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Abstract—We consider scheduled message communicationthat the transmitter schedules messages for transmigson,
over a discrete memoryless degraded broadcast channel. Thethe transmitter can choose some numbers of messages meant
framework we consider here models both the random message for each of theJ receivers and then perform superposition

arrivals and the subsequent reliable communication by sudbly di 5 th Due to th lexity involved i
combining techniques from queueing theory and information encoding [S5] on them. Due to the complexity involved in

theory. The channel from the transmitter to each of the re- Superposition encoding of an arbitrary number of messages,
ceivers is quasi-static, flat, and with independent fades asss we restrict the transmitter to encode only a finite humber

the receivers. Requests for message transmissions are assdl K > 1 of messages at a time. This restriction gives rise
to arrive according to an i.id. arrival process. Then, (i) We 4 g set of possible schedulé defined in the Sectioflll.
derive an outer bound to the region of message arival vectar The channel from the transmitter to each of the receivers
achievable by the class of stationary scheduling policiegii) we ; . ’ s
show for any message arrival vector that satisfies the outedund, IS a discrete-time memoryless channel with known stasistic
that there exists a stationary “state-independent” policythat that remain stationary over time. The actual communication
results in a stable system for the corresponding message aral  js accomplished as follows. For a chosen schedute Sk,
process, and (iii) under two asymptotic regimes, we show tha ha transmitter maps the scheduléo a codeword (signal) of
the stability region of nat arrival rate vectors has information- | thiN d then broad he si | The | h of th
theoretic capacity region interpretation. eng (s).an then broadcasts the S'gn.a' e lengt _o t e
code word is carefully chosen so that reliable communiaatio
|. INTRODUCTION for each receiver, quantified by.;; 1 < j < J}, is achieved.
Multi-access random-coded communication with indepe®ecoders, at the respective receivers, perform succedsive
dent decoding, of messages that arrive in a Poisson prazessading on their received signals and map to an estimate of the
an infinite transmitter population, and that achieves asyrdd messages intended for them.
value for the upper bound by determining message signalThe contributions in this paper are as follows. We derive an
durations appropriately, has been considered in [1] and [Buter boundR,,. to the stability region of message arrival rate
Recently, in [3], a generalization and extension of the mhodeectorslEA = (IEA;,EA., ..., IEA;) achievable by the class
in [1] and [2] was considered and the following assertionseweof stationary scheduling policies. Next, we propose a class
proved: (i) in the limit of large message alphabet size, the sof stationary policies, calledstate-independehpolicies, and
bility region has an interference limited information-tinetic then characterize the stability regi®(w) of message arrival
capacity interpretation, (ii) state-independent schiadupoli- rate vectordEA = (EA;,EA,,...,IEA;) achievable by any
cies achieve this asymptotic stability region, and (iii) irsuch policyw. We then go on to establish that for any message
the asymptotic limit corresponding to immediate access, thrrival rate vector that satisfies the outerbound derivedHie
stability region for non-idling scheduling policies is stro stationary policies , there exists a state-independeithding
to be identical irrespective of received signal powers. Thmlicy w that results in a stable system for the corresponding
work reported in [3] is followed in [4], considering joint message arrival process. Finally, under two asymptotioresg
decoding of messages, instead of independent decoding.,Age give information-theoretic capacity region interpt&in
such, this paper is a sister paper to our discussion of mulid-the stability region of nat arrival rate vectors achidedty
access message communication with independent decodingg3ixed schedule € Sk.
and joint decoding [4]. The organization of the paper is as follows. Seclidn Il intro
In this paper we consider message (packet) communicatituces the information-theoretic model of degraded brastdca
over a flat bandpass AWGN broadcast channel with> 2 channel to be analyzed in this paper. We extend a random
receivers. Requests for message transmissions to differeoding bound derived for a two receiver model [6] to an
receivers are generated according to i.i.d. processesieRex) arbitrary number of receivers. Secti@nl Il gives a queueing
intended for receiveyj; 1 < j < J, are chosen from the system model for the degraded broadcast message communi-
message alphabgt!; consisting ofA/; > 2 alternatives. Sig- cation system with random message arrivals by charaatgrizi
nals, representing messages, are to be communicatedygliaervice requirement of messages and the service process of
reliability required by thejth receiver is quantified by the an equivalent server. Secti@nllV presents an outer bound to
tolerable message decoding error probability. We assume the stability region of message load vectors achievablénby t
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class of stationary scheduling policies. In secfidn V, weegi receiver degraded broadcast channel was derived in [6F Her
stability analysis of the queueing model for the class dfestawe extend that result to a degraded broadcast channel with
independent scheduling policies. Finally, in Secfigh VIe warbitrary number of receivers. The objective of the decoder
give information-theoretic capacity region interpregatto the at the jth receiver is to compute an estimafe; ; of m;.
stability region of message average nat arrival rate vector This is achieved by successive decoding, with fthedecoder
first decoding and then subtracting the signals intended for
the users with noisier channels before decoding its own. Let
The capacity region for general degraded broadcast ch#éime event{r, ; # m;} be the event that decoder at tlign
nels, first conjectured in [7], was established by Bergmé&hs [receiver makes error in decoding tkéh source. The proba-
The converse was established by Bergmans [8] and Ghility of error for the jth decoder then ip ({ri; ; # m;}).
lager [6]. The model for a degraded broadcast channel withFor 1 < j < J andj < k < J, let p. 1 ; denote the expected
receivers is shown in Figl 1. Consider a degraded broadcpstbability, over the ensemble of broadcast codes, of dagod
the kth source at thgth receiverincorrectly conditioned on

