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Abstract— The max-product “belief propagation” algorithm
is an iterative, local, message passing algorithm for finding
the maximum a posteriori (MAP) assignment of a discrete
probability distribution specified by a graphical model. Despite
the spectacular success of the algorithm in many application areas
such as iterative decoding and computer vision which involve
graphs with many cycles, theoretical convergence results are only
known for graphs which are tree-like or have a single cycle.

In this paper, we consider a weighted complete bipartite graph
and define a probability distribution on it whose MAP assignment
corresponds to the maximum weight matching (MWM) in that
graph. We analyze the fixed points of the max-product algorithm
when run on this graph and prove the surprising result that even
though the underlying graph has many short cycles, the max-
product assignment converges to the correct MAP assignment.
We also provide a bound on the number of iterations required
by the algorithm.

I. INTRODUCTION

Graphical models (GM) are a powerful method for repre-
senting and manipulating joint probability distributions. They
have found major applications in several different research
communities such as artificial intelligence [11], statistics [8],
error-control coding [6] and neural networks. Two central
problems in probabilistic inference over graphical modelsare
those of evaluating themarginal and maximum a posteriori
(MAP) probabilities, respectively. In general, calculating the
marginal or MAP probabilities for an ensemble of random
variables would require a complete specification of the joint
probability distribution. Further, the complexity of a brute
force calculation would be exponential in the size of the
ensemble. GMs assist in exploiting the dependency structure
between the random variables, allowing for the design of
efficient inference algorithms.

The belief propagation (BP) and max-product algorithms
[11] were proposed in order to compute, respectively, the
marginal and MAP probabilities efficiently. Comprehensive
surveys of various formulations of BP and its generalization,
the junction tree algorithm, can be found in [1], [20], [14].BP-
based message-passing algorithms have been very successful
in the context of, for example, iterative decoding for turbo
codes and in computer vision. The simplicity, wide scope of
application and experimental success of belief propagation has
attracted a lot of attention recently [1], [7], [12], [19].

BP is known to converge to the correct marginal/MAP
probabilities on tree-like graphs [11] or graphs with a single
loop [2], [16]. For graphical models with arbitrary underlying
graphs, little is known about the correctness of BP. Partial
progress consists of [17] where correctness of BP for Gaussian
GMs is proved, [5] where an attenuated modification of
BP is shown to work, and [12] where the iterative turbo
decoding algorithm based on BP is shown to work in the
asymptotic regime with probabilistic guarantees. To the best of
our knowledge, little theoretical progress has been in resolving
the question: Why does BP work on arbitrary graphs?

Motivated by the objective of providing justification for the
success of BP on arbitrary graphs, we focus on the application
of BP to the well-known combinatorial optimization problem
of finding the Maximum Weight Matching (MWM) in a
bipartite graph, also known as the “Assignment Problem”. It
is standard to represent combinatorial optimization problems,
like finding the MWM, as calculating the MAP probability on
a suitably defined GM which encodes the data and constraints
of the optimization problem. Thus, the max-product algorithm
can be viewed at least as a heuristic for solving the problem.
In this paper, we study the performance of the max-product
algorithm as a method for finding the MWM on a weighted
complete bipartite graph.

Additionally, using the max-product algorithm for problems
like finding the MWM has the potential of being an exciting
application of BP in its own right. The assignment problem is
extremely well-studied algorithmically. Attempts to find better
MWM algorithms contributed to the development of the rich
theory of network flow algorithms [4], [9]. The assignment
problem has been studied in various contexts such as job-
assignment in manufacturing systems [4], switch scheduling
algorithms [10] and auction algorithms [3]. We believe that
the max-product algorithm can be effectively used in high-
speed switch scheduling where the distributed nature of the
algorithm and its simplicity can be very attractive.

