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An Improved Bound on the List Error Probability
and List Distance Properties

Irina E. Bocharova, Rolf Johannesson,Fellow, IEEE,
Boris D. Kudryashov, and Maja Lončar, Student Member, IEEE

Abstract— List decoding of binary block codes for the additive
white Gaussian noise channel is considered. The output of a list
decoder is a list of theL most likely codewords, that is, theL
signal points closest to the received signal in the Euclidean-metric
sense. A decoding error occurs when the transmitted codeword is
not on this list. It is shown that the list error probability is fully
described by the so-called list configuration matrix, which is the
Gram matrix obtained from the signal vectors forming the list.
The worst-case list configuration matrix determines the minimum
list distance of the code, which is a generalization of the minimum
distance to the case of list decoding. Some properties of the list
configuration matrix are studied and their connections to the list
distance are established. These results are further exploited to
obtain a new upper bound on the list error probability, which is
tighter than the previously known bounds. This bound is derived
by combining the techniques for obtaining the tangential union
bound with an improved bound on the error probability for a
given list. The results are illustrated by examples.

Index Terms— List configuration matrix, list decoding, list
distance, list error probability, tangential union bound

I. I NTRODUCTION

The optimal decoding method that minimizes the sequence
error probability at the receiver is maximuma posteriori
probability (MAP) sequence decoding, which reduces to
maximum-likelihood (ML) decoding when all the sequences
(codewords) area priori equiprobable. When signalling over
the additive white Gaussian noise (AWGN) channel, ML de-
coding is equivalent to finding the codeword with the smallest
Euclidean distance from the received sequence.

List decoding, introduced in [1], is a generalization of ML
decoding—a list decoder is not restricted to find a single
estimate of the transmitted codeword but delivers a list of
most likely codewords, closest to the received word in terms
of a given metric. Decoding is considered successful if the
transmitted codeword is included in the list.

List decoding has found applications in concatenated coding
schemes, often used in combination with automatic-repeat-
request (ARQ) strategies: The outer error detection code, such

This research was supported in part by the Royal Swedish Academy of
Sciences in cooperation with the Russian Academy of Sciences and in part
by the Swedish Research Council under Grant 621-2004-4703. The material
in this paper was presented in part at the IEEE International Symposium on
Information Theory, Seattle, USA, July 2006.

I. E. Bocharova and B. D. Kudryashov are with the Department of
Information Systems, St. Petersburg University of Aerospace Instrumentation,
St. Petersburg, 190000, Russia (e-mail: irina@it.lth.se; boris@it.lth.se).
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as the cyclic redundancy check (CRC) code, is combined
with an inner error correcting code. At the receiver, rather
than using the ML decoder to decode the inner code, a list
decoder may be employed to find a list of the most probable
sequences, which are subsequently checked by the outer CRC
decoder. Only if none of the sequences on the list satisfies
the CRC parity constraints, a retransmission is requested via a
feedback channel. This scenario was investigated in [2], where
the list-Viterbi algorithm was developed for list decoding of
convolutional codes. It was shown in [2] that already moderate
list sizes provide significantly lower error probability than
decoding with list size equal to one. Similar applications of
list decoding for speech recognition (where the outer CRC
code is ”replaced” by a language processor) were investigated
in [3] where the search for the list of sequences is performed
with the tree-trellis algorithm (TTA),cf. also [4].

Since the introduction of turbo codes [5] more than a
decade ago, iterative decoding and detection algorithms have
received much attention. Iterative (turbo) schemes bypass
the prohibitively complex optimal decoding of the overall
concatenated code by employing simpler constituent decoders
as separate entities which iteratively exchange soft informa-
tion on decoded symbols. Constituent soft-input soft-output
(SISO) decoders can be realized with the BCJR algorithm [6];
however, its complexity becomes prohibitively high for codes
with large trellis state space. This is typically the case when the
constituent codes are block codes, as is the case in the product
codes. In this context,list-basedSISO decoders have been
recently proposed as a low-complexity alternative to the BCJR
decoding (cf. [7], [8], and the references therein). These decod-
ing methods use a list of candidate codewords and their metrics
to compute approximate symbol reliabilities. In [8], the list is
obtained by the bidirectional efficient algorithm for searching
code trees (BEAST) and it was demonstrated that a list of only
a few most probable codewords suffices for accurate estimation
of symbol reliabilities. More generally, the turbo receiver
principle is applicable to many communication systems that
can be represented as concatenated coding schemes, where the
inner code is, for example, realized by a modulator followed
by the intersymbol interference (ISI) channel, or by a space-
time code for multiple-antenna transmission. List-based inner
SISO detectors that form the symbol reliability estimates from
a list of signal vectors were proposed,e.g., in [9] for MIMO
transmission and in [10] for ISI equalization.

Although different applications of list decoding have been
considered in a large number of papers, only a few papers
were devoted to estimating the list error probability. Since
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exact expressions for the error probability are most often
not analytically tractable, tight bounds are useful tools for
estimating the performance of the system and for identifying
the parameters that dominate its behavior. The earliest results
regarding list decoding were obtained for codeensembles,
using random coding arguments: Bounds on the asymptotic
rates of binary block codes used with list decoding over the
binary symmetric channel were investigated in [11], [12], and
later also in [13] (for more references to related works see
[13]). The asymptotic behavior of the list error probability
was analyzed in [14] and [15], where bounds on the error
exponents were obtained. More recently, asymptotic bounds
on the code size and the error exponents for list decoding in
Euclidean space were derived in [16].

