
Encoders for Block-Circulant LDPC Codes
Kenneth Andrews, Sam Dolinar, and Jeremy Thorpe

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA, USA
Email: {andrews, sam, jeremy}@shannon.jpl.nasa.gov

Abstract— In this paper, we present two encoding methods for
block-circulant LDPC codes. The first is an iterative encoding
method based on the erasure decoding algorithm, and the
computations required are well organized due to the block-
circulant structure of the parity check matrix. The second method
uses block-circulant generator matrices, and the encoders are
very similar to those for recursive convolutional codes. Some
encoders of the second type have been implemented in a small
Field Programmable Gate Array (FPGA) and operate at 100
Msymbols/second.

I. INTRODUCTION

Recently, block-circulant LDPC codes have been found
that provide both excellent error correction performance and
well structured decoder architectures. Constructions have been
presented by Lin et al [1], [2], Tanner et al [3], [4], Milenkovic
et al [5], the authors [6], and others. In this paper, we explore
some encoder designs for these codes, and discuss a hardware
encoder implementation.

We define a circulant as a square binary matrix where each
row is constructed from the previous row by a single right
cyclic shift; we do not require that each row has Hamming
weight 1. An rT × nT parity check matrix H can be
constructed by concatenating r × n sparse circulants of size
T×T . The density of each circulant matrix is indicated by the
corresponding value in an r×n base matrix Hbase. The Tanner
graph corresponding to this matrix is called a protograph [7].
Entries greater than 1 in the base matrix correspond to multiple
edges in the protograph. Base matrices can be expanded into
block-circulant LDPC codes by replacing each entry in Hbase

with a circulant containing rows of the specified Hamming
weight; the resulting codes are quasicyclic. Alternatively, they
can be expanded into less structured codes by replacing each
entry with a sum of arbitrary permutation matrices.

Protographs for our AR3A and AR4A codes of rate 1/2
are shown in Figures 1 and 2, and we use these as examples
throughout the paper. Squares are parity check nodes and
circles are variable nodes, where the solid circles represent
transmitted symbols and the open ones are punctured. These
designs were derived from a three step encoding procedure:
accumulate, repeat-by-3 (or 4), and accumulate [8]; hence their
names. Each protograph describes a 3×5 block-circulant parity

1This work was funded by the IND Technology Program and performed
at the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration.

check matrix, and the number of parallel edges shows the
degree of the corresponding circulant.

In practice, these protographs cannot be directly expanded
into block-circulant codes without introducing low weight
codewords, regardless of the choice of circulants. A practical
solution is to expand the protographs twice, first with small
permutation matrices, such as of size 4× 4 or 8× 8, and then
with circulants to build the full code. The result is a parity
check matrix such as the one shown in Figure 3 for a very
small AR4A code, where each nonzero entry in the matrix
is represented by a dot. This code was constructed by putting
the AR4A protograph variable nodes in the order (4, 2, 1, 5, 3)
and check nodes in order (A, B, C) as demarcated by the solid
lines, expanding with 4× 4 permutations, and then expanding
with 16× 16 circulants. The resulting 12× 20 block-circulant
structure is emphasized by dotted lines.

In Section II, we examine iterative encoders, similar to those
of Richardson and Urbanke in [9], that also take advantage
of the block-circulant structure of the parity check matrix.
In Section III, we examine the existence and construction
of systematic block-circulant generator matrices. In Section
IV, we develop simple hardware circuits for encoders using
block-circulant generator matrices, and describe an FPGA
implementation. Concluding remarks are in Section V.

II. ITERATIVE ENCODERS

An encoder for any (N,K) LDPC code can be built from an
erasure correcting decoder. A set of K linearly independent
variable nodes are selected as the systematic symbols, and
these are initialized with the K information bits to be encoded.
If there are no stopping sets, then the remaining N−K parity
symbols are computed iteratively with the standard erasure

1 2 3 4 5

A B C

Fig. 1. The AR3A protograph

1 2 3 4 5

A B C

Fig. 2. The AR4A protograph

correcting algorithm. Because the known symbol positions are
known a priori, the existence of stopping sets is also known.
This method is equivalent to Richardson and Urbanke’s low-
complexity encoding algorithm [9] when their variable g = 0.

If H has full rank R = N −K, and this iterative encoding
method succeeds, then each of the N − K parity check
equations is solved exactly once to determine one of the N−K
unknown parity symbols. For a check equation with d terms,
d − 2 exclusive-OR operations are required. Thus, iterative
encoding requires exactly E − 2R exclusive-OR operations,
where E is the number of nonzero elements in H . For an
arbitrary LDPC code, the scheduling of these computations can
be complex; for block-circulant codes, they can be performed
in well organized groups of T operations. The amount of
memory required in such a decoder varies depending on the
code structure; it is sufficient to store all N code symbols.