The main result of this paper is to show that the max-
product algorithm for finding the MWM always finds the
correct solution, as long as the solution is unique. Our proof
is purely combinatorial and depends on the graph structure.
We think that this result may lead to further insights in
understanding how BP algorithms work when applied to other
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optimization problems. The rest of the paper is organized
as follows: In Section II, we provide the setup, define the
assignment problem and describe the max-product algorithm
for finding the MWM. Section III states and proves the main
result of this paper. Finally, we discuss some implicationsof
our results in Section IV.

II. SETUP AND PROBLEM STATEMENT

In this section, we first define the problem of finding
the MWM in a weighted complete bipartite graph and then
describe the max-product BP algorithm for solving it.

A. MAXIMUM WEIGHT MATCHING

Consider an undirected weighted complete bipartite graph
Kn,n = (V1, V2, E), where V1 = {α1, . . . , αn}, V2 =
{β1, . . . , βn} and (αi, βj) ∈ E for 1 ≤ i, j ≤ n. Let each
edge(αi, βj) have weightwij ∈ R.

If π = {π(1), . . . , π(n)} is a permutation of{1, . . . , n}
then the collection ofn edges{(α1, βπ(1)), . . . , (αn, βπ(n))}
is called amatchingof Kn,n. We denote both the permutation
and the corresponding matching byπ. The weight of matching
π, denoted byWπ , is defined as

Wπ =
∑

1≤i≤n

wiπ(i).

Then, the Maximum Weight Matching (MWM),π∗, is the
matching such that

π∗ = argmaxπ Wπ .

Note 1. In this paper, we always assume that the weights are
such that the MWM is unique. In particular, if the weights of
the edges are independent, continuous random variables, then
with probability1, the MWM is unique.

Next, we model the problem of finding MWM as find-
ing a MAP assignment in a graphical model where the
joint probability distribution can be completely specifiedin
terms of the product of functions that depend on at most
two variables (nodes). For details about GMs, we urge the
reader to see [8]. Now, consider the following GM defined
on Kn,n: Let X1, . . . , Xn, Y1, . . . , Yn be random variables
corresponding to the vertices ofKn,n and taking values
from {1, 2, . . . , n}. Let their joint probability distribution,
p
(

X = (x1, . . . , xn);Y = (y1, . . . , yn)
)

, be of the form:

p
(

X,Y
)

=
1

Z

∏

i,j

ψαiβj
(xi, yj)

∏

i

φαi
(xi)φβi

(yi), (1)

where the pairwise compatibility functions,ψ··(·, ·), are de-
fined as

ψαiβj
(r, s) =







0 r = j ands 6= i
0 r 6= j ands = i
1 Otherwise

and the potentials at the nodes,φ·(·), are defined as

φαi
(r) = ewir , φβj

(r) = ewrj , ∀ 1 ≤ i, j, r, s ≤ n.

The following claims are a direct consequence of these
definitions.

Claim 1: For the GM as defined above, the joint den-
sity p

(

X = (x1, . . . , xn), Y = (y1, . . . , yn)
)

is nonzero if
and only if πα(X) = {(α1, βx1

), (α2, βx2
), . . . , (αn, βxn

)}
and πβ(Y ) = {(αy1

, β1), (αy2
, β2), . . . , (αyn

, βn)} are both
matchings andπα(X) = πβ(Y ). Further, when nonzero, they
are equal to1

Z
e2
∑

i
wixi .

Claim 2: Let (X
∗
, Y

∗
) be such that

(X
∗
, Y

∗
) = argmax{p

(

X,Y
)

}.

Then, the correspondingπα(X
∗
) = πβ(Y

∗
) is the MWM in

Kn,n.
Claim 2 implies that finding the MWM is equivalent to

finding the maximum a posteriori (MAP) assignment on the
GM defined above. Thus, the standard max-product algorithm
can be used as an iterative strategy for finding the MWM. In
fact we show that this strategy yields the correct answer. Next
we describe the max-product algorithm (and the equivalent
min-sum algorithm) for the GM defined above.

B. MAX-PRODUCT ALGORITHM FORKn,n

We need some definitions and notations before we can
describe the max-product algorithm. Consider the following.