When estimating the error rate performance of ML decoding
(that is, list decoding with the list of size one) for aspecific
code used for communicating over the AWGN channel, the
most commonly used upper bound is obtained by applying the
Bonferroni-type inequality which states that the probability of
a union of events is not larger than the sum of the probabilities
of the individual events1. This yields the well-known union
bound, which upper-bounds the error probability by the sum
of pairwise error events. This bound is simple to compute and
requires only the knowledge of the code spectrum; however, it
is tight only at high signal-to-noise ratio (SNR) levels, while
at low and moderate SNRs it becomes too loose due to the
fact that in the sum of pairwise error probabilities, the same
error event may be counted many times. There have been
several improvements during the past two decades that yield
much tighter bounds than the union bound. These include the
tangential bound (TB) [17], the sphere bound (SB) [18], [19],
and the tangential-sphere bound (TSB) [20]. These bounds are
based on the well-known bounding principle introduced by
Fano [21] for random codes and adapted by Gallager [22] for
specific codes, where the received signal space is partitioned
into two disjoint regions,R and its complementRc, of few
and many errors, respectively. The error probabilityPr(ε) is
thus split into the sum of two error probabilities, when the
received signalr resides inside and outsideR, that is,Pr(ε) =
Pr(ε, r ∈ R) + Pr(ε, r ∈ Rc). The first term, referring to
the region of few errors can be upper-bounded using aunion
bound, while the second term is bounded simply byPr(r ∈
Rc). We call this principle the Fano-Gallager bounding; it is
also referred to as the Gallager-Fano bound [23] or Gallager’s
first bounding principle [24]. The TB for equi-energy signals
(which all lie on a hypersphere) was derived by splitting the
noise vector into radial and tangential components, which lie
along and perpendicular to the transmitted signal, respectively.
The few-error regionR in the TB is a half-space where the
magnitude of radial noise is not larger than a certain threshold.
The SB is obtained by considering the spherical regionR, and

1The probability of a union of eventsEi, i = 1, 2, . . . , M is

equal to Pr

(
M⋃

i=1
Ei

)
=

M∑
i=1

Pr(Ei) −
∑

1≤i1<i2≤M

Pr(Ei1 ∩ Ei2 ) + ... +

(−1)M+1
∑

1≤i1<i2<...<iM≤M

Pr(Ei1∩Ei2∩ ...∩EiM
). Truncating the right-hand

side expression after the first term yields an upper bound referred to as
the Bonferroni inequality of thefirst order, since it depends only on the
probabilities of elementary events.

finally, in the TSB, which is tighter than the previous bounds,
both approaches are combined and the regionR is a circular
cone with the axis passing through the transmitted signal
point. A detailed treatment and comparisons of various Fano-
Gallager-type bounds can be found in [23] and [24]. Recently,
two new bounds that improve upon the TSB have been
proposed: the so-called added-hyperplane (AHP) bound [25]
and the improved TSB (ITSB) [26]. Both bounds are obtained
by upper-bounding the probabilityPr(ε, r ∈ R) using a
tighter, second-orderBonferroni-type inequality2 instead of
the union bound used in the TSB.

Generalization of the bounds for ML decoding to list
decoding is not straightforward. A list error event is defined
with respect to a list ofL codewords, which implies that the
pairwise error events considered in ML decoding translate to
(L + 1)-wise list-error events. Geometrical properties of list
configurations were investigated in [27], and used to derive a
union bound on the list error probability. The notions of the
Euclidean and Hamming list distances were introduced and
it was shown that these distances are generalizations of the
Euclidean and Hamming distances of the code.

In this paper, we build upon the work of [27] and investigate
the properties of the so-called list distance and its relations to
the list configurations. Moreover, using the tangential-bound
approach from [17], we improve the union bound of [27].
Similarly as in [28], we first derive a tighter bound on the
error probability for agiven list, and then obtain a new upper
bound on the list error probability by combining this tighter
bound with a modified tangential bound.

II. GEOMETRICAL ASPECTS OFL IST DECODING

In this section the notions of thelist distanceand thelist
configuration matrixare introduced and their properties and
relations are established. The results presented in the first two
subsections have mostly appeared in [27]; however, we present
them here in an extended form, supported by examples and
more detailed discussion. In the last subsection, the relation
of the list distance and theaverage radiusintroduced in [12]
is discussed. This section serves as a basis for the derivation
of the list-error probability bounds presented in Sections III
and IV.

A. List Decoding

Let S={si}, i=0, 1, ..., M−1, be an arbitrary constellation
of |S|=M equiprobable signal pointssi =(s(1)

i s
(2)
i . . . s

(N)
i )

used to communicate over an additive white Gaussian noise

2The probability of a union of eventsEi, i = 1, 2, . . . , M can be expressed

asPr

(
M⋃

i=1
Ei

)
= Pr(E1) + Pr(E2 ∩Ec

1) + Pr(E3 ∩ Ec
1 ∩ Ec

2) + ... +

Pr(EM ∩Ec
1∩Ec

2∩ ...∩Ec
M−1), whereEc

i denotes the complement ofEi.

