits

37 2F VA0 T 2T 3F

Fig. 7. Discrete approximation aP,(a) if we send 2 bits per squeezed
state.

discrete approximation, the valug = a mod /7 does not
leak information to Eve and all messages are equally
likely. Alice sends the same squeezed state to Bob, as she
would send in GPOO. For every squeezed state Alice computes
and announce® = a mod /7 where(0 < ¢ < /m. The
procedure at Bob’s side is also similar to that in GP0O. For
every squeezed state Bob decides at random to measure the
position or the momentum. Suppose that the outcome of his
measurement is € R and that Alice extracted the message
wherei € {0,1,2,3}. Bob rounds: — ¢ to the nearest integer
multiple of /7. If this integer multiple is equal tg mod 22,
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