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Abstract

The capacity of peak-power limited, single-antenna, noncoherent, flat-fading channels
with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting
ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR
tends to infinity. It is shown that, among all stationary & ergodic fading processes of a
given spectral distribution function and whose law has no mass point at zero, the Gaussian
process gives rise to the smallest pre-log. The assumption that the law of the fading process
has no mass point at zero is essential in the sense that there exist stationary & ergodic
fading processes whose law has a mass point at zero and that give rise to a smaller pre-
log than the Gaussian process of equal spectral distribution function. An extension of our
results to multiple-input single-output fading channels with memory is also presented.

1 Introduction

We study the capacity of peak-power limited, single-antenna, discrete-time, flat-fading channels
with memory. A noncoherent channel model is considered where the transmitter and receiver
are both aware of the law of the fading process, but not of its realization. Our focus is on the
capacity at high signal-to-noise ratio (SNR). Specifically, we study the capacity pre-log, which is
defined as the limiting ratio of channel capacity to the logarithm of the SNR, as the SNR tends
to infinity.

The capacity pre-log of Gaussian fading channels was derived in [1] (see also [2]). It was
shown that the pre-log is given by the Lebesgue measure of the set of harmonics where the
derivative of the spectral distribution function that characterizes the memory of the fading
process is zero. To the best of our knowledge, the capacity pre-log of non-Gaussian fading
channels is unknown.

In this work, we demonstrate that the Gaussian assumption in the analysis of fading channels
at high SNR is conservative in the sense that for a large class of fading processes the Gaussian
process is the worst. More precisely, we show that among all stationary & ergodic fading
processes of a given spectral distribution function and whose law has no mass point at zero, the
Gaussian process gives rise to the smallest pre-log.

This paper is organized as follows. Section 2 describes the channel model. Section 3 defines
channel capacity and the capacity pre-log. Section 4 presents our main results. Section 5
provides the proofs of these results. Section 6 discusses the extension of our results to multiple-
input single-output (MISO) fading channels with memory. Section 7 concludes the paper with
a summary and a discussion of our results.

2 Channel Model

Let C and Z denote the set of complex numbers and the set of integers. We consider a single-
antenna flat-fading channel with memory where the time-k channel output Yk ∈ C corresponding

The material in this paper was presented in part at the 2006 IEEE International Symposium on Information
Theory (ISIT) in Seattle, Washington, USA.
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to the time-k channel input xk ∈ C is given by

Yk = Hkxk + Zk, k ∈ Z. (1)

Here the random processes {Zk, k ∈ Z} and {Hk, k ∈ Z} take value in C and model the addi-
tive and multiplicative noises, respectively. It is assumed that these processes are statistically
independent and of a joint law that does not depend on the input sequence {xk}.

The additive noise {Zk, k ∈ Z} is a sequence of independent and identically distributed
(IID) zero-mean, variance-σ2, circularly-symmetric, complex Gaussian random variables. The
multiplicative noise (“fading”) {Hk, k ∈ Z} is a mean-d, unit-variance, stationary & ergodic
stochastic process of spectral distribution function F (λ), −1/2 ≤ λ ≤ 1/2, i.e., F (·) is a bounded
and nondecreasing function on [−1/2, 1/2] satisfying

E[(Hk+m − d)(Hk − d)∗] =

∫ 1/2

−1/2

ei2πmλ dF (λ),
(

k ∈ Z, m ∈ Z
)

, (2)

where i =
√
−1, and where A∗ denotes the complex conjugate of A [3, p. 474, Thm. 3.2]. Since

F (·) is monotonic, it is almost everywhere differentiable, and we denote its derivative by F ′(·).
(At the discontinuity points of F (·) the derivative F ′(·) is undefined.) For example, if the fading
process {Hk, k ∈ Z} is IID, then

F ′(λ) = 1, −1

2
≤ λ ≤ 1

2
.