From here follows an upper bound used in [25]:Pr

(
M⋃

i=1
Ei

)
≤ Pr(E1)+

Pr(E2∩Ec
1)+Pr(E3∩Ec

j1
)+ ...+Pr(EM ∩Ec

jM−2
), where the tightness

of the bound is determined by the ordering of the events and the choices of
indices j1 ∈ {1, 2}, j2 ∈ {1, 2, 3}, . . . , jM−2 ∈ {1, 2, ..., M − 1}.
This bound is a Bonferroni inequality of thesecond order, since it involves
pairwise joint event probabilities.
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(AWGN) channel. Assume that theN -tuple s0 was transmit-
ted. The discrete-time received signal is

r = s0 + n (1)

where the noise vectorn consists of independent zero-mean
Gaussian random variables with varianceN0/2. We say that
an error for a given listL = {s1, s2, . . . , sL}, of sizeL < M ,
occurs if s0 /∈ L, which implies thats0 is further from the
received signal than all signals on the list, that is,

d2
E(r, s`) ≤ d2

E(r, s0), ` = 1, 2, . . . , L (2)

whered2
E(r, s`) = ||r−s`||2 is the squared Euclidean distance

between the received vectorr and the vectors` from the list.
This is slightly pessimistic, since it implies that when (2) is
fulfilled with equality, we always include the erroneousN -
tuple in the list. By substituting (1) into (2) we obtain

‖n + s0 − s`‖2 ≤ ‖n‖2, ` = 1, 2, ..., L

which is equivalent to

〈n, s` − s0〉 ≥ d2
E(s0, s`)/2, ` = 1, 2, . . . , L (3)

where 〈a, b〉 = abT denotes the inner product of the row
vectorsa andb.

Now let t` denote the inner productt` = 〈n, s` − s0〉, ` =
1, 2, . . . , L. Then the vectort = (t1 t2 . . . tL) is a Gaussian
random vector with zero mean and covariance matrix

E
[
tTt

]
=

N0

2
Γ.

The entries of theL×L matrix Γ = {γij}, i, j = 1, 2, . . . , L,
are

γij = 〈si − s0, sj − s0〉 = (d2
E0i + d2

E0j − d2
Eij)/2 (4)

wheredEij = dE(si, sj) = ||si − sj ||. Thus,Γ is the Gram
matrix of the vectorss` − s0, ` = 1, 2, . . . , L. We callΓ the
list configuration matrix.

Let γ denote the vector of the main-diagonal elements of
the list configuration matrixΓ, that is,

γ =
(
d2
E01 d2

E02 . . . d2
E0L

)
.

From (3) it follows that the list error probability for any list
with given configuration matrixΓ is given by3

PeL(Γ) = Pr(t ≥ γ/2). (5)

Consider a binary(N, K, dHmin) block codeC = {vi},
i = 0, 1, . . . , 2K−1, of lengthN , dimensionK, and minimum
distancedHmin. Since the distance spectrum is a property of a
linear code, we will hereinafter assume code linearity, although
this condition is not necessary for the results presented in
this section. When the codeC is used with binary phase
shift keying (BPSK) to communicate over an AWGN channel,
the binary code symbolsv(j)

i ∈ {0, 1}, j = 1, 2, . . . , N , are
mapped onto the symbols

s
(j)
i = (1− 2v

(j)
i )

√
Es

3Hereinafter, the relationa ≥ b between two vectors of the same length
L should be interpreted element-wise, that is,a ≥ b holds if and only if
ai ≥ bi, ∀ i = 1, 2, . . . , L.

whereEs is the symbol energy equal toEs = EbR, where
R = K/N is the code rate andEb is the energy per bit. All the
signal pointssi, i = 0, 1, ..., 2K − 1, have the same energy,
||si|| =

√
NEs, that is, they lie on a hypershere of radius√

NEs in the N -dimensional Euclidean space. The squared
Euclidean distance between two signal points is proportional to
the Hamming distance between the corresponding codewords,
that is,

d2
E(si, sj) = 4EsdH(vi, vj). (6)

The minimum squared Euclidean distance of the code is

d2
Emin = min

si 6=sj

{d2
E(si, sj)} = 4EsdHmin. (7)

Then the list configuration matrix can be written asΓ =
4EsΓH, whereΓH is thenormalized list configuration matrix
whose entries are

γHij = (dH0i + dH0j − dHij)/2 (8)

wheredHij = dH(vi,vj). Examples ofΓH for the (7, 4, 3)
Hamming code, the(8, 4, 4) extended Hamming code, and
the (24, 12, 8) extended Golay code are given in Tables
I, II, and III, respectively. Without loss of generality, we
assume that the reference signals0 corresponds to the all-
zero codewordv0 = 0. Each row in Tables I–III corresponds
to a distinct value of the Hamming list distancedHL which
will be explained in the next subsection. Several configuration
matrices can yield the samedHL. For each list sizeL, list
configurations are listed in the order of increasingdHL. The
last column in the tables shows the number of listsN(Γ) with
the same list configuration matrixΓ. Note that the ordering
of the codewords on the list is irrelevant. Hence, for a given
list configuration,N(Γ) is the number of combinations with
matricesΓ that are equal up to a permutation of the main-
diagonal and the corresponding off-diagonal entries.

For list sizeL = 1, the normalized list configuration matrix
ΓH reduces to codeword’s Hamming weightdH0i and values
of N(Γ) yield the distance spectrum of a code.

