
ar
X

iv
:c

s/
06

01
09

4v
1 

 [c
s.

IT
]  

22
 J

an
 2

00
6

Stability of Scheduled Message Communication
over Degraded Broadcast Channels

KCV Kalyanarama Sesha Sayee, Utpal Mukherji
Dept. of Electrical Communication Engineering

Indian Institute of Science, Bangalore-560012, India
Email: sayee, utpal@ece.iisc.ernet.in

Abstract— We consider scheduled message communication
over a discrete memoryless degraded broadcast channel. The
framework we consider here models both the random message
arrivals and the subsequent reliable communication by suitably
combining techniques from queueing theory and information
theory. The channel from the transmitter to each of the re-
ceivers is quasi-static, flat, and with independent fades across
the receivers. Requests for message transmissions are assumed
to arrive according to an i.i.d. arrival process. Then, (i) we
derive an outer bound to the region of message arrival vectors
achievable by the class of stationary scheduling policies,(ii) we
show for any message arrival vector that satisfies the outerbound,
that there exists a stationary “state-independent” policy that
results in a stable system for the corresponding message arrival
process, and (iii) under two asymptotic regimes, we show that
the stability region of nat arrival rate vectors has information-
theoretic capacity region interpretation.

I. I NTRODUCTION

Multi-access random-coded communication with indepen-
dent decoding, of messages that arrive in a Poisson process to
an infinite transmitter population, and that achieves any desired
value for the upper bound by determining message signal
durations appropriately, has been considered in [1] and [2].
Recently, in [3], a generalization and extension of the model
in [1] and [2] was considered and the following assertions were
proved: (i) in the limit of large message alphabet size, the sta-
bility region has an interference limited information-theoretic
capacity interpretation, (ii) state-independent scheduling poli-
cies achieve this asymptotic stability region, and (iii) in
the asymptotic limit corresponding to immediate access, the
stability region for non-idling scheduling policies is shown
to be identical irrespective of received signal powers. The
work reported in [3] is followed in [4], considering joint
decoding of messages, instead of independent decoding. As
such, this paper is a sister paper to our discussion of multi-
access message communication with independent decoding [3]
and joint decoding [4].

In this paper we consider message (packet) communication
over a flat bandpass AWGN broadcast channel withJ ≥ 2
receivers. Requests for message transmissions to different
receivers are generated according to i.i.d. processes. Requests
intended for receiver-j, 1 ≤ j ≤ J , are chosen from the
message alphabetMj consisting ofMj ≥ 2 alternatives. Sig-
nals, representing messages, are to be communicated reliably;
reliability required by thejth receiver is quantified by the
tolerable message decoding error probabilitypej . We assume

that the transmitter schedules messages for transmission,i.e.,
the transmitter can choose some numbers of messages meant
for each of theJ receivers and then perform superposition
encoding [5] on them. Due to the complexity involved in
superposition encoding of an arbitrary number of messages,
we restrict the transmitter to encode only a finite number
K ≥ 1 of messages at a time. This restriction gives rise
to a set of possible schedulesSK defined in the Section II.
The channel from the transmitter to each of the receivers
is a discrete-time memoryless channel with known statistics
that remain stationary over time. The actual communication
is accomplished as follows. For a chosen schedules ∈ SK,
the transmitter maps the schedules to a codeword (signal) of
lengthN(s) and then broadcasts the signal. The length of the
code word is carefully chosen so that reliable communication
for each receiver, quantified by{pej; 1 ≤ j ≤ J}, is achieved.
Decoders, at the respective receivers, perform successivede-
coding on their received signals and map to an estimate of the
messages intended for them.

The contributions in this paper are as follows. We derive an
outer boundRout to the stability region of message arrival rate
vectorsEA = (EA1,EA2, . . . ,EAJ) achievable by the class
of stationary scheduling policies. Next, we propose a class
of stationary policies, called “state-independent” policies, and
then characterize the stability regionR(ω) of message arrival
rate vectorsEA = (EA1,EA2, . . . ,EAJ ) achievable by any
such policyω. We then go on to establish that for any message
arrival rate vector that satisfies the outerbound derived for the
stationary policies , there exists a state-independent scheduling
policy ω that results in a stable system for the corresponding
message arrival process. Finally, under two asymptotic regimes
, we give information-theoretic capacity region interpretation
to the stability region of nat arrival rate vectors achievable by
a fixed schedules ∈ SK.