II. THE INFORMATION THEORETICMODEL

X X3-1 X k+1,k+2,...,Jth sources being decodembrrectly. The
o) R e transition probability of the effective channel betwe#h
1<j<J,and Xy, 1 <k < J,is given by
Y, Y Y, szj‘xk (yjlzw) = (Hf;ll Qk—l(zk—l|Ik—l+1))p(yl|ml)
< pyysly5ep) Pa-alVa-lysd [ 77T TN Palyalxy) = (H{:2 pi(yilyi—1))

One can then think that; is produced by passing,, through
a DMC with transition probability Iangka(yﬂa:k). In
Ehe following Theoreni2]2, we compute an upper bound on
probability of the even{r; ; # m;}.

Theorem 2.2:For1 < j < J, the expected error probability
over the ensemble of broadcast codes of lenyttsatisfies

Fig. 1. Model of Degraded Broadcast Channel

channel through whicly independent sources communicat
information to the respective receivers. In HIj. 1 we notd,th
for 2 < j < J, jth channel is degraded version pf 1th

channel. . 7 )
Theorem 2.1 (Bergmans)the capacity region for the de-P (UM # mi}) < XoijPerj, Where forj <k <.J -1,
grade_d broadcast channel consisting/afomponent channels Ped < exp(~NExy.y, (Ri))
(receivers) and represented as the Markov ch&in — _
Xjit = ... 2 Xo - X1 211 =Y - ... = By (Ra) = Fouxvy (o) =p R
Y;_1 — Yy is the convex hull of the closure of all Pexwy;(0) = —m¥., . a@)IT5 al@les)