For list size L = 2, consider, for example, the(7, 4, 3)
Hamming code from Table I. There are six possible weight
combinations to form a list of two codewords, corresponding
to six list configuration matricesΓH. Consider, for example,
lists with two minimum-weight codewords,dHmin = 3.
There areN(Γ) =

(
7
2

)
= 21 such lists. All the minimum-

weight codewords of the Hamming code have the pairwise
distancedHij = 4. Hence, the corresponding normalized list

configuration matrix isΓH =
(

3 1
1 3

)
. Next, consider lists-

of-two that contain one codeword of weight3 and one of
weight 4. There are in total7 × 7 = 49 such pairs, out of
which N(Γ) = 42 pairs have pairwise distance3 and hence

their configuration matrix isΓH =
(

3 2
2 4

)
. The remaining7

pairs are at the distance7 and their configuration matrix is
ΓH =

(
3 0
0 4

)
.

In [27] the following union-type bound on the list error
probability for a given list sizeL was derived

PeL ≤
∑

Γ

N(Γ)PeL(Γ) (9)
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TABLE I

L IST CONFIGURATIONS FOR THE(7, 4, 3) HAMMING CODE

L ΓH = Γ/(4Es) dHL N(Γ)
1 ( 3 ) 3 7

( 4 ) 4 7
( 7 ) 7 1

2

(
3 1
1 3

)
,

(
3 2
2 4

)
4.50 21, 42

(
4 2
2 4

)
5.33 21

(
3 0
0 4

)
,

(
3 3
3 7

)
,

(
4 4
4 7

)
7 7, 7, 7

3




3 1 2
1 3 2
2 2 4


 5 105




3 1 1
1 3 1
1 1 3


 ,




3 2 2
2 4 2
2 2 4


 5.40 35, 105




4 2 2
2 4 2
2 2 4


 6 35




3 1 3
1 3 3
3 3 7


 ,




3 2 0
2 4 2
0 2 4


 ,




3 2 3
2 4 4
3 4 7


 ,




4 2 4
2 4 4
4 4 7


 ,




3 1 0
1 3 2
0 2 4


 7 21, 42, 42, 21, 42




3 0 3
0 4 4
3 4 7


 ∞ 7

4




3 1 1 2
1 3 1 2
1 1 3 2
2 2 2 4


 ,




3 1 2 2
1 3 2 2
2 2 4 2
2 2 2 4


 5.50 140, 210




3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3


 ,




3 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4


 6 35, 140

...
...

...

TABLE II

L IST CONFIGURATIONS FOR THE(8, 4, 4) EXTENDED HAMMING CODE

L ΓH = Γ/(4Es) dHL N(Γ)
1 ( 4 ) 4 14

( 8 ) 8 1

2

(
4 2
2 4

)
5.33 84

(
4 0
0 4

)
,

(
4 4
4 8

)
8 7, 14

3




4 2 2
2 4 2
2 2 4


 6 280




4 2 2
2 4 0
2 0 4


 ,




4 2 4
2 4 4
4 4 8


 8 84, 84




4 0 4
0 4 4
4 4 8


 ∞ 7

whereN(Γ) is the number of lists of sizeL which have the
same list configuration matrixΓ. It follows from (5) and (9)
that the list error probability can be fully described in terms
of the properties of the Gram matrixΓ. For binary codes,
this matrix determines the so-called minimum Hamming list
distance of the code [27],dHLmin, which plays the same role
for list decoding as the minimum distance for maximum-
likelihood decoding. In the next subsection, the list distance
is defined and illustrated by examples.

B. List Radius and List Distance

Consider first maximum-likelihood decoding, that is, list
decoding with list sizeL = 1. The largest contribution to
the error probability is obtained when the received pointr is
exactly between the two closest signal points, that is, signal
points at the minimum Euclidean distancedEmin. Thus,r is
the center of this constellation ofL + 1 = 2 signal points.
Next, we generalize this approach to arbitrary list sizeL.
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TABLE III

L IST CONFIGURATIONS FOR THE(24, 12, 8) EXTENDED GOLAY CODE

L ΓH = Γ/(4Es) dHL N(Γ)
1 ( 8 ) 8 759

( 12 ) 12 2576
( 16 ) 16 759
( 24 ) 24 1

2

(
8 4
4 8

)
10.67 106260

(
8 2
2 8

)
,

(
8 6
6 12

)
12.80 170016, 340032

(
8 4
4 12

)
,

(
12 8
8 12

)
14.40 1275120, 63760

(
8 0
0 8

)
,

(
12 6
6 12

)
,

(
8 8
8 16

)
16 11385, 2040192, 22770

...
...

...

Let S be an arbitrary constellation of|S|=M signal points
in the Euclidean space, and letSL be an arbitrary subset
SL = {s0, s1, ..., sL} ⊆ S of L + 1 signal points. Then,
the minimum list radiusof the constellationS, for a list size
L, is defined as

RL min , min
SL

min
r

max
0≤k≤L

{dE(sk, r)} . (10)

For a given signal subsetSL, the list radius is the radius of
the smallest sphereS that contains (encompasses) the points
of SL (that is, the points lieon or inside the sphere), and the
minimizing r is the center of this sphere. Minimization over
all possible subsetsSL ⊆ S yields the smallest list radius for a
given list sizeL. Thus, if the noisen is such that the received
signal pointr is closer thanRL min to the transmitted signal
point, it is guaranteed that the transmitted signal point will be
among theL points closest to the received signal and the list
decoder will not make an error. Clearly, the list radius is the
distance from the transmitted signal point to the closest point
of the list error decision region. Like the minimum distance,
the minimum list radius is also a constellation property.