3 Channel Capacity and the Pre-Log

Channel capacity is defined as the supremum of all achievable rates. (We refer to [4, Ch. 8] for
a definition of an achievable rate and for a more detailed discussion of channel capacity.) It was
shown (e.g., [5, Thm. 2]) that the capacity of our channel (1) under a peak-power constraint A2

on the inputs is given by

C(SNR) = lim
n→∞

1

n
sup I(Xn

1 ;Y
n
1 ); (3)

where SNR is defined as

SNR ,
A

2

σ2
; (4)

An
m denotes the sequence Am, . . . , An; and where the maximization is over all joint distributions

on X1, . . . , Xn satisfying with probability one

|Xk|2 ≤ A
2, k = 1, . . . , n. (5)

The capacity pre-log is defined as [1]

Π , lim
SNR→∞

C(SNR)

log SNR
. (6)

For Gaussian fading, i.e., when {Hk−d, k ∈ Z} is a circularly-symmetric, complex Gaussian
process, the pre-log ΠG is given by the Lebesgue measure of the set of harmonics where the
derivative of the spectral distribution function is zero, i.e.,

ΠG = µ ({λ : F ′(λ) = 0}) , (7)

where µ(·) denotes the Lebesgue measure on the interval [−1/2, 1/2]; see [1], [2]. (Here the
subscript “G” stands for “Gaussian”.)

This result indicates that if the fading process is Gaussian and satisfies

µ ({λ : F ′(λ) = 0}) > 0,

then the corresponding channel capacity grows logarithmically in the SNR. Note that otherwise
the capacity can increase with the SNR in various ways. For instance, in [6] fading channels are
studied that result in a capacity which increases double-logarithmically with the SNR, and in
[1] spectral distribution functions are presented for which capacity grows as a fractional power
of the logarithm of the SNR.
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4 Main Result

We show that, among all stationary & ergodic fading processes of a given spectral distribution
function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest
pre-log. This is made precise in the following theorem.

Theorem 1. Consider a mean-d, unit-variance, stationary & ergodic fading process {Hk, k ∈ Z}
whose spectral distribution function is given by F (·) and whose law satisfies

Pr[Hk = 0] = 0, k ∈ Z.

Then the corresponding capacity pre-log Π is lower bounded by

Π ≥ µ ({λ : F ′(λ) = 0}) . (8)

Proof. See Section 5.1.

The assumption that the law of the fading process has no mass point at zero is essential in
the following sense.

Note 1. There exists a mean-d, unit-variance, stationary & ergodic fading process {Hk, k ∈ Z}
of some spectral distribution function F (·) such that

Π < µ ({λ : F ′(λ) = 0}) . (9)

By Theorem 1, this process must satisfy

Pr[Hk = 0] > 0, k ∈ Z.

Proof. See Section 5.2.

Note 2. The inequality in (8) can be strict. For example, consider the phase-noise channel
with memoryless phase noise. This channel can be viewed as a fading channel where the fading
process {Hk, k ∈ Z} is given by

Hk = eiΘk , k ∈ Z,

and where {Θk, k ∈ Z} is IID with Θk being uniformly distributed over [−π, π). This process
gives rise to a pre-log Π = 1/2, whereas the Gaussian fading of equal spectral distribution function
yields ΠG = 0.

Proof. For a derivation of the capacity pre-log of the phase-noise channel see Section 5.3.

5 Proofs

This section provides the proofs of our main results. For a proof of Theorem 1 see Section 5.1,
for a proof of Note 1 see Section 5.2, and for a proof of Note 2 see Section 5.3.

5.1 Proof of Theorem 1

To prove Theorem 1, we derive in Section 5.1.1 a lower bound on the capacity, and proceed in
Section 5.1.2 to analyze its asymptotic growth as the SNR tends to infinity.