Definition 1: Let D ∈ R
n×n andX,Y, Z ∈ R

n×1. Then
the operations∗,⊙ are defined as follows:

D ∗X = Z ⇐⇒ zi = max
j
dijxj , ∀i, (2)

X ⊙ Y = Z ⇐⇒ zi = xiyi, ∀i. (3)

ForX1, . . . , Xm ∈ R
n×1,

m
⊙

i=1

Xi = X1 ⊙X2 ⊙ . . .⊙Xn. (4)

Define the compatibility matrixΨαiβj
∈ R

n×n such that
its (r, s) entry is ψαiβj

(r, s), for 1 ≤ i, j ≤ n. Also, let
Φαi

,Φβj
∈ R

n×1 be the following:

Φαi
= [φαi

(1), . . . , φαi
(n)]t, Φβj

= [φβj
(1), . . . , φβj

(n)]t.

Max-Product Algorithm.

(1) LetMk
αi→βj

= [mk
αi→βj

(1),mk
αi→βj

(2), . . . ,mk
αi→βj

(n)]t ∈

R
n×1 denote the messages passed fromαi to βj in the

iterationk ≥ 0, for 1 ≤ i, j ≤ n. Similarly,Mk
βjαi

is the
message vector passed fromβj to αi in the iterationk.

(2) Initially k = 0 and set the messages as follows. Let
M0

αi→βj
= [m0

αi→βj
(1) . . .m0

αi→βj
(n)]t andM0

βj→αi
=

[m0
βj→αi

(1) . . .m0
βj→αi

(n)]t where

m0
αi→βj

(r) =

{

ewij if r = i
1 otherwise

(5)

m0
βi→αj

(r) =

{

ewji if r = i
1 otherwise

(6)



(3) For k ≥ 1, messages in iterationk are obtained from
messages of iterationk − 1 recursively as follows:

Mk
αi→βj

= Ψt
αiβj

∗
(

(
⊙

l 6=j

Mk−1
βl→αi

)⊙ Φαi

)

Mk
βi→αj

= Ψt
αiβj

∗
(

(
⊙

l 6=j

Mk−1
αl→βi

)⊙ Φβi

)

(7)

(4) Define the beliefs (n × 1 vectors) at nodesαi and βj ,
1 ≤ i, j ≤ n, in iterationk as follows.

bkαi
=

(

⊙

l

Mk
bl→αi

)

⊙ Φαi

bkβj
=

(

⊙

l

Mk
αl→βi

)

⊙ Φβi
(8)

(5) The estimated1 MWM at the end of iterationk is πk,
whereπk(i) = argmax1≤j≤n{b

k
αi
(j)}, for 1 ≤ i ≤ n.

(6) Repeat (3)-(5) tillπk converges.

Note 2. For computational stability, it is often recommended
that messages be normalized at every iteration. However, such
normalization does not change the output of the algorithm.
Since we are only interested in theoretically analyzing the
algorithm, we will ignore the normalization step. Also, the
messages are usually all initialized to one. Although the result
doesn’t depend on the initial values, setting them as defined
above makes the analysis and formulas nicer at the end.

C. MIN-SUM ALGORITHM FORKn,n

The max-product and min-sum algorithms can be seen
to be equivalent by observing that the logarithm function
is monotone and hencemaxi log(αi) = log(maxi αi). In
order to describe the min-sum algorithm, we need to redefine
Φαi

,Φβj
, 1 ≤ i, j ≤ n, as follows:

Φαi
= [wi1, . . . , win]

t, Φβj
= [w1j , . . . , wnj ]

t.

Now, the min-sum algorithm is exactly the same as max-
product with the equations (6), (7) and (8) replaced by:

(a) Replace (6) by the following.

m0
αi→βj

(r) =

{

wij if r = i
0 otherwise

(9)

m0
βi→αj

(r) =

{

wji if r = i
0 otherwise

(10)

(b) Replace (7) by the following.