(Rl,Eg,...7RJ) € R{ satisfyingR; < I(XJ;_Y_J) a_nd _for Zy.<2,k qk(wklzm)p’y,‘xk(yj|m,c)ﬁ)Hp
1<j<J-1, R; <I(X;;Y;|X;4+1) for some joint distribu- M; ’
tion q;(2)qs—1(x—1]2.0) -~ 1 (w1 [@2)p(y1y2 - ysler) = Re =t (1)
Forl <j < Jandintegers/; > 2, letM; ={1,2,...,M;} and fork = J,
denote the message alphabet for fitie source. Let thejith
source output be modeled by the random variable that Pes; < exp(—NEx,,v,(Ry))
takes values in the se¥1;. The ensemble of broadcast codes x,.v; (Ry)
we consider here is the same as Bergmans [5] constructed. ) 1N\ 14e
Forj <k < J, letry; € M; denote an estimate of thgh ~ Fexux () = —ndy, (Zm ‘“(“)Z’Yﬂx.z(yﬂ”)””)
source computed at thih receiver. R, = &Ms (2
The equivalent baseband channel between the transmitter
and each of the/ receivers can be sampled at the Nyquist
rate equal to its two-sided bandwiditi, to obtain a sequence i _ y
of single-use scalar channels. These chanijelieith scalar N9 Multiple Messages intended for a receiver. Let=
channel corresponding to the channel between the tramsmiff1: 52:---»$s) € Z3, a vector of non-negative integers,
and the jth receiver, have independent inputs of variancéefine a schedule. Then the skt = {S :0< Z;-Izl 55 < K}
|h;|>P, where P denotes average power of the transmittatefines the set of all schedules that schedule at hiases-
and h; the multiplicative gain. Letaf denote the variance sages for encoding. To interpret Theoremd 2.2 for the scleedul
of the additive Gaussian noise. [f;|?/0f > |h2|?/03 > s € Sk, it is convenient to view schedule as defining new
...|hs|?/0%, then the broadcast channel is stochasticallpessage alphabets for receivers that are product versfons o
degraded. But, in what follows, we analyze a general dtheir original message alphabets. For example, for receive
graded broadcast channel without any specific model in mindand for the schedule, this product message alphabet is
Thus the results obtained here apply to flat bandpass AWGNe Cartesian product of; copies of the original message
broadcast channels. A random coding upper bound for the taiphabet)/;; hence the product message alphabet consists of

Eox;,v;(p)—pRsi

|
In what follows we allow for the possibility of schedul-



Mf’ different tuples of lengths;. With this view point, we single server whose service statistics depend on the state o
redefine the quantity?, (eq. [A) and[R) in Theorefm2.2), thethe queues through the chosen scheduling policy.

coding rate for the receivét; as Ry (s) thus emphasizing the Let successive maximum-likelihood decoding be used at
dependence offfectivemessage alphabet size on schedule each receiver to decode the respective received word. @emsi
Then . a fixed schedule and suppose that a set of tolerable message

Rk(s):%:sk%:smk decoding error probabilitep.;;1 < j < J} is given.
L The definition of service requirement that we consider for

Thus Ry = Ry(s) for sy = 1. Also, it is helpful to , message intended for any receiver is the smallest positive

view schedules as a set of messages consisting of a t0tgi.ger N(s) (length of the code word that the transmitter

J . .
of > i1 s; elements, of which the first, messages are . nomits) such tha, (s, N(s)) < p.;. For the schedule, we
intended for receivet; the nexts, messages are intende

I ) ay that queug-receives a service quantum equivalentso
for transmission to receiv&x-and so on, and the last; y queuy d d }

: . units/slot; the total service quantum therpis_, s; units/slot.
messages are intended for receivel-et P(s) denote the set d rﬁ};ﬂll %

£ all nsubsets of th hedute vi d ¢ fAfter receiving the signal transmission ovAr channel uses
ot all non-emphsubsets of the sche viewed as a SELol  oach receiver will decode the message intended for it. A

messages. Eofr fu:ﬁre re;‘]er((jen;e, v(;/efde?r?tgt:]he rar?dombcoqgw remarks on the definitions of service requirement and
Upper bound for the schedueand for Inejth TECEver By oo\ ice guantum are in order. The service requirement of a
Xi (s, N;(s)), where for a particular choice gfand tolerable message depends on the schedule of which the message is

rlniss'a<g§ ?Eicj?fqmg berrt(;]r prOb";llb'“tt'éﬁeﬂ'.’t.l = jt = J}, fﬁrth a component message. In other words, a message by itself
< j < J let N;(s) be the smallest positive integer suc atEannot characterize service requirement for itself unless it

XJ(S’NJ(S)) S pej- Thenp ({m%J 7é m]}) S Dej- is the onl I
i , ) i y message to constitute the schedule. The amount
NLemma 2.1:Lets’ € P(s). Then, forl < j < J, N; (') < of service quantum available to a receiver depends on the
i(5). ® schedule.