Let s0 ∈ SL be the reference (transmitted) signal, and let
Γ be the list configuration matrix corresponding to the signal
subsetSL. Assume that the vectorss` − s0, ` = 1, 2, ..., L
are linearly independent; then the matrixΓ has full rank. The
following theorem from [27] specifies the center and the radius
of the circumsphereS̃ of the setSL (that is, the sphere such
that all the points ofSL lie on the sphere). We also present
the proof, in an extended form, as some of its steps will prove
useful later on.

Theorem 1:Let SL = {s0, s1, ..., sL} be a set ofL + 1
signal points such that the vectorss`−s0, ` = 1, 2, . . . , L, are
linearly independent. LetΓ be the corresponding Gram matrix
of the vectorss`−s0, and letγ be the row vector of its main-
diagonal elements. Then the radiusR̃L of the circumspherẽS
of SL is given by

R̃L(Γ) =
1
2

√
γΓ−1γT (11)

and the centerρ of the sphereS̃ is given by

ρ− s0 =
1
2

γΓ−1S, S =




s1 − s0

s2 − s0

...
sL − s0


 . (12)

Proof: Since all the points ofSL lie on the sphereS̃ ,
its radiusR̃L satisfies

R̃L(Γ) = ||ρ− s0|| = ||ρ− s`||, ` = 1, 2, . . . , L. (13)

From here it follows that

2 〈ρ− s0, s` − s0〉 = ||s` − s0||2 (14)

which can be rewritten in vector form as

2(ρ− s0)ST = γ (15)

whereS is given by (12). Note thatSST = Γ.
Now let ζ = (ζ1 ζ2 . . . ζL) be a vector of coefficients of

the decomposition of the vectorρ− s0 in the L-dimensional
basis consisting of the linearly independent vectorss` − s0.
Then we can write

ρ− s0 = ζ1(s1 − s0) + ζ2(s2 − s0) + · · ·+ ζL(sL − s0)

or, equivalently,
ρ− s0 = ζS. (16)

Substituting (16) into (13) yields

R̃L(Γ) =
√
‖ρ− s0‖2 =

√
ζSSTζT =

√
ζΓζT. (17)

From (15) and (16) it follows that2ζΓ = γ, which yields

ζ =
1
2
γΓ−1. (18)

Substituting (18) into (16) and (17) yields (12) and (11),
respectively, which completes the proof.

Clearly, if the vectorss` − s0 are linearly independent, the
sphereS̃ is L-dimensional. If, however, some of the vectors
are linearly dependent, the Gram matrixΓ is singular, that is,
det(Γ) = 0, and the radius is̃RL = ∞, since the signal points
s` lie in a reduced subspace (cf. Examples 3–4 below).



6

For a given signal setSL, the circumsphereS̃ , may, in
general, not be the smallest sphere that encompasses the points
of SL (which is the sphere that determines the list radius).

Let S denote the smallest encompassing sphere of the set
SL, such that the reference points0 lies on the sphere, and
the remaining pointss`, ` = 1, 2, ..., L, lie either on or inside
S (more precisely, at least one more points` ∈ SL, other
than s0, will lie on such a sphere). Assume that the vectors
s` − s0 are linearly independent. Then it was shown in [27]
that the radiusRL of the sphereS is given by

RL(Γ) = max
I : γIΓ

−1
I ≥0

{
1
2

√
γIΓ

−1
I γT

I

}
(19)

where the maximization is performed over all signal subsets
I ⊆ SL that contain the reference points0, such that their
corresponding configuration matrixΓI and its main-diagonal
vector γI fulfill the condition γIΓ

−1
I ≥ 0. Note thatΓI is

a main submatrix of the configuration matrixΓ, obtained by
deleting those rows and columns that correspond to the signal
points not included in the chosen subsetI.

Theorem 1 and formula (19) imply the following:
• The list radiusRL is the largest radius of the circum-

spheres of all the signal subsetsI such thatγIΓ
−1
I ≥ 0.

• Let Imax denote the signal subset that yields the max-
imum in (19) and thus determines the list radius. Then
all the points fromImax lie on the sphereS and the
remaining points, fromSL \ Imax, lie inside.

• The centerθ of the sphereS is given by (cf. (12))

θ − s0 =
1
2

γImax
Γ−1
Imax

SImax

whereSImax is the matrix whose rows ares`− s0, s` ∈
Imax.

• SinceImax ⊆ SL, then

RL(Γ) ≤ R̃L(Γ)

with equality if and only if the list configuration matrix
Γ fulfills

γΓ−1 ≥ 0. (20)

Hence, when determining the list radius of a signal
set SL, the first step is to check whether condition
(20) is satisfied. If so, then the circumspherẽS is the
smallest encompassing sphere andRL(Γ) = R̃L(Γ) =
1
2

√
γΓ−1γT. Otherwise, when at least one component

of γΓ−1 is negative, the sphereS and its radiusRL(Γ)
are determined by a reduced signal setImax ⊂ SL.
In some cases, the negative components ofγΓ−1 indicate
which points should be removed fromSL to obtain
the setImax (see Examples 2, 3, and 5). However, in
general, there is no one-to-one correspondence between
the negative components ofγΓ−1 and the setSL \ Imax

(see Example 6).
Note that the condition (20) is equivalent toζ ≥ 0 (cf. (18)),

that is, all the coefficients of the decomposition ofρ− s0 in
the basis set{s`−s0}, ` = 1, 2, ..., L, should be nonnegative.
The set of points in space described by the linear combination
ζS, whereζ ≥ 0, constitutes anL-dimensional unbounded

pyramid, whose vertex iss0 and whose semi-infinite edges
run alongs`− s0. If the centerρ of the circumspherẽS lies
in this pyramid, thenS̃ is the smallest sphere that determines
the list radius. Otherwise, there exists a smaller sphere whose
center is inside this pyramid, and it is found by (19).