Mk
αi→βj

= Ψt
αiβj

∗
(

(
∑

l 6=j

Mk−1
βl→αi

) + Φαi

)

Mk
βi→αj

= Ψt
αiβj

∗
(

(
∑

l 6=j

Mk−1
αl→βi

) + Φβi

)

(11)

1Note that, as defined,πk need not be a matching. Theorem 1 shows that
for large enoughk, πk is a matching and corresponds to the MWM.

(c) Replace (8) by the following.

bkαi
= (

∑

l

Mk
βl→αi

) + Φαi

bkβj
= (

∑

l

Mk
αl→βi

) + Φβi
(12)

Note 3. The min-sum algorithm involves only summations
and subtractions compared to max-product which involves
multiplications and divisions. Computationally, this makes the
min-sum algorithm more efficient and hence very attractive.

III. MAIN RESULT

Now we state and prove Theorem 1, which is the main
contribution of this paper. Before proceeding further, we need
the following definitions.

Definition 2: Let ǫ be the difference between the weights
of the MWM and the second maximum weight matching; i.e.

ǫ =Wπ∗ − max
π 6=π∗

(Wπ).

Due to the uniqueness of the MWM,ǫ > 0. Also, define
w∗ = maxi,j(|wij |).

Theorem 1:For any weighted complete bipartite graph
Kn,n with unique maximum weight matching, the max-
product or min-sum algorithm when applied to the corre-
sponding GM as defined above, converges to the correct MAP
assignment or the MWM within⌈ 2nw∗

ǫ
⌉ iterations.

A. PROOF OF THEOREM 1

We first present some useful notation and definitions. Con-
siderαi, 1 ≤ i ≤ n. Let T k

αi
be the level-k unrolled tree corre-

sponding toαi, defined as follows:T k
αi

is a weighted regular
rooted tree of heightk+1 with every non-leaf having degreen.
All nodes have labels from the set{α1, . . . , αn, β1, . . . , βn}
according to the following recursive rule: (a) root has label
αi; (b) then children of the rootαi have labelsβ1, . . . , βn;
and (c) the children of each non-leaf node whose parent has
label αr (or βr) have labelsα1, . . . , αr−1, αr+1, . . . , αn (or
β1, . . . , βr−1, βr+1, . . . , βn). The edge between nodes labeled
αi, βj in the tree is assigned weightwij for 1 ≤ i, j ≤ n.
Examples of such a tree forn = 3 are shown in the Figure 1.

Note 4. T k
αi

is often called the level-k unwrapped graph
at nodeαi corresponding to the GM under consideration.
The unwrapped graph in general is constructed by replicating
the pairwise compatibility functionsψαiβj

(r, s) and potentials
φαi

(r), φβj
(s), while preserving the local connectivity of

the (possibly loopy) graph. They are constructed so that the
messages received by nodeαi after k iterations in the actual
graph are equivalent to those that would be received by the
rootαi in the unwrapped graph, if the messages are passed up
along the tree from the leaves to the root. Lettkαi

(r) be the
weight of maximum weight matching inT k

αi
which uses the

edge(αi, βr) at the root. Here, we consider only the matchings
on the tree under which all non-leaf nodes ofT k

αi
are the

endpoints of exactly one edge.
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(b)
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α1

α1

α2α2α2

α2 α2α2
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α3α3α3

α3

β1

β1

β1β1β1β1β2

β2

β2

β2 β2β2

β3

β3

β3 β3 β3 β3

Fig. 1. Whenn = 3 (a) is T 1
αi

and (b) isT 2
αi

.

Now, we state two important lemmas that will lead to the
proof of Theorem 1. The first presents an important charac-
terization of the min-sum algorithm while the second lemma
relates the maximum weight matching over the unwrapped
tree-graph and the MWM inKn,n.

Lemma 1:At the end of thekth iteration of the min-sum
algorithm, the belief at nodeαi of Kn,n is preciselybkαi

=
[2tkαi

(1) . . . 2tkαi
(n)]t.

Lemma 2: If π∗ is the MWM of graphKn,n then fork >
2nw∗

ǫ
we have

π∗(i) = argmax
r

{tkαi
(r)}.

