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Abstract— Recently, a Quantum Key Exchange protocol that
uses squeezed states was presented by Gottesman and Preskill. In
this paper we give a generic security proof for this protocol. The
method used for this generic security proof is based on recent
work by Christiandl, Renner and Ekert.

I. I NTRODUCTION

In a Quantum Key Exchange (QKE) protocol there are three
parties; Alice and Bob who want to exchange a secret key
and a malicious third party, Eve. Eve has access to unlimited
quantum computational power and she can monitor but not
alter all public communication between Alice and Bob. Alice
and Bob can access a quantum communication channel (we
assume that this channel is lossless) and an authenticated
public channel.

Following a certain QKE protocol, Alice and Bob transmit
quantum states over their quantum communication channel
and perform measurements on their respective quantum states.
From the measurements they extract bit values. By communi-
cation over the authenticated public channel, Alice and Bob
agree which bits will be used for secret key generation. They
estimate the bit error rateǫ of these key bits with another
round of public communication. Alice and Bob then apply
information reconciliation and privacy amplification to the key
bits so that they end with a shared bit stringK.

In [1], a generic security proof is proposed by which the
security of a wide class of QKE protocols is proved. It is based
on the fact that privacy amplification is equally secure when
an adversary’s memory for data storage is quantum rather than
classical ([2]). The generic security proof gives Alice andBob
a thresholdd for the bit error rateǫ. This means that ifǫ ≤ d,
thenK is unconditionally secure. The generic security proof
is applicable to QKE protocols that involve quantum systems
with a finite number of degrees of freedom (in [1] and in [5]
it was proved that BB84 is secure forǫ ≤ 11%). It does not
immediately apply however to QKE protocols using quantum
systems with an infinite number of degrees of freedom.

BB84 ([3]) is a QKE protocol that works with two-
dimensional quantum bits (qubits) which are encoded by single
photons polarized in one out of two non-orthogonal bases. The
unconditional security of BB84 is based on Alice’s ability
to prepare single photons, something that is still extremely
difficult.

In [4], a QKE protocol, which we denote by GP00, was pre-
sented that resembles BB84 but solves the problem of prepar-
ing single photons. GP00 works with infinite-dimensional
squeezed states, which can be prepared by a laser. The
squeezing parameterr determines the amount of squeezing
of a squeezed state. The more squeezing, the more difficult
a squeezed state is to prepare, therefore we need a lower
bound forr. In [4] it was proved that the protocol is secure
if ǫ ≤ 11% hence ifr ≥ 0.289. In this paper we apply the
generic security proof to GP00 and find the same thresholds.
A generic security proof is advantageous because it can give
more insight in the security of similar protocols. Further,we
will discuss some remaining security issues of GP00. Finally,
we pay some attention to transmitting more than one bit per
squeezed state.

II. SQUEEZEDSTATES

Letα ∈ C andζ = reiφ with r ∈ R andφ ∈ [0, π). To every
ζ, α there corresponds a squeezed state denoted by|ζ, α〉. It
satisfies with equality the Heisenberg uncertainty relation with
respect to the position and momentum operatorsx and p if
and only if φ = 0 so ζ = r ∈ R. That is, σxσp = 1

2 .
In fact, if we measure the position or the momentum of
the squeezed state|ζ = r, α〉, then the measured valuex
or p is distributed according to a Gaussian distribution with
variance equal to respectivelyσ2

x = 1
2e

2r or σ2
p = 1

2e
−2r.

We say thatr is the squeezing parameter and that|r, α〉 is a
minimum uncertainty squeezed state. Ifr < 0, thenσ2

x < σ2
p

px x p zz

x x z p p z

Fig. 1. Measurement probability distributions for measuring the position or
the momentum of a squeezed state squeezed in a)x and b)p.

and the squeezed state is “squeezed” inx. If r > 0, then
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the squeezed state is “squeezed” inp (see Fig. 1). After a
measurement of position valuex or momentum valuep, the
squeezed state collapses to respectively a position eigenstate
|x〉 or a momentum eigenstate|p〉.