Since no closed form expression exists }f(s), we derive
an upper bound and a lower bound 4§ (s) in LemmalZP.
The notation that forr > 0 andg > 0, [2], = min(n > 1:
2 < nq)q will be used in the following Lemma. ¢

Lemma 2.2:Let N;(s) be the smallest positive integer sucff
thatx; (s, N;(s)) < pe;. ThenN;(s) can be bounded as show

Requests for message transmissions for each receiver are
assumed to arrive at slot boundaries in batches. Let the@nand
variable A;, with finite momentsEA; and EA?, represent
he number of messages destined for recejvénat arrive
n any slot, with the pmfPr(4; = k) = p;(k), k& > 0.

"We assume thafA,} are independent random variables. Let

below. EA = (EA;,EA;,...,EA;) € RY{. Let \; denote the arrival
[—Inpe; + psiIn Mk]Eo,Xk,Y, rate of messages for the receiyeiFor channel bandwidtid/,
Ni(s) = max vy ’ since each slot is of duratiog,, we have; = WEA;.
o e Having defined service requirement and service gquantum
[‘ In Jf;']-ﬁ-l + psiIn M’JE . of a message for a given schedule, we are now in a position
0. XY

to analyze this message communication scheme with super-

position encoding and successive decoding when requests fo
B  message transmission arrive at random times. We construct
Define N(s) = max; N;(s). ThenN(s) is the smallest posi- 5 discrete-time countable state space Markov-chain mddel o
tive integer such that for each 1 < j < J, x;(s,N(s)) < this communication system and then analyze for the stabilit
Pej- In the following LemmalZ]3 we evaluate coding rateg.-regularity [9]) of the model. The stability analysis costsi

J<k<J Eo x,.y;

Ry, (s) under two asymptotic regimes. of characterizing the stability regioR (w) € R of message
Lemma 2.3R1) Forl < j <Jand an integed/ > 2, let arrival rate vectordEA for each policyw in a class of sta-
M; = M. Then tionary “state-independent” scheduling policies by ahitagy
o . . _ si Boxyy, apprqpriate drift conditions for suitably.defined I__yapunov
Ri(s) = A}lgloo Ri(s) = 11%1;1“%1% ;T- functions of the state of the Markov chain. In particular, we

. . prove that the Markov chain isregular by applying Theorem
(R2) Forl <j<.Jandan integet > 1, lets; = t. Letthe 10 3 from [9], and then show finiteness of the stationary mean
positive integer vecto/ = (My, My, ..., M;) denote pymbper of messages in the system.
message alphabet cardinalities. Then
IV. A GENERAL OUTER BOUND TO THE STABILITY
REGION

= InM; E .
R;(M) = lim R;(s) = min min 0% Do Xe ¥y
t—o0 1<j<Jj<k<s InMyg  p , , , .

In this section, we derive an outerbound to the region

I1l. QUEUEING-THEORETICMODEL of message arrival rate vectols4 for which the Markov-

In this section we derive a queueing-theoretic model fahain model is positive recurrent and has finite stationary
a J receiver degraded broadcast channel, when requestsrf@an for the number of messages, for the class of stationary
message transmission are randomly generated. This queusicheduling policies. Later, in Secti@d V, we propose a class

model consists of/ queues, one for each receiver, and af stationary scheduling policies, called “state-indegent”



scheduling policies and denoted B, and then prove that message$, ;s the number of messages that are part of the
for any message arrival processes$; } with EA; inside the on-going transmission, ant, the number of time-slots of
outerbound, there exists a scheduling policg QX such that transmission remaining for the on-going transmission. rizefi
the Markov-chain model is positive recurrent and has finite;s = (n;s(«), z;s,t;5), the state information corresponding
stationary mean for the number of messages. to message clagg; s) and then