The organization of the paper is as follows. Section II intro-
duces the information-theoretic model of degraded broadcast
channel to be analyzed in this paper. We extend a random
coding bound derived for a two receiver model [6] to an
arbitrary number of receivers. Section III gives a queueing
system model for the degraded broadcast message communi-
cation system with random message arrivals by characterizing
service requirement of messages and the service process of
an equivalent server. Section IV presents an outer bound to
the stability region of message load vectors achievable by the
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class of stationary scheduling policies. In section V, we give
stability analysis of the queueing model for the class of state-
independent scheduling policies. Finally, in Section VI , we
give information-theoretic capacity region interpretation to the
stability region of message average nat arrival rate vectors.

II. T HE INFORMATION THEORETICMODEL

The capacity region for general degraded broadcast chan-
nels, first conjectured in [7], was established by Bergmans [5].
The converse was established by Bergmans [8] and Gal-
lager [6]. The model for a degraded broadcast channel withJ
receivers is shown in Fig. 1. Consider a degraded broadcast

qJ(xJ) qJ−1(xJ−1|xJ) q1(x1|x2)

p1(y1|x1)J−1(yJ−1|yJ−2)ppJ(yJ|yJ−1)

XJ XJ−1 X1

Y1YJ−1YJ

Fig. 1. Model of Degraded Broadcast Channel

channel through whichJ independent sources communicate
information to the respective receivers. In Fig. 1 we note that,
for 2 ≤ j ≤ J , jth channel is degraded version ofj − 1th
channel.

Theorem 2.1 (Bergmans):The capacity region for the de-
graded broadcast channel consisting ofJ component channels
(receivers) and represented as the Markov chainXJ →
XJ−1 → . . . → X2 → X1 → Y1 → Y2 → . . . →
YJ−1 → YJ is the convex hull of the closure of all
(R1, R2, . . . , RJ ) ∈ R

J
+ satisfyingRJ ≤ I(XJ ;YJ) and for

1 ≤ j ≤ J − 1, Rj ≤ I(Xj ;Yj |Xj+1) for some joint distribu-
tion qJ (xJ )qJ−1(xJ−1|xJ) · · · q1(x1|x2)p(y1y2 · · · yJ |x1)
For1 ≤ j ≤ J and integersMj ≥ 2, letMj = {1, 2, . . . ,Mj}
denote the message alphabet for thejth source. Let thejth
source output be modeled by the random variablemj that
takes values in the setMj . The ensemble of broadcast codes
we consider here is the same as Bergmans [5] constructed.
For j ≤ k ≤ J , let m̂k,j ∈ Mj denote an estimate of thekth
source computed at thejth receiver.

The equivalent baseband channel between the transmitter
and each of theJ receivers can be sampled at the Nyquist
rate equal to its two-sided bandwidthW , to obtain a sequence
of single-use scalar channels. These channelsij, theith scalar
channel corresponding to the channel between the transmitter
and the jth receiver, have independent inputs of variance
|hj |

2P , whereP denotes average power of the transmitter
and hj the multiplicative gain. Letσ2

j denote the variance
of the additive Gaussian noise. If|h1|2/σ2

1 ≥ |h2|
2/σ2

2 ≥
. . . |hJ |

2/σ2
J , then the broadcast channel is stochastically

degraded. But, in what follows, we analyze a general de-
graded broadcast channel without any specific model in mind.
Thus the results obtained here apply to flat bandpass AWGN
broadcast channels. A random coding upper bound for the two

receiver degraded broadcast channel was derived in [6]. Here
we extend that result to a degraded broadcast channel with
arbitrary number of receivers. The objective of the decoder
at the jth receiver is to compute an estimatêmj,j of mj .
This is achieved by successive decoding, with thejth decoder
first decoding and then subtracting the signals intended for
the users with noisier channels before decoding its own. Let
the event{m̂k,j 6= mk} be the event that decoder at thejth
receiver makes error in decoding thekth source. The proba-
bility of error for the jth decoder then isp ({m̂j,j 6= mj}).
For 1 ≤ j ≤ J andj ≤ k ≤ J , let pe,k,j denote the expected
probability, over the ensemble of broadcast codes, of decoding
the kth source at thejth receiverincorrectly conditioned on
k + 1, k + 2, . . . , J th sources being decodedcorrectly. The
transition probability of the effective channel betweenYj ,
1 ≤ j ≤ J , andXk, 1 ≤ k ≤ J , is given by

p′
Yj |Xk

(yj |xk) = (
∏k−1

l=1
qk−l(xk−l|xk−l+1))p(y1|x1)

= (
∏ j

l=2 pl(yl|yl−1))

One can then think thatYj is produced by passingXk through
a DMC with transition probability lawp′

Yj |Xk
(yj |xk). In

the following Theorem 2.2, we compute an upper bound on
probability of the event{m̂j,j 6= mj}.