We illustrate these ideas with the AR3A and AR4A code
examples. When the rows and columns of the AR4A base
matrix are reordered as (B, A, C) and (4, 2, 3, 1, 5), we get,

Hbase =

 2 3 1 0 0
0 0 2 1 0
0 1 3 0 2

 .

Iterative encoding begins by applying the kT = 2T infor-
mation symbols to the first two columns in the base matrix.
The first row of T check equations can be solved in parallel
to determine the third column of code symbols, and then the
next row can be solved to determine the fourth column. The
2 in the lower right corner means that each remaining check
equation has two unknowns, and iterative encoding is halted
by the stopping set. However, note that this parity check matrix
is not full rank: the sum of the first T and last T rows of H
is the all-zero vector, independent of the circulants chosen.
This means that one of the remaining T undetermined code
symbols can be assigned an additional information bit, and
iterative encoding now completes successfully, operating (in a
permuted order) as an accumulator of length T .

The AR3A code shows somewhat different behavior. With
the same row and column ordering, the AR3A base matrix is

Hbase =

 2 2 1 0 0
0 1 2 1 0
0 1 2 0 2

 .

Foreseeing the problematic 2 in the lower right corner, we
can construct one redundant check equation by summing
the last T rows of H to get the length N = 5T vector,
h =

[
0T 1T 0T 0T 0T

]
, where 0T and 1T represent

strings of T zeros and T ones, respectively. This check
equation shows that the first 2T variable nodes are not linearly
independent, and cannot all be assigned information bits.
Instead, we assign information bits to the first 2T − 1 and
to the very last variable node. Iterative encoding begins with
the constructed check equation h, which computes the 2T ’th
code symbol as the parity of the preceding T − 1 symbols.
Iterative encoding then proceeds to completion exactly as for
the AR4A code.

III. ENCODERS USING BLOCK-CIRCULANT GENERATOR
MATRICES

LDPC code constructions using circulant matrices invite
some algebraic analysis. We begin by noting some properties
of a single circulant. The set of circulant matrices of size T×T ,
here denoted CT , forms a ring under the standard operations of
modulo-2 matrix addition and matrix multiplication. The zero
element is the all-zero matrix, and the identity is the T × T
identity matrix (both of which are circulants). For a circulant
M of size T ×T , we can associate with it a polynomial m(x)
of degree ≤ T − 1 in the indeterminate x. We do this by
taking the symbols in the first row of M as the coefficients of
ascending powers of x. These polynomials also form a ring,
under the operations of polynomial addition, and polynomial
multiplication modulo xT + 1. For example,

M =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ∈ CT corresponds to

m(x) = 0 + 1x + 0x2 + 0x3 = x ∈ GF2[x]/(x4 + 1).

This mapping from M to m(x) defines a ring isomorphism,
and maps the all-zero circulant to the zero polynomial, and the
identity circulant to the polynomial 1. It also maps the matrix
transpose MT to m(x−1).

The ring GF2[x]/(xT + 1) has zero-divisors: for example,
(1+xi)(1+x+x2+· · ·+xT−1) = 0 for any i 6= 0. By the ring
isomorphism, the corresponding circulants multiply to zero. In
matrix language, neither circulant is full rank. This fact works
in reverse, so we conclude that M is full rank if and only if
m(x) is not a zero divisor in the ring GF2[x]/(xT +1). Rank-
deficient circulant matrices take a few qualitatively different
forms. If T is divisible by the integer p, then the circulant
corresponding to 1+xp +x2p + · · ·+xT−p contains repeated
rows. If m(1) = 0, i.e. m(x) has an even number of terms,
then (1 + x + · · ·+ xT−1)m(x) = 0 and the circulant is rank
deficient. Neither is required; the circulant 1 + x + x3 with
T = 7 only has rank 4, for example.

Next, we consider square block matrices composed of
circulants. Let S of size rT × rT be composed of r × r
circulants. Continuing to make use of our ring isomorphism,
let s be an r × r matrix of polynomials corresponding to the

0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

160

180

Fig. 3. A Block-Circulant Parity Check Matrix Built From the AR4A Protograph

circulants in S. It is not hard to show that S is invertible if
and only if det(s) is not a zero divisor. Moreover, when S is
invertible, there exists an r×r polynomial matrix w such that
ws = Ir, the r × r identity (polynomial) matrix.