That is, fork large enough, the maximum weight matching in
T k
αi

chooses the edge(αi, βπ∗(i)) at the root.
Proof: [Theorem 1] Consider the min-sum algorithm. Let

bkαi
= [bkαi

(1), . . . , bkαi
(n)]t. Recall thatπk = (πk(i)) where

πk(i) = argmaxr{b
k
αi
(r)}. Then, by Lemmas 1 and 2, for

k > 2nw∗

ǫ
, πk = π∗.

Next, we present the proofs of Lemmas 1 and 2 in that order.
Proof: [Lemma 1] It is known [15] that under the min-

sum (or max-product) algorithm, the vectorbkαi
corresponds to

the correct marginals for the rootαi of the MAP assignment
on the GM corresponding toT k

αi
. The pairwise compatibility

functions force the MAP assignment on this tree to be a
matching. Now, each edge has two endpoints and hence its
weight is counted twice in the weight of matching.

Next consider thejth entry of bkαi
, bkαi

(j). By definition, it
corresponds to the MAP assignment with the value ofαi at
the root beingj. That is,(αi, βj) edge is chosen in the tree
at the root. From the above discussion,bkαi

(j) must be equal
to 2tkαi

(j).
Proof: [Lemma 2] We prove the lemma by contradiction.

Assume to contrary that for somek > 2nw∗

ǫ
,

π∗(i) 6= argmax
r
tkαi

(r)
△
= î, for somei. (13)

Then, let̂i = π∗(i1) for i1 6= i. Let Λ be the matching onT k
αi

whose weight istkαi
(̂i). We will modify Λ and findΛ′ whose

weight is more thanΛ and which connects(αi, βπ∗(i)) at the
root instead of(αi, βπ∗(i1)), thus contradicting with (13).

Consider pathsPℓ, ℓ ≥ 0, that contain edges from match-
ings2 π∗ andΛ alternatively on the treeT k

αi
defined as follows.

Let α0 = root αi, i0 = i andP1 = (α0) be a single vertex
path. LetP2 = (βπ∗(i0), α0, βπ∗(i1)), where i1 is such that
α0 = αi is connected toβπ∗i1 underΛ. For r ≥ 1, define
P2r+1 andP2r+2 recursively as follows:

P2r+1 = (αi−r
, P2r, αir ),

P2r+2 = (βπ∗(i−r), P2r+1, βπ∗(ir+1))

whereαi−r
is the node at level2r to which the endpoint node

βπ∗(i−r+1) of path P2r is connected to underΛ, and ir+1

is such thatαir at level 2r (part of P2r+1) is connected to
βπ∗(ir+1) underΛ. Note that, by definition, such pathsPℓ for
ℓ ≤ k exist since the treeT k

αi
hask+1 levels and can support

a path of length at most2k as defined above.
Now consider the pathPk of length 2k. It’s edges are

alternately fromΛ and π∗. Let us refer to the edges ofΛ
as theΛ-edges ofPk. Replacing theΛ-edges ofPk with their
complement inPk produces a new matchingΛ′ in T k

αi
; this

follows from the way the paths are constructed.
Lemma 3:The weight of matchingΛ′ is strictly higher than

that ofΛ on treeT k
αi

.
This completes the proof of Lemma 2 since Lemma 3 shows
thatΛ is not the maximum weight matching onT k

αi
, leading

to a contradiction.
Now, we provide the proof of Lemma 3.

Proof: [Lemma 3] It suffices to show that the total weight
of theΛ-edges is less than the total weight of their complement
in Pk. Consider the projectionP ′

k of Pk in the graphKn,n.
P ′
k can be decomposed into a union of a set of simple cycles

{C1, C2, . . . , Cm} and at most one even length pathQ of
length at most2n. Since each simple cycle has at most2n
vertices and the length ofPk is 2k,

m ≥
2k

2n
=
k

n
. (14)

Consider one of these simple cycles, sayCs. Construct the
matchingπ′ in Kn,n as follows: (i) Forαl ∈ Cs, select edges
incident onαl that belong toΛ. Such edges exist by the
property of the pathPk that containsCs. (ii) For αl /∈ Cs,
connect it according toπ∗, that is, add the edge(αl, βπ∗(l)).