III. B IT ENCODING AND DECODING SCHEME FORGP00

First we fix r̂ > 0. All squeezed states are squeezed with
squeezing parameterr = −r̂ (for squeezing inx) or r = r̂
(for squeezing inp). We divide the real numbers into two sets

2-- 2

L 0

L 1

p p p p0

Fig. 2. Bit encoding intervalsL0 andL1.

of intervalsL0 andL1 as in Fig. 2. Alice samplesa ∈ R from
the GaussianPA(a) with mean0 and variance12e

2r̂:

PA(a) =
1√
πe2r̂

exp

[

− a2

e2r̂

]

. (1)

If a ∈ L0, Alice extracts bit0, otherwise she extracts bit1.
She prepares a squeezed state squeezed inx or p at random.
If she squeezes inx, she sends to Bob

| − r̂, α〉 with

{

〈x〉 = a′ = a
√
1− e−4r̂

〈p〉 = 0

If she squeezes inp, she sends to Bob the squeezed state

|r̂, α〉 with

{

〈x〉 = 0

〈p〉 = a′ = a
√
1− e−4r̂

For every squeezed state Alice computes and announcesφ =
a mod

√
π where 0 ≤ φ <

√
π. Note that there exists an

na ∈ Z such thata = na
√
π+φ. Every value forφ should be

equally likely because thenP (a ∈ L0|φ) = P (a ∈ L0) = 0.5
such thatφ leaks no information to Eve (we further discuss
this in Section IX).

For every squeezed state Bob decides at random to measure
the position or the momentum. Suppose that the outcome of
his measurement isb and denote the difference of Alice’s and
Bob’s value byδ = b − a. Note thatb − φ = na

√
π + δ.

Bob extracts bit value0 if b− φ = na
√
π + δ rounded to the

nearest integer multiple of
√
π is an even multiple of

√
π and

bit value1 otherwise.

0
3

2
p

1

2
p

1

2
p

3

2
p

C

Fig. 3. Bit decoding intervalC.

If we define the decoding intervalC as in Fig. 3, then Alice
and Bob find the same bit ifδ = b− a ∈ C. This is because if
δ ∈ C, thenna

√
π+δ rounded to the nearest integer multiple of√

π is equal tona
√
π. They find different bits ifδ = b−a /∈ C.

IV. B IT EXTRACTION PROBABILITIES FOR GP00

If Alice and Bob use different bases, then the value mea-
sured by Bob has a Gaussian distribution centered at0. This
distribution is shown as the graph on the left in Fig. 4 for
a = 1

2

√
π. The marked area pictures the values ofb for which

b − a ∈ C and represents the probability that Alice and Bob
find the same bit. This probability equals0.5 if a = 1

2

√
π. In

fact, this probability is maximal ifa = 2n
√
π, is equal to0.5

if a = (2n+ 1
2 )
√
π and is minimal ifa = (2n+ 1)

√
π. This

means that if all values forφ are equally likely, then the bit
extracted by Bob is on average random. The corresponding
cases in the protocol can therefore be discarded. If Alice and

a3

2
p

1

2
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1

2
p
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2
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Fig. 4. Bit correct probability if a) different basis are used anda = 1

2

√
π

and b) the same basis is used anda′ − a = 1

4

√
π .

Bob use the same basis, then the probability that they find
the same bit is dependent on the distance betweena, the
value from which Alice extracts her bit, anda′, the mean
value of Bob’s squeezed state. This is illustrated in the graph
on the right in Fig. 4 fora′ − a = 1

4

√
π. We denote the

average probability that Alice and Bob find the same bit, given
that they use the same basis, by1 − ǫs. For illustration, this
probability is0.89 if r̂ = 0.289 and if r̂ → ∞ it will approach
1. Note that even if Alice and Bob use the same basis then,
in contrast to BB84, they find the same bit with probability
smaller than1. This means that because of using squeezed
states, additional quantum noise is introduced (ǫs).