5.1.1 Capacity Lower Bound

To derive a lower bound on the capacity we consider inputs {Xk, k ∈ Z} that are IID, zero-mean,
circularly-symmetric, and for which |Xk|2 is uniformly distributed over the interval

[

0,A2
]

. Our
derivation is based on the lower bound

1

n
I(Xn

1 ;Y
n
1 ) ≥ 1

n
I(Xn

1 ;Y
n
1 |Hn

1 )−
1

n
I(Hn

1 ;Y
n
1 |Xn

1 ), (10)
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which follows from the chain rule

I(Xn
1 ;Y

n
1 ) = I(Xn

1 , H
n
1 ;Y

n
1 )− I(Hn

1 ;Y
n
1 |Xn

1 )

= I(Hn
1 ;Y

n
1 ) + I(Xn

1 ;Y
n
1 |Hn

1 )− I(Hn
1 ;Y

n
1 |Xn

1 ) (11)

and the nonnegativity of mutual information.
We first study the first term on the right-hand side (RHS) of (10). Making use of the

stationarity of the channel and of the fact that the inputs are IID we have

1

n
I(Xn

1 ;Y
n
1 |Hn

1 ) = I(X1;Y1|H1). (12)

We lower bound the RHS of (12) as follows. For any fixed Υ > 0

I(X1;Y1|H1) = h(H1X1 + Z1|H1)− h(Z1)

=

∫

|h1|≥Υ

h(H1X1 + Z1|H1 = h1) dPH1
(h1)

+

∫

|h1|<Υ

h(H1X1 + Z1|H1 = h1) dPH1
(h1)− h(Z1)

≥
∫

|h1|≥Υ

h(H1X1 + Z1|H1 = h1) dPH1
(h1) + Pr[|H1| < Υ]h(Z1)− h(Z1)

≥
∫

|h1|≥Υ

(

log |h1|2 + h(X1)
)

dPH1
(h1) + Pr[|H1| < Υ]h(Z1)− h(Z1)

≥ Pr[|H1| ≥ Υ]
(

logΥ2 + h(X1)
)

+ Pr[|H1| < Υ]h(Z1)− h(Z1)

= Pr[|H1| ≥ Υ]
(

logΥ2 + log π + h(|X1|2)
)

+ Pr[|H1| < Υ]h(Z1)− h(Z1)

= Pr[|H1| ≥ Υ] logA2 + Pr[|H1| ≥ Υ] log
(

πΥ2
)

+ Pr[|H1| < Υ]h(Z1)− h(Z1)

= Pr[|H1| ≥ Υ] logA2 + Pr[|H1| ≥ Υ] log
(

πΥ2
)

+ (Pr[|H1| < Υ]− 1) log(πeσ2)

= Pr[|H1| ≥ Υ] log SNR− Pr[|H1| ≥ Υ]
(

1− logΥ2
)

, (13)

where PH1
(·) denotes the distribution function of the fading H1. Here the third step follows by

conditioning the entropy in the second integral on X1; the fourth step follows by conditioning
the entropy in the first integral on Z1 and by the behavior of differential entropy under scaling
[4, Thm. 9.6.4]; the fifth step follows because over the range of integration |h1| ≥ Υ we have
log |h1|2 ≥ logΥ2; the sixth step follows because X1 is circularly-symmetric [6, Lemma 6.16]; the
seventh step follows by computing the entropy of a random variable that is uniformly distributed
over the interval

[

0,A2
]

; the eighth step follows by evaluating the entropy of a zero-mean,
variance-σ2, circularly-symmetric, complex Gaussian random variable h(Zk) = log(πeσ2); and
the last step follows from Pr[|H1| ≥ Υ] = 1− Pr[|H1| < Υ].

We next turn to the second term on the RHS of (10). In order to upper bound it we proceed
along the lines of [7], but for non-Gaussian fading. Let Y, H, and Z be the random vectors
(Y1, . . . , Yn)

T, (H1, . . . , Hn)
T, and (Z1, . . . , Zn)

T (where AT denotes the transpose of A), and let
X be a diagonal matrix with diagonal entries x1, . . . , xn. It follows from (1) that

Y = XH+ Z. (14)

The conditional covariance matrix of Y, conditional on x1, . . . , xn, is given by

E

[

(Y − E[Y]) (Y − E[Y])
†
∣

∣

∣
Xn

1 = xn
1

]

= XKHHX
† + σ2

In, (15)

where In is the n× n identity matrix, (·)† denotes Hermitian conjugation, and

KHH , E
[

(H− E[H])(H− E[H])†
]