Now π′ 6= π∗ by construction. Since the MWM is unique,
the definition ofǫ gives us

Wπ′ ≤Wπ∗ − ǫ.

But, Wπ∗ −Wπ′ is exactly equal to the total weight of the
non-Λ-edges ofCs minus the total weight of theΛ-edges of
Cs. Thus,

weight ofΛ-edges ofCs − weight of rest ofCs =

−(Wπ∗ −Wπ′) ≤ − ǫ. (15)

2The matchingπ∗ is defined onKn,n but can be naturally projected to the
treeT k

αi
. Hence, when we refer to ‘edges of matchingπ∗’, we mean edges

in Kn,n or the treeT k
αi

depending on the context.



End of Pk

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

(a) (b)

(c)

Start of Pk

PSfrag replacements

α1α1α1α1α1 α1α1 α1 α1α1α1α1

α1

α1α1

α2α2α2α2α2α2

α2 α2 α2

α2α2

α3α3α3α3α3α3

α3 α3 α3

α3α3

β1

β1β1β1β1

β1β1

β2 β2
β2β2

β2

β2β2

β3β3β3β3

β3

β3β3

Pk

Fig. 2. Projection of the pathPk is decomposed to (a): path Q of length 4
and (b) cycleC1 of length 4.

Since the pathQ is of even length, either the first edge or the
last edge is anΛ-edge. Without loss of generality, assume it
is the last edge. Then, let

Q = (βπ∗(ij1 )
, αij1

, βπ∗(ij2 )
, . . . , βπ∗(ijl )

, αijl
, βπ∗(ijl+1

)).

Now consider the cycle

C = (βπ∗(ij1 )
, αij1

, βπ∗(ij2 )
, . . . , βπ∗(ijl )

, αijl
, βπ∗(ij1 )

).

Alternate edges ofC are from the maximum weight matching
π∗. Hence, using the same argument as above, we obtain

weight ofΛ-edges ofQ− weight of rest ofQ

=
∑

1≤r≤l

wijrπ
∗(ijr+1

) −
∑

1≤r≤l

wijrπ
∗(ijr )

≤ −ǫ+ |wijlπ
∗(ij1 )

|+ |wijlπ
∗(ijl+1

)|

≤ −ǫ+ 2w∗. (16)

From (14)-(16), we obtain that for matchingsΛ′ andΛ in T k
αi

:

weight ofΛ− weight ofΛ′ ≤ −(m+ 1)(ǫ) + 2w∗

≤ −
k

n
ǫ+ 2w∗ < 0. (17)

This completes the proof of Lemma 3.

IV. DISCUSSION AND CONCLUSION

In this paper, we proved that the max-product algorithm
converges to the desirable fixed point in the context of MWM
for bipartite graph, even in the presence of loops. This result
has a twofold impact. First, it will possibly open avenues
for demystification of the max-product algorithm. Second, the
same approach may provably work for other combinatorial
optimization problems and possibly lead to better algorithms.

Though, the algorithm described in the paper may seem
complicated, we have managed to simplify3 it using the
regularity of the structure of the problem. In the simpli-
fied algorithm, each node needs to performO(n) addition-
subtraction operations in each iteration. SinceO(n) iterations

3More details will appear in a technical report

are required in the worst case, for finitew∗ andǫ, the algorithm
requiresO(n3) operations at the most. This is comparable with
the best known MWM algorithm. Furthermore, the distributed
nature of the max-product algorithm makes it particularly
suitable for networking applications like switch scheduling
where scalability is a necessary property.

Future work will consist of trying to extend our result to
finding the MWM in a general graph, as our current arguments
do not carry over4. Also, we would like to obtain tighter
bounds on the running time of the algorithm since simulation
studies show that the algorithm runs much faster on average
than the worst case bound obtained in this paper.
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