V. THE PROTOCOLGP00

We give the description of the protocol. At the end of the
protocol, just before information reconciliation and privacy
amplification, Alice and Bob each have ann-bit string respec-
tively X andY . After information reconciliation and privacy
amplification they have a shared secure keyK of lengthk < n.

1) Alice prepares approximately4n squeezed states. For
every squeezed state she decides to squeeze it inx or in p
at random. She prepares the squeezed states according to
the encoding scheme described in the previous sections.
For every squeezed state she extracts a bit value. She
sends the squeezed states to Bob.

2) For each squeezed state, Bob decides to measure the
position or the momentum at random.

3) Bob confirms having received the squeezed states. Alice
and Bob announce which bases they used.

4) Alice and Bob discard the cases where they did not
use the same basis. From the remaining approximately
4n/2 = 2n bits Alice choosesn to serve as check



bits and n to serve as key bits. For the squeezed
states corresponding to these check and key bits, Alice
computesφ. Alice sends allφ’s and the chosen positions
of the check and key bits to Bob such that Bob can
extract check and key bits from his measured values.
Alice and Bob’s resulting key bit strings areX andY .

5) Alice and Bob announce their check bits to estimate the
bit error rateǫ.

6) If ǫ ≤ 11%, then information reconciliation and privacy
amplification follow such that Alice and Bob end with
a shared secret keyK.

An important difference between GP00 and BB84 is that Bob
needs additional informationφ about the squeezed states to
extract bit values from his measured values. Noise (ǫ) is not
only caused by the channel or by Eve, but also by the natural
noise of squeezed states (ǫs). If r̂ → ∞, then ǫs → 0 and
GP00 approaches the continuous version ofBB84.

VI. T HE GENERIC SECURITY PROOF

The generic security proof [1] can be applied to a generic
QKE protocol equivalent to an entanglement based protocol.
A dealer prepares entangled states and sends one part of the
entangled state to Alice and the other part to Bob. Let the
measurements that Alice and Bob randomly apply to their
received quantum states be the POVM’sF andG and let the bit
error rate of the bits extracted from the measurements beǫ. Let
R be the set of all density operatorsρ (describing the quantum
state of two systems) for which it holds that ifρ is measured
with respect toF ⊗ F or G ⊗ G, then the two bits extracted
from the measurement have bit error probabilityǫ. ThusR is
the set of all possible density operators describing the mutual
state of Alice and Bob, given that the bit error rate is equal to
ǫ. Let Z be a projective measurement on the density operator
ρ ∈ R with outcome described by the random variableZ. Let
X andY be random variables such that Alice’s and Bob’s bit
strings consist ofn realizations of these variables. The secret
key rateR is now given by ([1])

R = H(X)−H(X |Y )− argρ∈R maxH(Z). (2)

The rate might be improved by conditioning on additional
informationW , known only by Alice and Bob and gained
during privacy amplification. The rate then becomes

R = H(X |W )−H(X |Y )− argρ∈R maxH(Z|W ). (3)

The generic security proof consists in finding the maximum
error rateǫ such thatR is still positive and hence the extracted
secret keyK is secure.

VII. E NTANGLEMENT BASED VERSION OFGP00

To be able to apply the generic proof to GP00, we regard
it as an entanglement based protocol. The entangled states
prepared by the dealer (given in both position eigenstates and

momentum eigenstates) are as follows ([4])

|ψ〉 =
1√
π

∫ ∫

exp

[

−∆2

2
x2a

]

·

exp

[

− 1

2∆2

(

xb −
√

1−∆4xa

)2
]

|xa, xb〉dxbdxa

=
1√
π

∫ ∫

exp

[

−∆2

2
p2a

]

·

exp

[

− 1

2∆2

(

pb +
√

1−∆4pb

)2
]

|pa, pb〉dpbdpa

where0 < ∆2 ≤ 1. For ∆2 < 1, |ψ〉 is an entangled state.
Alice and Bob both get a part of this entangled state. If

Alice measures the position of her part, she measures position
valuexa with probability

Px(xa) =
∆√
π
exp

[

−∆2x2a
]

.