. (16)

Let detA denote the determinant of the matrix A. Using the entropy maximizing property of
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circularly-symmetric Gaussian vectors [4, Thm. 9.6.5], we have

1

n
I(Hn

1 ;Y
n
1 |Xn

1 ) =
1

n
h(Y n

1 |Xn
1 )−

1

n
h(Zn

1 )

≤ 1

n
E

[

log det

(

In +
1

σ2
XKHHX

†

)]

=
1

n
E

[

log det

(

In +
1

σ2
KHHX

†
X

)]

≤ 1

n
log det

(

In +
A

2

σ2
KHH

)

=
1

n
log det (In + SNRKHH)

=
1

n

n
∑

k=1

log(1 + SNR λk), (17)

where X is a random diagonal matrix with diagonal entries X1, . . . , Xn, and where λ1, . . . , λn

denote the eigenvalues of KHH. Here the third step follows from the identity det(In + AB) =
det(In+BA); the fourth step follows from (5) which implies that A2

In−X†X is positive semidef-
inite with probability one; the fifth step follows from the definition of SNR (4); and the last step
follows because the determinant of a matrix is given by the product of its eigenvalues.

To evaluate the RHS of (17) in the limit as n tends to infinity, we apply Szegö’s Theorem
on the asymptotic behavior of the eigenvalues of Hermitian Toeplitz matrices [8] (see also [9,
Thm. 2.7.13]). We obtain

lim
n→∞

1

n
I(Hn

1 ;Y
n
1 |Xn

1 ) ≤ lim
n→∞

1

n

n
∑

k=1

log(1 + SNRλk)

=

∫ 1/2

−1/2

log
(

1 + SNRF ′(λ)
)

dλ. (18)

Combining (10), (12), (13), and (18) yields the final lower bound

C(SNR) ≥ Pr[|H1| ≥ Υ] log SNR− Pr[|H1| ≥ Υ]
(

1− logΥ2
)

−
∫ 1/2

−1/2

log (1 + SNRF ′(λ)) dλ, SNR > 0, (19)

which holds for any fixed Υ > 0. Note that this lower bound applies to all mean-d, unit-variance,
stationary & ergodic fading processes {Hk, k ∈ Z} with spectral distribution function F (·).

5.1.2 Asymptotic Analysis

In the following we prove (8) by computing the limiting ratio of the lower bound (19) to log SNR
as SNR tends to infinity.

We first show that

lim
SNR→∞

∫ 1/2

−1/2

log
(

1 + SNRF ′(λ)
)

log SNR
dλ = µ ({λ : F ′(λ) > 0}) . (20)

To this end, we divide the integral into three parts, depending on whether λ takes part in the
set S1, S2, or S3, where

S1 , {λ ∈ [−1/2, 1/2] : F ′(λ) = 0} (21)

S2 , {λ ∈ [−1/2, 1/2] : F ′(λ) ≥ 1} (22)

S3 , {λ ∈ [−1/2, 1/2] : 0 < F ′(λ) < 1}. (23)

For λ ∈ S1 the integrand is zero and hence

lim
SNR→∞

∫

S1

log
(

1 + SNRF ′(λ)
)

log SNR
dλ = 0. (24)
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For λ ∈ S2, i.e., when F ′(λ) ≥ 1, we note that for sufficiently large SNR the function

SNR 7→ log
(

1 + SNRF ′(λ)
)

log SNR

is monotonically decreasing in SNR. Therefore, applying the Monotone Convergence Theorem
[10, Thm. 1.26], we have

lim
SNR→∞

∫

S2

log
(

1 + SNRF ′(λ)
)

log SNR
dλ =

∫

S2

lim
SNR→∞

log
(

1 + SNRF ′(λ)
)

log SNR
dλ

= µ (S2)

= µ ({λ : F ′(λ) ≥ 1}) . (25)