When the vectorss` − s0, ` = 1, 2, ..., L, are linearly
independent, the inverse of the list configuration matrix is
given by

Γ−1 =
1

det(Γ)
adj(Γ)

where adj(Γ) is the adjoint matrix of Γ. Furthermore,
det(Γ) > 0. Hence, condition (20) is equivalent to

γ adj(Γ) ≥ 0. (21)

In fact, this condition is more general, since it is also appli-
cable for configurations where some of the vectorss` − s0

are linearly dependent. Hence, the expression (19) is easily
generalised to hold forany signal setSL as:

RL(Γ) = max
I : γI adj(ΓI)≥0

{
1
2

√
γIΓ

−1
I γT

I

}
. (22)

Note that for a singular list configuration matrixΓ, the list
radius is not necessarily infinite.

For a given list configurationSL, a list error with respect to
the transmitted signals0 occurs if the received signal pointr
falls in the error decision regionD, which is the intersection
of all pairwise error decision regionsD`, ` = 1, 2, . . . , L,
between the signal pointss` ands0, that is,D =

⋂L
`=1D`. The

point of the regionD that is closest to the signal points0 is the
centerθ of the sphereS . If the list radius (22) isRL(Γ) = ∞,
the pairwise error decision regions do not intersect,

⋂L
`=1D` =

∅. For such a list configuration, the probability of a list error
for a given transmitted signals0 is zero since there is no
point in space that is simultaneously closer to theL pointss`,
` = 1, 2, ..., L than to the points0 (see Example 4 and Tables
I and II for L = 3).

The minimum list radius (10) for list sizeL of a signal
constellationS is obtained as

RL min = min
Γ
{RL(Γ)}

where the minimization is performed over all possible list
configuration matrices for a list sizeL, that is, over all possible
signal subsetsSL ⊆ S. The Euclideanlist distancefor a signal
subsetSL with a list configuration matrixΓ is defined as

dEL(Γ) , 2RL(Γ). (23)

Thus, from (19) it follows that the squared Euclidean list
distance is

d2
EL(Γ) = max

I : γI adj(ΓI)≥0

{
γIΓ

−1
I γT

I
}

. (24)

The minimum Euclidean list distance of the signal constella-
tion S is then

dELmin = 2RL min = min
Γ
{dEL(Γ)}.
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When the signal constellationS is a set of bipolar signals
corresponding to the binary linear codeC, we can also define
the Hamming list distance of a codeC, for a list sizeL, as

dHL(Γ) , d2
EL(Γ)
4Es

= max
I : γHI adj(ΓHI)≥0

{
γHIΓH

−1
I γH

T
I
}

.

(25)
The minimum Hamming list distance of a code is then

dHLmin , d2
ELmin

4Es
=

R2
L min

Es
.

The examples of Hamming list distances are shown in Tables
I–III. In general, the Hamming list distance is not an integer.

The following examples illustrate the list distance and the
list radius for a few signal configurations.

Example 1:Consider the set ofL+1 = 3 signal pointsS =
{s0, s1, s2} corresponding to the minimal weight codewords
that have minimal pairwise distancesd = dEmin, as illustrated
in Figure 1. Ifs0 is the transmitted signal point, then a list error
(for list sizeL = 2) occurs if the received signal pointr falls
in the regionD marked in the figure, where both signalss1 and
s2 are closer thans0. If, however,r is outside regionD, then
s0 will always be one of the two signal points closest tor, and
hences0 will be included in the list. The smallest sphere that
encompasses the three signal points is the circumsphere, that
is, S = S̃ , and its centerρ is the center of the equilateral
triangle. This is the point of the regionD which is closest to
s0. The Euclidean list distance isdEL = 2RL = 2d/

√
3, and

it is invariant with respect to enumeration of the signal points.
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Fig. 1. List configuration and the list error regionD for a list of sizeL = 2
with signals at equal pairwise distances. (RegionD∗ and points∗ illustrate
the bound (42).)

Example 2:Consider now the setS = {s0, s1, s2} of non-
bipolar signals shown in Figure 2, where the signal coordinates
are s0 = (0 0), s1 = (0 2), and s2 = (1 3). The squared
Euclidean distances ared2

E01 = 4, d2
E02 = 32 + 12 = 10, and

d2
E12 = 2. The corresponding Gram matrix is, according to

(4),

Γ =
(

4 6
6 10

)
.

Thus we have

γ adj(Γ) = ( 4 10 )
(

10 −6
−6 4

)
= (−20 16 ) � ( 0 0 ).

(26)
The squared radius̃R2

L of the cicumsphereS̃ is given by
(11):

R̃2
L =

1
4

γΓ−1γT =
1
4

(−5 4 )
(

4
10

)
= 5

and the coordinates of the centerρ are, according to (12),

ρ =
1
2

γΓ−1S =
1
2

(−5 4 )
(

0 2
1 3

)
= ( 2 1 ).