Consider message arrival procesges;1 < j < J} and
a stationary scheduling policy that schedules at mos€

messages for a joint message transmission.dgt) be a o = (sl<j<Js€S), )
probability measure ok. Define the state of the system.
v, = Z{sesK:sj>o} ﬂ'K(s)% and the set Now we discuss implementation of the scheduling policy
w. Suppose that the system is in stateThen the schedule to
Rouwt = U {5 c Ri B < \I/j} (3) be selected for implementation in statés a random variable

and takes values i§x. When trying to implement a schedule
s the following possibilities can occur:

Theorem 4.1:Let the Markov chain{X,,n > 0} be 1) For all of the message classes associated with the
positive recurrent and yield finite stationary mean for the = gchedules, there are no fresh messages present in the
number of messages in the system for the message arrival system; nor is there an ongoing transmission of schedule

mk(s)

processeg A;} and the stationary scheduling policy Then s. Then, no messages are scheduled in that state, and the
EA € Rout- u system moves to next state as determined by the message
arrival processes.
V. STABILITY FOR STATE-INDEPENDENTSCHEDULING 2) No on-going transmission of schedulés present in the
PoLICIES system, and for at least one message class associated

with the schedules there is at least one fresh message
available. Then, a new joint message of scheduls
scheduled, formed out of the fresh messages available
with as many fresh messages of pertinent classes as
are possible but not exceeding the respective maximum
numbers specified by the schedule

3) There is an on-going transmission of schedufEesent

In this section we define the class of stationary state-
independent scheduling policié¥¢, and then assert positive
recurrence and finiteness of the stationary mean for the aumb
of messages of the Markov-chain model for this class of
scheduling policies. Formally, a policy in this class is dedl
by (i) a probability measure{p(s);s € Sk}, and (i) the
mapping{w : X x Sk — Sk}. In this paper, specification of a _ S )
state independent scheduling policyand the probability mea- in the system. Then that transmission is scheduled in
sure{p(s); s € Sk} are equivalent. To implement a scheduling .that slot. . _
policy w, we first classify the incoming messages based on the’X is the countable set of state vectorslefined in[(#). Let
particular schedule to be assigned to them. V(a) be a Lyapunov function defined o’ and letR (w)

For each message arrival destined for recejvar-schedule denote the set of message arrival rate vectassfor which
s € {s€Sk:s; >0} is chosen randomly with the fixedthe Markov chain{X,,n > 0} for the scheduling policy
probability measure defined later ifl (5) and the message“is'S positive recurrent and yields finite stationary mean for
classified by assigning the claég=) to it. With this classifi- the number of messages of each class. Then we prove the
cation a message of clagg-s) will be scheduled to transmit following Lemma and two Theorems. , _
only when the schedule gets chosen for transmission. One Le€mma 5.1:Fora € & and for message clagg;s), define
consequence of class sub-classification is that message$iof®) = N(s)njs(@) + sjtjs. Next, definec(a) = 1 +
class{7, s) will be required to use code words of lengif(s) 2-js Cis(@) and
for transmission, i.e., service requirement gets fixed. \\é fi
fix a scheduling policyw = p(s) and then, in each time slot, Via) = Z
a schedules is chosen from the sefx, independenof the js 2 (p(s)
statea, with probability p(s). We constrain the operation ofThen, for the scheduling policy, the Markov chain isc-
the system by requiring that there can be at most one Q@yuyiar if, for each message clagss), EA; N(s) < p(s)s;.
going transmissiort for any given schedule. The equivalent -
queueing model for any state-independent schedulingypolic Theorem 5.1:Let, for at least one message cldgss),
w € QX will then consists (_)f a number of queues, one fOEA-S > p]gs)sj_ Then the Markov-chaif{X,,n > 0} is
each message class. To define the state of the system, we iff'éﬁ’{%ient. ) -

track of the following information about each message clasg, prove TheorefiBl1, we show that for the Lyapunov function
for message clasg; s), letn;s (o) denote the number of freshv(a) — 1 — eNInjs(@)+z55(@)tis  there exists a value fof

cjs(a)

S5 — ]EAJSN(S)) '

1A joint message for which at least one time-slot of transioissis 2We say that a message requesfréshif that message has not yet been
complete and transmission for at least one more time-siotairess to be scheduled for the first time, i.e., first code symbol of theesponding code
completed. word is yet to be transmitted.