For λ ∈ S3, i.e., when 0 < F ′(λ) < 1, we have

0 <
log

(

1 + SNRF ′(λ)
)

log SNR
<

log(1 + SNR)

log SNR
≤ log(1 + e), SNR ≥ e, (26)

where the last step follows because, for sufficiently large SNR, the function

SNR 7→ log(1 + SNR)

log SNR

is monotonically decreasing in SNR. Since log(1 + e) is integrable over S3, we can apply the
Dominated Convergence Theorem [10, Thm. 1.34] to obtain

lim
SNR→∞

∫

S3

log
(

1 + SNRF ′(λ)
)

log SNR
dλ =

∫

S3

lim
SNR→∞

log
(

1 + SNRF ′(λ)
)

log SNR
dλ

= µ (S3)

= µ ({λ : 0 < F ′(λ) < 1}) . (27)

Adding (24), (25), and (27) yields (20).
To continue with the asymptotic analysis of (19) we note that by (20)

Π , lim
SNR→∞

C(SNR)

log SNR

≥ Pr[|H1| ≥ Υ]− µ ({λ : F ′(λ) > 0})
= µ ({λ : F ′(λ) = 0})− Pr[|H1| < Υ] (28)

for any Υ > 0. If the law of the fading process has no mass point at zero, then

lim
Υ↓0

Pr[|H1| < Υ] = 0, (29)

and (8) therefore follows from (28) by letting Υ tend to zero from above.

5.2 Proof of Note 1

We prove Note 1 by demonstrating that there exists a stationary & ergodic fading process of
some spectral distribution function F (·) for which

Π < µ ({λ : F ′(λ) = 0}) .

By Theorem 1, the law of such a process must have a mass point at zero, i.e.,

Pr[Hk = 0] > 0, k ∈ Z.

To this end, we first show that the capacity pre-log is upper bounded by

Π ≤ Pr[|H1| > 0] . (30)

6



Indeed, the capacity C(SNR) does not decrease when the receiver additionally knows the real-
ization of {Hk, k ∈ Z}, and when the inputs have to satisfy an average-power constraint rather
than a peak-power constraint, i.e.,

C(SNR) ≤ lim
n→∞

1

n
sup I(Xn

1 ;Y
n
1 |Hn

1 ), (31)

where the maximization is over all input distributions onX1, . . . , Xn satisfying the average-power
constraint

1

n

n
∑

k=1

E
[

|Xk|2
]

σ2
≤ SNR. (32)

(This follows because the availability of additional information cannot decrease the capacity,
and because any distribution on the inputs satisfying the peak-power constraint (5) satisfies also
(32).) It is well known that the expression on the RHS of (31) is equal to

lim
n→∞

1

n
sup I(Xn

1 ;Y
n
1 |Hn

1 ) = E
[

log(1 + |H1|2 SNR)
]

(33)

(e.g., [11, eq. (3.3.10)]), which can be further upper bounded by

E
[

log(1 + |H1|2 SNR)
]

= Pr[|H1| > 0] E
[

log(1 + |H1|2 SNR)
∣

∣ |H1| > 0
]

≤ Pr[|H1| > 0] log
(

1 + E
[

|H1|2
∣

∣ |H1| > 0
]

SNR
)

= Pr[|H1| > 0] log

(

1 +
SNR

Pr[|H1| > 0]

)

. (34)

Here the first step follows by writing the expectation as

E
[

log(1 + |H1|2 SNR)
]

= Pr[|H1| = 0] E
[

log(1 + |H1|2 SNR)
∣

∣ |H1| = 0
]

+ Pr[|H1| > 0] E
[

log(1 + |H1|2 SNR)
∣

∣ |H1| > 0
]

,

and by noting then that E
[

log(1 + |H1|2 SNR)
∣

∣ |H1| = 0
]

= 0; the second step follows from

Jensen’s inequality; and the last step follows because E
[

|H1|2
]

= 1, which implies

E
[

|H1|2
∣

∣ |H1| > 0
]

=
1

Pr[|H1| > 0]
.

Dividing the RHS of (34) by log SNR, and computing the limit as SNR tends to infinity yields
(30).