By this measurement, she prepares for Bob the state

1

(π∆2)1/4

∫

exp

[

− 1

2∆2

(

xb −
√

1−∆4xa

)2
]

|xb〉dxb,

which is a squeezed state squeezed inx with mean position
value

√
1−∆4xa and mean momentum value0. If Alice

measures the momentum of her part, she measures valuepa
with probabilityPp(pa) = Px(pa). By this measurement, she
prepares for Bob a squeezed state squeezed inp with mean
momentum value−

√
1−∆4pa and mean position0.

If we choose∆2 = e−2r̂, then the entanglement based
protocol is equivalent to GP00; from Eq. 1 we see that
Px(xa) = Pp(xa) = PA(xa) and the squeezed states produced
by Alice’s measurements in the entanglement based version
are equal to the squeezed states sent by Alice in GP00. Note
that in the entanglement based version, the mean momentum
value is −

√
1−∆4pa rather than

√
1−∆4pa. This means

that Alice extracts a bit value and calculatesφ from−pa rather
than frompa if she measured the momentum and fromxa if
she measured the position. Alice and Bob find the same bit if
xb − xa ∈ C or pb − (−pa) = pb + pa ∈ C.

VIII. G ENERIC SECURITY PROOF OFGP00

Let ǫ be the bit error probability of the check bits. Let the
density operatorρ ∈ R; if of both parts ofρ the position
is measured or the momentum, then the probability that the
extracted bits differ is equal toǫ. This can be formulated by

∫ ∞

−∞

∫

x∈C

〈xa, xa + x|ρ|xa, xa + x〉dxdxa = 1− ǫ (4)
∫ ∞

−∞

∫

x∈Cc

〈xa, xa + x|ρ|xa, xa + x〉dxdxa = ǫ (5)
∫ ∞

−∞

∫

p∈C

〈pa,−pa + p|ρ|pa,−pa + p〉dpdpa = 1− ǫ (6)

∫ ∞

−∞

∫

p∈Cc

〈pa,−pa + p|ρ|pa,−pa + p〉dpdpa = ǫ (7)

where e.g.〈xa, xa + x|ρ|xa, xa + x〉 is the probability that
Alice measures position valuexa and Bob measures position
valuexa + x.



As projective measurementZ we choose the continu-
ous Bell measurement which is given by the projectors
{|ψ(x, p)〉〈ψ(x, p)||x, p ∈ R} with

|ψ(x, p)〉 =

∫ ∞

−∞

eipxa |xa, xa + x〉dxa

=

∫ ∞

−∞

eixpa |pa,−pa + p〉dpa.

If we define
λxp = 〈ψ(x, p)|ρ|ψ(x, p)〉,

thenλxp is the probability that if Alice and Bob both measure
the position, then the difference of their outcomes isx and
if they both measure the momentum, then the sum of their
outcomes equalsp. If x = xb − xa ∈ C or p = pb + pa ∈ C,
then Alice and Bob extract the same bit and ifx /∈ C or p /∈ C
they extract different bits.

We letZ, the random variable that describes the outcome of
the projective measurementZ, describe whether or not Alice
and Bob will find the same bit, given that they both use the
same basis. This leads to four different values (situations) for
Z; we obtain the four probabilities corresponding to the four
different values ofZ by grouping the probabilitiesλxp in the
following way

λ1 =

∫

p∈C

∫

x∈C

λxpdxdp λ3 =

∫

p∈C

∫

x/∈C

λxpdxdp

λ2 =

∫

p/∈C

∫

x∈C

λxpdxdp λ4 =

∫

p/∈C

∫

x/∈C

λxpdxdp.