However, the point of the list error regionD which is nearest
to s0 is not ρ but θ, or, equivalently, the spherẽS is not the
smallest sphere which encompasses the three signal points.
This is indicated by the negative sign of some of the elements
of γ adj(Γ), as found in (26). Hence, in order to find the list
radius and the list distance, we need to reduce the size of the
list and find the subset of signal points for which the distance
γIΓ

−1
I γT

I is maximized. In our case, the signal points2 has
larger distance froms0 and thus the signal set is reduced to
Imax = {s0, s2} for which ΓImax = γImax

= ( 10 ). The

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

��

��

�	


 

 

��

� �
 


RL
ρ

θ

R̃L

D

21s0

s1

3

2

1

0

s2

Fig. 2. Configuration of three non-bipolar signals for which the smallest
sphere encompassing the points does not coincide with the sphere on which
all the points are lying, and thus,RL 6= R̃L.
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Fig. 3. The same configuration as in Fig. 2, but with changed reference signal
points0: in this case the two spheres coincide and the list error decision region
D has a completely different shape compared to the previous case.
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squared list distance is thus

d2
EL = d2

E02 = 10,

and the list radius isRL =
√

d2
EL/4 =

√
10/2 =

√
5/2,

which is smaller thañRL =
√

5. The center of the sphereS ,
of radiusRL, is given by

θ =
1
2
γImax

Γ−1
Imax

SImax =
1
2

( 1 3 ) =
(

1
2

3
2

)
.

Note that, unlike in Example 1, the list distance for the
configuration in Figure 2 is not symmetric with respect to the
signal points, that is, it changes if we change the reference
signal point. For example, if we exchange signal pointss1

ands0, we obtain the configuration as illustrated in Figure 3.
The shape of the error decision regionD is changed and, in
this case, the two spheres coincide. Thus, the list distance is
determined by the radius of the circumsphere, that is,d2

EL =
4R̃2

L = 20.

Example 3:Consider the signal constellation shown in Fig-
ure 4, with the signalss0 = (0 0), s1 = (0 1), and
s2 = (0 2). The intersection of the pairwise error regions
is D = D1 ∩ D2 = D2, as shown in the figure. The squared
Euclidean distances ared2

E01 = 1, d2
E02 = 4, andd2

E12 = 1,
and the corresponding Gram matrix is

Γ =
(

1 2
2 4

)
.

The matrix Γ is singular due to linear dependency of the
signals. Sincedet(Γ) = 0 it follows from (11) thatR̃L =∞,
i.e., the circle on which the signal points are lying is a straight
line.

Let us now determine the list radiusRL. We have that

γ adj(Γ) = ( 1 4 )
(

4 −2
−2 1

)
= (−4 2 ) � ( 0 0 )

which indicates that in order to obtainRL, we need to reduce
the list size, as in the previous example. The signal points2

has larger distance froms0 and thus the signal set is reduced
to Imax = {s0, s2} for which ΓImax = γImax

= ( 4 ). The
squared list distance is thus

d2
EL = d2

E02 = 4,

� � � � � � � � � � � � �
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Fig. 4. List configuration with
linearly dependent signal points
for which R̃L = ∞, but the list
radius RL is finite.
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Fig. 5. List configuration with
linearly dependent signal points
for which R̃L= RL =∞. The
list error probability is0.

and the list radius isRL =
√

d2
EL/4 = 1. The center of the

sphereS is the points1, which is formally obtained by

θ =
1
2
γImax

Γ−1
Imax

SImax =
1
2

(0 2) = (0 1) = s1.

Example 4:Consider the signal constellation shown in
Figure 5, with the signalss0 = 0, s1 = −1, and s2 = 1.
This configuration corresponds to the one from the previous
example, with changed reference point. The pairwise decision
regions, indicated by the two dashed lines, do not intersect,
that is,D = D1 ∩ D2 = ∅, which implies that the probability
of list error is zero (because the received signal point can never
be closer to boths1 ands2 than tos0). This corresponds to
an infinite list distance as we will now formally verify. The
list configuration matrix is

Γ =
(

1 −1
−1 1

)
.

The matrixΓ is singular, thusdet(Γ) = 0 andR̃L = ∞. Now
we consider the vectorγ adj(Γ):

γ adj(Γ) = ( 1 1 )
(

1 1
1 1

)
= ( 2 2 ) ≥ ( 0 0 ).

Since the elements ofγ adj(Γ) are positive, we conclude
that the submatrixΓI which maximizes the quadratic form
γΓ−1γT is the matrixΓ itself, and thereforedEL = 2RL =
2R̃L = ∞.

Example 5:Consider the set ofL + 1 = 4 bipolar signal
points corresponding to the codewords

v0 = (0 0 0 0 0 0)
v1 = (1 1 1 1 1 0)
v2 = (0 1 1 1 1 1)
v3 = (0 1 1 0 0 0).

The pairwise Hamming distances aredH01 = dH02 = 5,
dH03 = 2, dH12 = 2, dH13 = dH23 = 3, which yields the
list configuration matrix

Γ = 4Es




5 4 2
4 5 2
2 2 2


 .

The L = 3 dimensional circumsphere has the squared radius
R̃2

L = 1
4 γΓ−1γT = 1.4 · 4Es. However,

γ adj(Γ) = ( 6 6 − 2 ) � ( 0 0 0 )

which implies that the list distancedEL is determined by
a reduced signal set. In our case, we need to remove the
sequencev3 in order to maximize the quadratic form (24)
and, thus, forImax = {v0, v1, v2} we obtain

d2
EL = γImax

Γ−1
Imax

γT
Imax

= 5.56 · 4Es

and the squared list radius isR2
L = d2

EL/4 = 1.389 · 4Es. A
sphere of the radiusRL contains the signal points fromImax

on its surface, whilev3 lies inside.
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Example 6:Consider a set ofL+1 = 4 points in the three-
dimensional space,SL = {s0, s1, s2, s3}, where the reference
point is the origin,s0 = (0 0 0), and the remaining points are

s1 = (4 3 4)
s2 = (4 3 2)
s3 = (3 1 1).