In view of (30), it suffices to demonstrate that there exists a fading process of some spectral
distribution function F (·) that satisfies

Pr[|H1| > 0] < µ ({λ : F ′(λ) = 0}) . (35)

A first attempt of defining such a process (which, alas, does not work) is

. . . , H−1, H0, H1, H2, . . . =







. . . , 0, 0, 0, 0, . . . with probability δ

. . . , B−1, B0, B1, B2, . . . with probability 1− δ,
(36)

where {Bk, k ∈ Z} is a zero-mean, circularly-symmetric, stationary & ergodic, complex Gaussian
process of variance 1/(1 − δ) and of spectral distribution function G(·); and where δ and G(·)
are chosen so that

1− δ < µ ({λ : G′(λ) = 0}) . (37)

This process satisfies (35) because Pr[|H1| > 0] = 1− δ, and because

E[(Hk+m − d)(Hk − d)∗] = (1− δ)E[Bk+mB∗
k] , (38)

which implies that F (λ) = (1− δ)G(λ) almost everywhere, so

µ ({λ : F ′(λ) = 0}) = µ ({λ : G′(λ) = 0}) . (39)
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Alas, the above fading process is stationary but not ergodic.
In the following, we exhibit a fading process that is stationary & ergodic and satisfies (35).

Let

. . . , A−1, A0, A1, A2, . . . =







. . . , 0, 1, 0, 1, . . . with probability 1
2

. . . , 1, 0, 1, 0, . . . with probability 1
2 ,

(40)

and let {Bk, k ∈ Z} be a zero-mean, variance-2, circularly-symmetric, stationary & ergodic,
complex Gaussian process of spectral distribution function G(·). Furthermore let {Ak, k ∈ Z}
and {Bk, k ∈ Z} be independent of each other. We shall consider fading processes of the form

Hk = Ak ·Bk, k ∈ Z. (41)

Note that {Hk, k ∈ Z} is of zero mean, and its law has a mass point at zero

Pr[|Hk| > 0] = Pr[Ak = 1] =
1

2
, k ∈ Z. (42)

We first argue that {Hk, k ∈ Z} is stationary & ergodic. Indeed, {Ak, k ∈ Z} is stationary
& ergodic. And since a Gaussian process is ergodic if, and only if, it is weakly-mixing (see, e.g.,
[12, Sec. II]), we have that {Bk, k ∈ Z} is stationary & weakly-mixing. (See [13, Sec. 2.6] for a
definition of weakly-mixing stochastic processes.) It thus follows from [14, Prop. 1.6] that the
process {(Ak, Bk), k ∈ Z} is jointly stationary & ergodic, which implies that {Hk, k ∈ Z} =
{Ak · Bk, k ∈ Z} is stationary & ergodic.

We next demonstrate that G(·) can be chosen so that {Hk, k ∈ Z} satisfies (35). We choose

G′(λ) =







1

W
, if |λ| ≤ W

0, otherwise

(43)

for some W ∈ (0, 1/8), which corresponds to the autocovariance function

E[Bk+mB∗
k] = 2 sinc(2Wm), m ∈ Z.

Here sinc(·) denotes the sinc-function, i.e., sinc(x) = sin(πx)/(πx) for |x| > 0 and sinc(0) = 1.
Using that

E[Ak+mA∗
k] =

1

2
I {m is even} , m ∈ Z

(where I {statement} is 1 if the statement is true, and 0 otherwise), we have for the autocovari-
ance function of {Hk, k ∈ Z}

E[Hk+mH∗
k ] = E[Ak+mBk+mA∗

kB
∗
k]

= E[Ak+mA∗
k]E[Bk+mB∗

k]

= I {m is even} · sinc(2Wm), m ∈ Z, (44)

and the corresponding spectrum is given by

F ′(λ) =







1
4W , if |λ| ≤ W or 1

2 −W ≤ |λ| ≤ 1
2

0, otherwise.
(45)

Evaluating the Lebesgue measure of the set of harmonics where F ′(λ) = 0, we have

µ ({λ : F ′(λ) = 0}) = 1− 4W, (46)

and it follows from (42) that

Pr[|Hk| > 0] =
1

2
< µ ({λ : F ′(λ) = 0}) , for W <

1

8
.