Theorem 2.2:For1 ≤ j ≤ J , the expected error probability
over the ensemble of broadcast codes of lengthN satisfies
p ({m̂j,j 6= mj}) ≤

∑J

k=j pe,k,j , where forj ≤ k ≤ J − 1,

pe,k,j ≤ exp(−NEXk,Yj
(Rk))

EXk,Yj
(Rk) = Eo,Xk,Yj

(ρ)−ρRk

Eo,Xk,Yj
(ρ) = − ln

∑

xJ ,...,xk+1
qJ (xJ )

∏J−1
l=k+1 ql(xl|xl+1)

∑

yj

(

∑

xk
qk(xk|xk+1)p

′
Yj |Xk

(yj|xk)
1

1+ρ

)1+ρ

Rk = lnMk
N

(1)

and fork = J ,

pe,J,j ≤ exp(−NEXJ,Yj
(RJ ))

XJ,Yj
(RJ ) = Eo,XJ ,Yj

(ρ)−ρRJ i

Eo,XJ ,Yj
(ρ) = − ln

∑

yj

(

∑

xJ
qJ (xJ)p

′
Yj |XJ

(yj |xJ )
1

1+ρ

)1+ρ

RJ = lnMJ
N

(2)

In what follows we allow for the possibility of schedul-
ing multiple messages intended for a receiver. Lets =
(s1, s2, . . . , sJ) ∈ Z

J
+, a vector of non-negative integers,

define a schedule. Then the setSK =
{

s : 0 ≤
∑J

j=1 sj ≤ K

}

defines the set of all schedules that schedule at mostK mes-
sages for encoding. To interpret Theorem 2.2 for the schedule
s ∈ SK, it is convenient to view schedules as defining new
message alphabets for receivers that are product versions of
their original message alphabets. For example, for receiver-
j and for the schedules, this product message alphabet is
the Cartesian product ofsj copies of the original message
alphabetMj; hence the product message alphabet consists of



M
sj
j different tuples of lengthsj . With this view point, we

redefine the quantityRk (eq. (1) and (2) in Theorem 2.2), the
coding rate for the receiver-k, asRk(s) thus emphasizing the
dependence ofeffectivemessage alphabet size on schedules.
Then

Rk(s)=
lnM

sk
k

N(s)
=sk

lnMk
N(s)

=skRk

Thus Rk = Rk(s) for sk = 1. Also, it is helpful to
view schedules as a set of messages consisting of a total
of

∑J

j=1 sj elements, of which the firsts1 messages are
intended for receiver-1, the nexts2 messages are intended
for transmission to receiver-2 and so on, and the lastsJ
messages are intended for receiver-J . Let P(s) denote the set
of all non-emptysubsets of the schedules, viewed as a set of
messages. For future reference, we denote the random coding
upper bound for the schedules and for thejth receiver by
χj (s,Nj(s)), where for a particular choice ofρ and tolerable
message decoding error probabilities{pej , 1 ≤ j ≤ J}, for
1 ≤ j ≤ J let Nj(s) be the smallest positive integer such that
χj(s,Nj(s)) ≤ pej . Thenp ({m̂j,j 6= mj}) ≤ pej .

Lemma 2.1:Let s′ ∈ P(s). Then, for1 ≤ j ≤ J ,Nj (s
′) ≤

Nj(s).
Since no closed form expression exists forNj(s), we derive

an upper bound and a lower bound toNj(s) in Lemma 2.2.
The notation that forx > 0 andq > 0, ⌈x⌉q = min(n ≥ 1 :
x ≤ nq)q will be used in the following Lemma.

Lemma 2.2:LetNj(s) be the smallest positive integer such
thatχj(s,Nj(s)) ≤ pej . ThenNj(s) can be bounded as shown
below.

Nj(s) ≥ max
j≤k≤J

⌈− ln pej + ρsk lnMk⌉Eo,Xk,Yj

Eo,Xk,Yj

Nj(s) ≤ max
j≤k≤J

⌈

− ln
pej

J−j+1 + ρsk lnMk

⌉

Eo,Xk,Yj

Eo,Xk,Yj

DefineN(s) = maxj Nj(s). ThenN(s) is the smallest posi-
tive integer such that for eachj, 1 ≤ j ≤ J , χj(s,N(s)) ≤
pej . In the following Lemma 2.3 we evaluate coding rates
Rk(s) under two asymptotic regimes.