For illustration,λ2 is the probability that if Alice and Bob both
measure the position, they find the same bit and if they both
measure the momentum, they find different bits. Eqs. (4,5,6,7)
can be rewritten as

λ1 + λ2 = 1− ǫ λ3 + λ4 = ǫ
λ1 + λ3 = 1− ǫ λ2 + λ4 = ǫ

With these relations,λ1, λ2 andλ3 can be expressed in terms
of λ4. The entropy of the random variableZ is given by

H(Z) = −
4

∑

i=1

λi log2 λi

and is maximized forλ4 = ǫ2 and thenH(Z) = 2h(ǫ). The
secret key bit rate becomes (Eq. 2)

R = 1− h(ǫ)− 2h(ǫ) = 1− 3h(ǫ).

This rate is positive forǫ ≤ 6.1%.
We improve the rate by using the additional information

W = X+Y gained during privacy amplification. It holds that

H(Z|W ) =
∑

i∈{0,1} P (W = i)H(Z|W = i)

= (1− ǫ)h
(

λ1

1−ǫ

)

+ ǫh
(

λ3

ǫ

)

= H(Z)− h(ǫ).

The entropyH(Z|W ) is maximized forλ4 = ǫ2 and then
H(Z|W ) = h(ǫ). The rateR becomes (Eq. 3)

R = 1− h(ǫ)− h(ǫ) = 1− 2h(ǫ)

which is positive forǫ ≤ 11%. This means that GP00 is secure
if ǫ ≤ 11%. Because the noise generated by squeezed states
(ǫs) contributes to the total noiseǫ, we haveǫs ≤ ǫ. With
calculations we find thatǫs ≤ 11% if r̂ ≥ 0.289. This means
that GP00 can only be secure if squeezed states are squeezed
with squeezing parameter̂r ≥ 0.289.

IX. RANDOMIZATION ISSUE OFφ.
In GP00, Alice announcesφ = a mod

√
π. For uncondi-

tional security it has to hold thatP (a ∈ L0|φ) = P (a ∈ L0) =
0.5 because then Alice can safely announceφ since it leaks no
information to Eve. The probabilityP (a ∈ L0|φ) is maximal
at φ = 0, equal to0.5 if φ = 1

2

√
π and minimal atφ =

√
π.

For r̂ = 0.289 we find e.g. thatP (a ∈ L0|φ = 0) = 0.745
which is rather high; it means thatφ leaks a significant amount
of information to Eve about the bit extracted by Alice. Study
still has to be done in whether the generic security method
allows φ to be non perfectly random. We considered three
possible, alternative, solutions.

One way to solve the problem, is to enlarge the lower
bound for r̂. For example, ifr̂ ≥ 1.5, thenP (a ∈ L0|φ =
0) ≈ 0.5 and no information leaks to Eve. Becauser̂ becomes
considerably large, this solution is not favorable.

0 2 3-- 2- 3 p p p p p p

Fig. 5. Discrete approximation ofPA(a).

A different solution that we considered is to make a discrete
approximation of Alice’s sampling distributionPA(a) as in
Fig. 5. It then holds that every value forφ is equally likely,
the valueφ does not leak information to Eve and if Bob or
Eve measures the squeezed state in the incorrect basis, the
extracted bit is on average random. If we use this discrete
approximation to calculate the average error probabilityǫs
caused by squeezed states, then we find that for a given
squeezing parameter̂r, the value of ǫs increases (e.g. if
r̂ = 0.289 then ǫs = 0.119). We found thatǫs ≤ 11% if
r̂ ≥ 0.308. Although this discrete approximation seems to
work, it is the case that the protocol resulting from the discrete
approximation has no obvious entanglement based equivalent
anymore such that the generic security proof [1] might not be
applicable. We are still investigating the possibilities for this
situation. In the following section we describe how we can
transmit more than one bit per squeezed state, by making use
of a similar discrete approximation ofPA(a).