Our particular interest is in LDPC codes defined by a
block matrix H composed of circulants. Let H have size
rT × nT , where r < n. A quasicyclic code is one for
which a “quasicyclic shift” of a codeword is also a codeword.
That is, if we partition any codeword c into binary strings of
length T , and circularly shift each string by the same amount,
the resulting vector is also a codeword. It is immediate that
any LDPC code defined by a block-circulant H matrix is
quasicyclic.

In some cases, such a code has a systematic generator matrix
G of size (n−r)T×nT that is entirely composed of circulants.
To show this, we partition H so that H = [Q S], where
S is square. If S is invertible, the traditional method for
constructing G is to find a matrix W such that WS = IrT , the
rT × rT identity matrix. Then a systematic generator matrix
is G = [I(n−r)T (WQ)T]. Algebraically, we can perform
the same construction in the isomorphic polynomial ring. After
finding the r × r matrix w such that ws = Ir, it is a simple
matter to compute g = [In−r q(x−1)w(x−1)]. Replacing
the elements of this array with the corresponding circulants,
we have a block-circulant generator matrix G for the original
code.

Not all block-circulant LDPC codes have block-circulant
generator matrices. As a particularly small example, suppose
H is described by the single circulant 1 + x + x3 with
T = 7. As noted above, this only has rank 4. One codeword
is [1 1 1 0 1 0 0], and because the code is quasi-cyclic
(in fact cyclic, because H consists of a single circulant), all
cyclic shifts of this codeword are also codewords. However,
the circulant corresponding to 1 + x + x2 + x4 only has rank
3, and so cannot be used in its entirety as a generator matrix.

In general, if S is not full rank (or equivalently, det(s) is a
zero divisor), then G cannot be quasicyclic.

In the remainder of this section, we return to the AR3A and
AR4A codes introduced earlier as practical examples.

The 3T×5T parity check matrix for AR3A is full rank, and
so a generator matrix for this code will have dimension 2T .
We partition H into [Q S], where Q contains the columns
we wish to make systematic, and S is the square matrix that
must be invertible. If we choose Q to include the circulants
corresponding to variable nodes 4 and 2 in the protograph,
as we did for the iterative encoder, we find that S has rank
rT − 1, deficient by 1. This misfortune occurs because of the
closed loop of degree-2 variable nodes created by protograph
nodes 5 and C.

Alternatively, we can choose to make protograph variable
nodes 4 and 5 systematic. In this case, S has full rank, and
a systematic block-circulant G can be calculated exactly as
described. An encoder that performs matrix multiplication
by G is particularly suitable for hardware implementation as
described in the next section.

As a second example, we look at the AR4A code. For
this code, there is no set of R columns that can be selected
from H to form an invertible square matrix S, because
H itself is rank deficient by 1. Perhaps remarkably, these
two defects cancel and the method for constructing G can
proceed with minor modifications. We select variable nodes
4 and 2 to be systematic, and when H is arranged to put
these on the left, it appears as shown in Figure 3. The left
two fifths of H is the matrix Q, and the remaining square
portion on the right is S. We solve to find codewords of
the form c4 = [1 0 p1(x) p5(x) p3(x)], and of the
form c2 = [0 1 p1(x) p5(x) p3(x)]. By expanding
these solutions into circulants, we can form a block-circulant

0 50 100 150 200 250 300

0

20

40

60

80

100

120

Fig. 4. A Systematic Block-Circulant Generator Matrix for the AR4A Code

“generator” matrix,

G =
[

C4

C2

]
of size 2T ×5T . This is one dimension short, and the missing
codeword is c = [0 0 0 p(x) 0] where p(x) = 1+x+
x2 + · · ·+xT−1. Note that if c were expanded into circulants,
the resulting T × nT matrix has rank 1. For implementation,
it is most convenient to use G as the generator matrix and
discard this one additional dimension in the code, accepting
the miniscule performance loss. The generator matrix G,
corresponding to the parity check matrix of Figure 3, is shown
in Figure 4. Because the last T code symbols are punctured,
the rightmost columns of circulants would be deleted from
G in implementation. By design, the first two columns of
circulants form an identity matrix; the remaining circulants
could have been dense by the construction algorithm, but the
AR4A protograph structure assures that many remain sparse.

IV. HARDWARE IMPLEMENTATION

The systematic block-circulant generator matrices devel-
oped in the previous section are particularly amenable to hard-
ware implementation. A hardware encoder can pass the kT
message bits to the output as code symbols, while internally
performing a multiplication by the (dense) k×(n−k) matrix in
the right hand portion of G. The resulting vector serves as the
remaining (n − k)T code symbols. A direct implementation
of this dense matrix multiplication is shown in Figure 5, as
proposed by Lin [2]. The set of n− k cyclic shift registers at
the top of the figure, each of length T , are loaded with the
circulant patterns for the first row of G. For each message bit
mi in turn, these registers are cycled once and, if mi = 1,
exclusive-ORed with the n− k symbol output register. When
each row of circulants is completed, sequences for the next
row of circulants in G are loaded into the shift registers.