Lemma 2.3:(R1) For 1 ≤ j ≤ J and an integerM ≥ 2, let
Mj =M . Then

Ri(s) = lim
M→∞

Ri(s) = min
1≤j≤J

min
j≤k≤J

si
sk

Eo,Xk,Yj

ρ
.

(R2) For 1 ≤ j ≤ J and an integert ≥ 1, let sj = t. Let the
positive integer vectorM = (M1,M2, . . . ,MJ) denote
message alphabet cardinalities. Then

Ri(M) = lim
t→∞

Ri(s) = min
1≤j≤J

min
j≤k≤J

lnMi

lnMk

Eo,Xk,Yj

ρ

III. QUEUEING-THEORETICMODEL

In this section we derive a queueing-theoretic model for
a J receiver degraded broadcast channel, when requests for
message transmission are randomly generated. This queueing
model consists ofJ queues, one for each receiver, and a

single server whose service statistics depend on the state of
the queues through the chosen scheduling policy.

Let successive maximum-likelihood decoding be used at
each receiver to decode the respective received word. Consider
a fixed schedules and suppose that a set of tolerable message
decoding error probabilities{pej ; 1 ≤ j ≤ J} is given.
The definition of service requirement that we consider for
a message intended for any receiver is the smallest positive
integerN(s) (length of the code word that the transmitter
transmits) such thatχj(s,N(s)) ≤ pej . For the schedules, we
say that queue-j receives a service quantum equivalent tosj
units/slot; the total service quantum then is

∑J

j=1 sj units/slot.
After receiving the signal transmission overN channel uses
, each receiver will decode the message intended for it. A
few remarks on the definitions of service requirement and
service quantum are in order. The service requirement of a
message depends on the schedule of which the message is
a component message. In other words, a message by itself
cannot characterize service requirement for itself unless it
is the only message to constitute the schedule. The amount
of service quantum available to a receiver depends on the
schedule.

Requests for message transmissions for each receiver are
assumed to arrive at slot boundaries in batches. Let the random
variableAj , with finite momentsEAj and EA2

j , represent
the number of messages destined for receiver-j that arrive
in any slot, with the pmfPr(Aj = k) = pj(k), k ≥ 0.
We assume that{Aj} are independent random variables. Let
EA = (EA1,EA2, . . . ,EAJ ) ∈ R

J
+. Let λj denote the arrival

rate of messages for the receiver-j. For channel bandwidthW ,
since each slot is of duration1

W
, we haveλj =WEAj .

Having defined service requirement and service quantum
of a message for a given schedule, we are now in a position
to analyze this message communication scheme with super-
position encoding and successive decoding when requests for
message transmission arrive at random times. We construct
a discrete-time countable state space Markov-chain model of
this communication system and then analyze for the stability
(c-regularity [9]) of the model. The stability analysis consists
of characterizing the stability regionR(ω) ∈ R

J
+ of message

arrival rate vectorsEA for each policyω in a class of sta-
tionary “state-independent” scheduling policies by obtaining
appropriate drift conditions for suitably defined Lyapunov
functions of the state of the Markov chain. In particular, we
prove that the Markov chain isc-regular by applying Theorem
10.3 from [9], and then show finiteness of the stationary mean
number of messages in the system.

IV. A G ENERAL OUTER BOUND TO THE STABILITY

REGION

In this section, we derive an outerbound to the region
of message arrival rate vectorsEA for which the Markov-
chain model is positive recurrent and has finite stationary
mean for the number of messages, for the class of stationary
scheduling policies. Later, in Section V, we propose a class
of stationary scheduling policies, called “state-independent”



scheduling policies and denoted byΩK, and then prove that
for any message arrival processes{Aj} with EAj inside the
outerbound, there exists a scheduling policyω ∈ ΩK such that
the Markov-chain model is positive recurrent and has finite
stationary mean for the number of messages.

Consider message arrival processes{Aj ; 1 ≤ j ≤ J} and
a stationary scheduling policyω that schedules at mostK
messages for a joint message transmission. LetπK(s) be a
probability measure onSK. Define
Ψj =

∑

{s∈SK:sj>0} πK(s)
sj

N(s) and the set

Rout =
⋃

πK(s)

{

β ∈ R
J
+ : βj ≤ Ψj

}

(3)

Theorem 4.1:Let the Markov chain{Xn, n ≥ 0} be
positive recurrent and yield finite stationary mean for the
number of messages in the system for the message arrival
processes{Aj} and the stationary scheduling policyω. Then
EA ∈ Rout.