Thus there exist stationary & ergodic fading processes whose law has a mass point at zero and
that give rise to a capacity pre-log that is strictly smaller than the pre-log of a Gaussian fading
channel of equal spectral distribution function.
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5.3 Proof of Note 2

To prove Note 2, we first notice that, since the phase noise is memoryless, the derivative of the
spectral distribution function is

F ′(λ) = 1, −1

2
≤ λ ≤ 1

2
.

Hence the capacity pre-log of the Gaussian fading channel of spectral distribution function F (·)
equals

ΠG = µ ({λ : F ′(λ) = 0}) = 0. (47)

It thus remains to show that the pre-log of the phase-noise channel with memoryless phase
noise is equal to

Π =
1

2
. (48)

In [15] it was shown that at high SNR the capacity of the phase-noise channel under an average-
power constraint on the inputs is given by

CAvg(SNR) =
1

2
log

(

1 +
SNR

2

)

+ o(1), (49)

where o(1) tends to zero as SNR tends to zero. (The subscript “Avg” indicates that the inputs
satisfy an average-power constraint and not a peak-power constraint.) Since any distribution on
the inputs satisfying the peak-power constraint (5) satisfies also the average-power constraint,
it follows that C(SNR) ≤ CAvg(SNR) and hence

Π ≤ 1

2
. (50)

To prove (48) it thus suffices to show that Π ≥ 1
2 . To this end, we first note that, since the

phase noise is memoryless, we have

C(SNR) = sup I(X1;Y1), (51)

where the maximization is over all distributions on X1 satisfying with probability one

|X1| ≤ A.

We derive a lower bound on C(SNR) by evaluating the RHS of (51) for X1 being a zero-
mean, circularly-symmetric, complex random variable with |X1|2 uniformly distributed over the
interval

[

0,A2
]

. We have

I(X1;Y1) ≥ I
(

X1; |Y1|2
)

= h
(

|Y1|2
)

− h
(

|Y1|2
∣

∣ X1

)

≥ h
(

|X1|2
)

− h
(

|Y1|2
∣

∣ X1

)

, (52)

where the first step follows from the data processing inequality [4, Thm. 2.8.1]; and the last step
follows by the circular symmetry of X1 [15, p. 3, after eq. (20)].

Computing the differential entropy of a uniformly distributed random variable, the first term
on the RHS of (52) becomes

h
(

|X1|2
)

= logA2. (53)

As to the second term, we note that, for a given X1 = x1, the random variable 2/σ2 |Y1|2 has
a noncentral chi-square distribution with noncentrality parameter 2/σ2 |x1|2 and two degrees of
freedom. Its differential entropy can be upper bounded by [15, eq. (8)]

h
(

|Y1|2
∣

∣ X1

)

≤ 1

2
E

[

log

(

4πe
(

2 + 2
2

σ2
|X1|2

)

)]

− log
2

σ2

≤ 1

2
log

(

4πe
(

2 + 2
2

σ2
A

2
)

)

− log
2

σ2
, (54)
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where the last step follows because |X1| ≤ A with probability one. Combining (53) and (54)
with (52) yields thus

I(X1;Y1) ≥
1

2
log SNR + o(log SNR), (55)

where

lim
SNR→∞

o(log SNR)

log SNR
= 0.

We finally obtain the lower bound

Π ≥ 1

2

upon dividing the RHS of (55) by log SNR and letting then SNR tend to infinity.