A further improvement in a hardware encoder is to cyclicly
shift the output register, rather than the circulant registers,
as shown in Figure 6. In this way, the circulant patterns

need not be stored in registers at all, but can be generated
as simple combinatorial functions of a symbol counter. This
implementation is extremely similar to a set of n−k encoders
for recursive convolutional codes, each of constraint length
T . With the switches set as drawn, the k message bits are
fed through the encoder one at a time, and the registers
are updated and shifted once per bit. Then the switches are
changed and the contents of the registers are sequentially
read out as the parity portion of the codeword. This encoder
has been implemented in hardware. It requires n − k D-
latches, n − k exclusive-OR gates, and a modest amount of
additional combinatorial logic. The size (k = 1024, n = 2048)
LDPC code fits comfortably in a Xilinx XC3S200 Spartan
Field Programmable Gate Array (FPGA), and runs at 100
Msymbols/second. Speed is determined by the maximum clock
rate of the FPGA. The maximum supported code size is
determined primarily by the number of D-latches required to
accumulate the parity, and so scales linearly with n− k.

V. CONCLUSION

As many research groups have discovered in the last couple
years, block-circulant LDPC codes have well structured de-
coders, and offer excellent error correction performance when
designed carefully. Here, we have shown that they possess
attractive encoders as well, of a couple different forms.

An iterative encoder is often possible for block-circulant
LDPC codes, based on the standard erasure correction algo-
rithm. Due to the circulant structure of the parity check matrix,
the computational steps are typically sparse matrix multiplica-
tion by a circulant, permutation, and modulo-2 accumulation.
The circulant matrix multiplications operate on long strings
of sequential bits, so parallel computations are practical and
permit fast encoders.

Encoders composed of linear feedback shift registers are
another attractive alternative for block-circulant LDPC codes.
These are based on the block-circulant generator matrices that
these LDPC codes often possess. Such an encoder requires

input
message

Sytematic output codeword

(n-k)TkT

1

T (n-k)T

. . .

n-k shift registers, reloaded with circulant patterns once per row

One conditional addition
per message bit

Fig. 5. The Direct Implementation of a Quasicyclic Encoder

input
message ...

Circulant patterns, updated for each row of circulants

...

...

Recursive Convolutional Encoder

...

...

Recursive Convolutional Encoder

output
codeword

Fig. 6. A Quasicyclic Encoder Using Feedback Shift Registers

remarkably little hardware, and provides a fast, simple, bit-
serial architecture. We have implemented these decoders in a
small FPGA operating at 100 Msymbols/second.

REFERENCES

[1] Y. Kou, H. Tang, S. Lin, and K. Abdel-Ghaffar, “On Circulant Low
Density Parity Check Codes,” in IEEE International Symposium on
Information Theory, p. 200, June 2002.

[2] S. Lin, “Quasi-Cyclic LDPC Codes.” CCSDS working group white paper,
Oct. 2003.

[3] R. M. Tanner, “On Graph Constructions for LDPC Codes by Quasi-
Cyclic Extension,” in Information, Coding and Mathematics (M. Blaum,
P. Farrell, and H. van Tilborg, eds.), pp. 209–220, Kluwer, June 2002.

[4] A. Sridharan, D. Costello, and R. M. Tanner, “A Construction for Low
Density Parity Check Convolutional Codes Based on Quasi-Cyclic Block
Codes,” in IEEE International Symposium on Information Theory, p. 481,
June 2002.

[5] O. Milenkovic, I. Djordjevic, and B. Vasic, “Block-Circulant Low-Density
Parity-Check Codes for Optical Communication Systems,” IEEE Journal
of Selected Topics in Quantum Electronics, pp. 294–299, Mar. 2004.

[6] J. Thorpe, K. Andrews, and S. Dolinar, “Methodologies for Designing
LDPC Codes Using Protographs and Circulants,” in IEEE International
Symposium on Information Theory, p. 238, June 2004.

[7] J. Thorpe, “Low-Density Parity-Check (LDPC) Codes Constructed from
Protographs,” IPN Progress Report 42-154, JPL, Aug. 2003.

[8] A. Abbasfar, D. Divsalar, and K. Yao, “Accumulate Repeat Accumu-
late Codes,” in IEEE International Symposium on Information Theory,
(Chicago, Illinois), June 2004.

[9] T. Richardson and R. Urbanke, “Efficient Encoding of Low-Density
Parity-Check Codes,” IEEE Transactions on Information Theory, pp. 638–
656, Feb. 2001.