V. STABILITY FOR STATE-INDEPENDENTSCHEDULING

POLICIES

In this section we define the class of stationary state-
independent scheduling policiesΩK, and then assert positive
recurrence and finiteness of the stationary mean for the number
of messages of the Markov-chain model for this class of
scheduling policies. Formally, a policy in this class is defined
by (i) a probability measure{p(s); s ∈ SK}, and (ii) the
mapping{ω : X × SK → SK}. In this paper, specification of a
state independent scheduling policyω and the probability mea-
sure{p(s); s ∈ SK} are equivalent. To implement a scheduling
policy ω, we first classify the incoming messages based on the
particular schedules to be assigned to them.

For each message arrival destined for receiver-j, a schedule
s ∈ {s ∈ SK : sj > 0} is chosen randomly with the fixed
probability measure defined later in (5) and the message is
classified by assigning the class-(j, s) to it. With this classifi-
cation a message of class-(j, s) will be scheduled to transmit
only when the schedules gets chosen for transmission. One
consequence of class sub-classification is that messages of
class-(j, s) will be required to use code words of lengthN(s)
for transmission, i.e., service requirement gets fixed. We first
fix a scheduling policyω = p(s) and then, in each time slot,
a schedules is chosen from the setSK, independentof the
stateα, with probability p(s). We constrain the operation of
the system by requiring that there can be at most one on-
going transmission1 for any given schedule. The equivalent
queueing model for any state-independent scheduling policy
ω ∈ ΩK will then consists of a number of queues, one for
each message class. To define the state of the system, we keep
track of the following information about each message class:
for message class-(j, s), let njs(α) denote the number of fresh

1A joint message for which at least one time-slot of transmission is
complete and transmission for at least one more time-slot remains to be
completed.

messages2, xjs the number of messages that are part of the
on-going transmission, andtjs the number of time-slots of
transmission remaining for the on-going transmission. Define
αjs = (njs(α), xjs, tjs), the state information corresponding
to message class-(j, s) and then

α = (αjs; 1 ≤ j ≤ J, s ∈ SK) , (4)

the state of the system.
Now we discuss implementation of the scheduling policy

ω. Suppose that the system is in stateα. Then the schedule to
be selected for implementation in stateα is a random variable
and takes values inSK. When trying to implement a schedule
s the following possibilities can occur:

1) For all of the message classes associated with the
schedules, there are no fresh messages present in the
system; nor is there an ongoing transmission of schedule
s. Then, no messages are scheduled in that state, and the
system moves to next state as determined by the message
arrival processes.

2) No on-going transmission of schedules is present in the
system, and for at least one message class associated
with the schedules there is at least one fresh message
available. Then, a new joint message of schedules is
scheduled, formed out of the fresh messages available
with as many fresh messages of pertinent classes as
are possible but not exceeding the respective maximum
numbers specified by the schedules.

3) There is an on-going transmission of schedules present
in the system. Then that transmission is scheduled in
that slot.

X is the countable set of state vectorsα defined in (4). Let
V (α) be a Lyapunov function defined onX and letR (ω)
denote the set of message arrival rate vectorsEA for which
the Markov chain{Xn, n ≥ 0} for the scheduling policy
ω is positive recurrent and yields finite stationary mean for
the number of messages of each class. Then we prove the
following Lemma and two Theorems.

Lemma 5.1:Forα ∈ X and for message class-(j, s), define
cjs(α) = N(s)njs(α) + sjtjs. Next, definec(α) = 1 +
∑

js cjs(α) and

V (α) =
∑

js

c2js(α)

2 (p(s)sj − EAjsN(s))
.

Then, for the scheduling policyω, the Markov chain isc-
regular if, for each message class-(j, s), EAjsN(s) < p(s)sj .

Theorem 5.1:Let, for at least one message class-(j, s),
EAjs >

p(s)sj
N(s) . Then the Markov-chain{Xn, n ≥ 0} is

transient.
To prove Theorem 5.1, we show that for the Lyapunov function
V (α) = 1 − θN(s)njs(α)+xjs(α)tjs , there exists a value forθ,

2We say that a message request isfresh if that message has not yet been
scheduled for the first time, i.e., first code symbol of the corresponding code
word is yet to be transmitted.