6 Extension to MISO Fading Channels

Theorem 1 can be extended to multiple-input single-output (MISO) fading channels with mem-
ory, when the fading processes corresponding to the different transmit antennas are independent.
For such channels, the channel output Yk ∈ C at time k ∈ Z corresponding to the channel input
xk ∈ CnT (where nT stands for the number of antennas at the transmitter) is given by

Yk = HT

kxk + Zk, k ∈ Z, (56)

where Hk =
(

H
(1)
k , . . . , H

(nT)
k

)

T

, and where the processes

{

H
(1)
k , k ∈ Z

}

,
{

H
(2)
k , k ∈ Z

}

. . . ,
{

H
(nT)
k , k ∈ Z

}

are jointly stationary & ergodic and independent. We assume that for each t = 1, . . . , nT the

process
{

H
(t)
k , k ∈ Z

}

is of mean dt, of unit variance, and of spectral distribution function Ft(·).
We further assume that

Pr
[

H
(1)
k = 0

]

= Pr
[

H
(2)
k = 0

]

= . . . = Pr
[

H
(nT)
k = 0

]

= 0, k ∈ Z. (57)

The additive noise {Zk, k ∈ Z} is defined as in Section 2.
The capacity of this channel is given by (3), but with Xn

1 replaced by Xn
1 , and with the

peak-power constraint (5) altered accordingly:

‖Xk‖ ≤ A with probability one, k ∈ Z, (58)

where ‖a‖ denotes the Euclidean norm of the vector a, i.e.,

‖a‖ =

√

√

√

√

L
∑

ℓ=1

|aℓ|2, a = (a1, . . . , aL)
T. (59)

Let Ξ denote the pre-log of MISO fading channels. Following (6), we define Ξ as

Ξ , lim
SNR→∞

C(SNR)

log SNR
. (60)

For Gaussian fading, i.e., when {H(t)−dt, k ∈ Z}, 1 ≤ t ≤ nT are circularly-symmetric, complex
Gaussian processes, the pre-log was shown to be given by [16, Cor. 13]

ΞG = max
1≤t≤nT

µ ({λ : F ′
t (λ) = 0}) . (61)

(A proof of this result can be found in [17, Sec. 7.2.2].)
Proving that the capacity pre-log Ξ of MISO fading channels is lower bounded by the pre-

log of the MISO Gaussian fading channel of equal spectral distribution functions—namely
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F1(·), . . . , FnT
(·)—is straightforward. Let Πt, 1 ≤ t ≤ nT denote the capacity pre-log of a

single-antenna fading channel with fading process
{

H
(t)
k , k ∈ Z

}

, and let

t⋆ = arg max
1≤t≤nT

Πt.

By signaling only from antenna t⋆ while keeping the others silent, we can achieve the pre-log
Πt⋆ , so

Ξ ≥ max
1≤t≤nT

Πt. (62)

Theorem 1 yields then

Πt ≥ µ ({λ : F ′
t (λ) = 0}) , 1 ≤ t ≤ nT, (63)

which together with (62) proves the claim

Ξ ≥ max
1≤t≤nT

µ ({λ : F ′
t (λ) = 0}) . (64)

7 Summary and Discussion

We showed that, among all stationary & ergodic fading processes of a given spectral distribution
function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest
capacity pre-log. We further showed that if the fading law is allowed to have a mass point at
zero, then the above statement is not necessarily true anymore. Roughly speaking, we can say
that for a large class of fading processes the Gaussian process is the worst. This demonstrates
the robustness of the Gaussian assumption in the analysis of fading channels at high SNR.

To give an intuition why Gaussian processes give rise to the smallest pre-log, we recall that
for Gaussian fading [1, eqs. (33) & (47)]

C(SNR) = log
1

ǫ2pred(1/SNR)
+ o(log SNR),

where ǫ2pred(δ) denotes the mean-square error in predicting the present fadingH0 from a variance-
δ noisy observation of its past H−1 +W−1, H−2 +W−2, . . . (with {Wk, k ∈ Z} being a sequence
of IID, zero-mean, variance-δ, circularly-symmetric, complex Gaussian random variables). Thus
for Gaussian fading the capacity pre-log is determined by ǫ2pred(1/SNR), and it is plausible that
also the pre-log of non-Gaussian fading channels is connected with the ability of predicting
the present fading from a noisy observation of its past. Since, among all stationary & ergodic
processes of a given spectral distribution function, the Gaussian process is hardest to predict, it
is therefore plausible that the Gaussian process gives rise to the smallest pre-log.
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