0 < # < 1, for which V(«) satisfies the conditions for the the-|

orem for transience [10]. Defing; = (p;s,5 € Sk : 55 > 0)
be a splitting probability vector defined by

p(s)s;
N5

(5)

Hijs p(s/)S;

Z{SIESK15;>0} N(s’)

Then, given that a message arrives at qugug;s is the
probability that the message request is assigned schedule
The sufficient condition fore-regularity of the Markov-
chain {X,,,n > 0} stated in Lemmd&®&l1 and the sufficien
condition for transience stated in TheorEml 5.1 togethee gi
the exact characterization of the stability region, asestan

the following theorem.
Theorem 5.2:For the scheduling policyw, the Markov
chain{X,,n > 0} is
(a) positive recurrent and yields finite stationary meatrtlier
number of messages, if, for each quetle-

>

{seSk:s; >0}

p(s)s;

N(s)’

(b) transient if, for at least one message clgss),

EA; < and

p(s)s;

]EAJ'S > N(S)

Definev; = 3 5.5, 501 P(8) w5y and the set

U {8eRr{:8 <}

p(s)eNK

(6)

R (25)

Corollary 5.1: For any given message arrival rate vectorl]

EA € R (QX) there exists a scheduling poligy(s) € QK

such that the Markov chain is positive recurrent and yieldg]
finite stationary mean for the number of messages of each

class. [

From [3) and[(6), we noté that R (QX) °. - This
observation essentially states that, if a stationary sdiveyl
policy is stable for the message arrival procesgds;1 <

j < J}, then there exists a state-independent scheduling pol

which makes the Markov-chain stable for the same messadfé

arrival processe$A;;1 < j < J}.

V1. INFORMATION-THEORETIC CAPACITY REGION

INTERPRETATION TO THESTABILITY REGION

In this section we give information-theoretic capacityioeg
interpretation to the stability region of nat arrival ratectors

Inequality [) follows trivially from Theoreri’Bl2. We renan
the reader thatRy(s) Sj]\l,‘z:‘)'{j denotes the maximum
possible coding rate for receiverunder the schedule and
that Ry (s) under two asymptotic regimes was determined in
LemmalZB. DefineR(s) = (Ri(s), Ra(s),...,Rs(s)) and

the hypercubéR(s) € RY defined by the vectoR(s). Simi-
larly, we define the vectoR(M) and the hypercub®(M) €

R defined by the vectoR(M). For the given joint distri-
bution ¢s(xs)qr—1(xs-1lxs) - @i (z1|@2)p(1y2 - - - yslT1),

{et 1 = (I(XJ; YJ),I(XJ,M YJ,1|XJ), . ,I(Xl; Y1|X2))
denote the vector of average mutual informations and the
KypercubeC(I) € R{ defined by the vectof. We assert in
the following TheorerfL6]1 that, for any rate vectog C°(Z),
there exists a schedukeunder regimeR1 and anM under
regime R2 such that the Markov chaifX,,n > 0} under

the respective regimeR1 and R2 with EA = r, is stable.
That is, the achievable asymptotic stable region of navalrri
rate vectors and the interior of the capacity regi{) are

ideﬂ]tical.

eorem 6.1 (Capacity Interpretation):

U U Re= | RM)=c(@)

K>1 {seSk} Mez]

|

Proof of TheoreniL6l1 uses the following Lemmal 6.1.
Lemma 6.1:Consider a J-receiver degraded broadcast

channel represented as the Markov ch&p — X; 1 —

= X1 oY1 2 Y —» - =Y, Then, for1 < j < J

andjSkSJ, Eo,Xk.,Yj ZEO,Xk,Yk' n
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