It seems that for unconditional security, the bit encoding
and/or decoding strategy of GP00 should be changed such that
every value ofφ becomes equally likely while the sampling



distributionPA(a) and the squeezed states sent to Bob remain
the same (this is the third solution we considered). By keeping
PA(a) and the squeezed states sent to Bob the same, the
resulting protocol has the entanglement based equivalent as
described in Section VII. An idea to do this is to choose
φ = |a| mod

√
π instead ofφ = a mod

√
π.

X. SENDING MORE BITS PER SQUEEZED STATE

We describe a method, based on a discrete approximation
of PA(a), by which we can sendm bits per squeezed state.
We show in more detail how to do this for2 bits, how the
method works for more bits will follow easily from the2-bits
case. The main difference with GP00 is the bit encoding and
decoding scheme. We emphasize that unconditional securityis
not proven yet (see the comment on the discrete approximation
solution in the previous section).

Alice and Bob can extract4 different messages per squeezed
state, which are given bym0 = 00,m1 = 01,m2 = 10 and
m22−1 = 11. Alice samplesa from a discrete approximation
of PA(a) such that all messagesm0, . . .m3 are equally
likely. If a ∈ L00 then Alice extracts bitsm0 = 00, if
a ∈ L01 then Alice extracts bitsm1 = 01 etc. where the
encoding intervalsL00, . . . ,L11 are illustrated in the graph
on the left in Fig. 6. The discrete approximation ofPA(a)

0 2 3 4-- 2
L 0 0

L 0 1

L 1 0

L 1 1

p p p ppp 0 2 3 4-- 2
C 0

C 1

C 2

C 3

p p p ppp

Fig. 6. Encoding and decoding intervals for sending two bits.

that satisfies the constraint is illustrated in Fig. 7. With this

0 2 3-- 2- 3 p p p p p p

Fig. 7. Discrete approximation ofPa(a) if we send 2 bits per squeezed
state.

discrete approximation, the valueφ = a mod
√
π does not

leak information to Eve and all messagesmi are equally
likely. Alice sends the same squeezed state to Bob, as she
would send in GP00. For every squeezed state Alice computes
and announcesφ = a mod

√
π where 0 ≤ φ <

√
π. The

procedure at Bob’s side is also similar to that in GP00. For
every squeezed state Bob decides at random to measure the
position or the momentum. Suppose that the outcome of his
measurement isz ∈ R and that Alice extracted the messagemi

wherei ∈ {0, 1, 2, 3}. Bob roundsz−φ to the nearest integer
multiple of

√
π. If this integer multiple is equal toj mod 22,

then Bob extracts bit pairmj . This means that Bob extracts
bit pair m(i+k) mod 4 if z − a ∈ Ck, for k ∈ {0, 1, 2, 3}. The
decoding intervalsC0, . . . , C3 are illustrated in the graph on
the right in Fig. 6.

If Bob or Eve measures in the incorrect basis, then the
message he or she extracts is random because of the discrete
approximation used forPA(a). Suppose Alice and Bob use
the same basis. Then, the lower bound forr̂ seems to be
comparable to that in the one-bit case. Research still has to
be done for the exact value of the lower bound forr̂.

We can do similar reasoning for sending3 bits per squeezed
states. In this case however, it seems that the lower bound for
the squeezing parameterr̂ increases. This is probably because
the discrete approximation ofPA(a) becomes too stretched.
The lower bound seems to increase even more when we send
more than3 bits per squeezed state.

XI. CONCLUDING REMARKS

It has been shown how to use a generic security proof to
prove the security of GP00, a QKE protocol that works with
squeezed states. We studied a remaining weak point of the
protocol and discussed some possible solutions. Elaborating
on one of these possible solutions, we suggested a method to
transmit more than one bit per squeezed state.
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