0 < θ < 1, for whichV (α) satisfies the conditions for the the-
orem for transience [10]. Defineµj = (µjs, s ∈ SK : sj > 0)
be a splitting probability vector defined by

µjs =
p(s)sj
N(s)

∑

{s′∈S
K
:s′

j
>0}

p(s′)s′j
N(s′)

(5)

Then, given that a message arrives at queue-j, µjs is the
probability that the message request is assigned schedules.

The sufficient condition forc-regularity of the Markov-
chain {Xn, n ≥ 0} stated in Lemma 5.1 and the sufficient
condition for transience stated in Theorem 5.1 together give
the exact characterization of the stability region, as stated in
the following theorem.

Theorem 5.2:For the scheduling policyω, the Markov
chain{Xn, n ≥ 0} is

(a) positive recurrent and yields finite stationary mean forthe
number of messages, if, for each queue-j,

EAj <
∑

{s∈SK:sj>0}

p(s)sj
N(s)

, and

(b) transient if, for at least one message class-(j, s),

EAjs >
p(s)sj
N(s)

Defineψj =
∑

{s∈SK:sj>0} p(s)
sj

N(s) and the set

R
(

ΩK
)

=
⋃

p(s)∈ΩK

{

β ∈ R
J
+ : βj < ψj

}

(6)

Corollary 5.1: For any given message arrival rate vector
EA ∈ R

(

ΩK
)

there exists a scheduling policyp(s) ∈ ΩK

such that the Markov chain is positive recurrent and yields
finite stationary mean for the number of messages of each
class.

From (3) and (6), we note3 that R
(

ΩK
)

= Ro
out . This

observation essentially states that, if a stationary scheduling
policy is stable for the message arrival processes{Aj; 1 ≤
j ≤ J}, then there exists a state-independent scheduling policy
which makes the Markov-chain stable for the same message
arrival processes{Aj ; 1 ≤ j ≤ J}.

VI. I NFORMATION-THEORETICCAPACITY REGION

INTERPRETATION TO THESTABILITY REGION

In this section we give information-theoretic capacity region
interpretation to the stability region of nat arrival rate vectors
EÃ. A formal statement of this interpretation is made in
Theorem 6.1. LetÃj = Aj lnMj denote the nat arrival
random variable corresponding to message class-j. Then, the
message system, for the fixed schedules, is stable for nat
arrival rates satisfying the following inequality: for receiver-j,

EÃj <
sj lnMj

N(s)
(7)

3Interior of the setA is denoted byAo.

Inequality (7) follows trivially from Theorem 5.2. We remind
the reader thatRk(s) =

sj lnMj

N(s) denotes the maximum
possible coding rate for receiver-j under the schedules and
thatRk(s) under two asymptotic regimes was determined in
Lemma 2.3. DefineR(s) = (R1(s), R2(s), . . . , RJ(s)) and
the hypercubeR(s) ∈ R

J
+ defined by the vectorR(s). Simi-

larly, we define the vectorR(M) and the hypercubeR(M) ∈
R

J
+ defined by the vectorR(M). For the given joint distri-

bution qJ (xJ )qJ−1(xJ−1|xJ) · · · q1(x1|x2)p(y1y2 · · · yJ |x1),
let I = (I(XJ ;YJ ), I(XJ−1;YJ−1|XJ), . . . , I(X1;Y1|X2))
denote the vector of average mutual informations and the
hypercubeC(I) ∈ R

J
+ defined by the vectorI. We assert in

the following Theorem 6.1 that, for any rate vectorr ∈ Co(I),
there exists a schedules under regimeR1 and anM under
regimeR2 such that the Markov chain{Xn, n ≥ 0} under
the respective regimesR1 and R2 with EÃ = r, is stable.
That is, the achievable asymptotic stable region of nat arrival
rate vectors and the interior of the capacity regionC(I) are
identical.

Theorem 6.1 (Capacity Interpretation):

⋃

K≥1

⋃

{s∈SK}

R(s) =
⋃

M∈Z
J
+

R(M) = Co(I)

Proof of Theorem 6.1 uses the following Lemma 6.1.
Lemma 6.1:Consider a J-receiver degraded broadcast

channel represented as the Markov chainXJ → XJ−1 →
· · · → X1 → Y1 → Y2 → · · · → YJ . Then, for1 ≤ j ≤ J
andj ≤ k ≤ J , Eo,Xk,Yj

≥ Eo,Xk,Yk
.
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