The list configuration matrix is

Γ =




41 33 19
33 29 17
19 17 11


 .

The circumspherẽS of the setSL has the radius̃RL = 4.32,
and it is illustrated in Figure 6. Since

γΓ−1 = (1.8 2 − 5.2) � (0 0 0)

the list radius is determined by a reduced signal set. Using
(22), we find that the smallest sphereS encompassing the
signal points contains only signalsImax = {s0, s1} on its
surface, while the pointsSL\Imax = {s2, s3} lie inside. Note
that only the third element ofγΓ−1 is negative; however, both
s2 ands3 are insideS . The sphereS is illustrated in Figure
6. Pointss0 ands1 are visible on the intersections of the two
spheres. The corresponding list radius is

RL =
1
2

√
41 ≈ 3.2.
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Fig. 6. The circumsphereS̃ and the smallest encompassing sphereS for
the signal set from Example 6.

C. Properties of the List Configuration Matrix

Hereinafter, we consider sets of linearly independent bipolar
code signalss`, ` = 1, 2, . . . , L, for which the matrixΓ fulfills
the conditionγΓ−1 ≥ 0. The following theorem establishes a
connection between the Hamming list distancedHL(ΓH) and
some properties of the matrixΓH.

Theorem 2:Let ΓH = {γHij}, i, j = 1, 2, . . . , L, be the
normalized Gram matrix (with entries given by (8)) of linearly
independent bipolar signal vectorssi − s0 of the binary

block code with the minimum Hamming distancedHmin. Then
the quadratic formdHL(Γ) = γHΓ−1

H γT
H has the following

properties:

1) All γHij are integers, andγHii ≥ γHij ≥ 0.
2) ΓH is positive definite.
3) If λmax is the maximal eigenvalue ofΓH, then the

Hamming list distance satisfies

dHL(ΓH) ≥ ||γH||4
γHΓHγT

H

≥ ||γH||2/λmax.

4) For any binary code with the minimum Hamming dis-
tancedHmin, the minimum Hamming list distance is

dHLmin ≥ 2L

L + 1
dHmin

where equality is achieved for evendHmin with a matrix
ΓH whose main-diagonal and off-diagonal elements are
γHii = dHmin andγHij = dHmin/2, respectively, if such
a matrix exists.

5) For any binary code with odddHmin, the minimum
Hamming list distance is

dHLmin ≥ 2L

L + 1
dHmin +

L− 1
L + 1

where the equality is achieved for odd list sizeL and a
matrix ΓH with main diagonal elements

γHii =

{
dHmin, 1 ≤ i ≤ L+1

2

dHmin + 1, L+1
2 + 1 ≤ i ≤ L

and off-diagonal elements

γHij =

{
(dHmin − 1)/2, if γHii = γHjj = dHmin

(dHmin + 1)/2, otherwise

if such a matrix exists.

Remark:From Statement 4 of Theorem 2, it follows that the
ratio between the minimum Hamming list distancedHLmin and
the minimum distance of the codedHmin (whendHmin is even)
is

dHLmin

dHmin
≥ 2L

L + 1
.

The ratio on the right-hand side of the above inequality was
derived in [2] using simplex geometry and defined as the
asymptotic list decoding gain(over ML decoding).

Proof:

1) The entries of the matrixΓH are given by (8). Since
the Hamming distance satisfies the triangle inequality,
we immediately obtain thatγHij = (dH0i + dH0j −
dHij)/2 ≥ 0. Furthermore, we have

γHij − γHii =
dH0i + dH0j − dHij

2
− dH0i

=
dH0j − (dH0i + dHij)

2
≤ 0

which yieldsγHii ≥ γHij ≥ 0. In order to prove that the
entries of the matrixΓH are integers, it suffices to verify
thatdH0i +dH0j −dHij is always an even number. This
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follows directly from the fact that when two codewords
have weightsdH0i and dH0j of the same parity (both
odd or both even), then their pairwise distancedHij is
always even; while for codeword weights of opposite
parity, the pairwise distance is an odd number.

2) The matrixΓH is a Gram matrix of linearly independent
vectors (si − s0), normalized by4Es. Hence,ΓH is
positive definite (cf. Theorem 7.2.10 in [29]).

3) According to the Kantorovich inequality [29], for every
positive definite symmetric matrixΓH and any non-
negative row vectorx ≥ 0 we have

4λminλmax

(λmin + λmax)2
≤ (xxT)2

(xΓHxT)(xΓ−1
H xT)

≤ 1 (27)

whereλmin and λmax are the smallest and the largest
eigenvalue ofΓH, respectively. By applying the right
side of the Kantorovich inequality (27) withx = γH

we obtain

dHL(ΓH) = γHΓ−1
H γT

H ≥
||γH||4

γHΓHγT
H

.

Furthermore, according to Theorem 4.2.2 in [29],
γHΓHγT

H ≤ ||γH||2λmax. Thus we obtain

dHL(ΓH) ≥ ||γH||4
γHΓHγT

H

≥ ||γH||2
λmax

.

4) The matrixΓH can be decomposed as follows

ΓH = DV DT

whereD is the diagonal matrix with entries
√

γHii and
V =

{
wHij/

√
wHiiwHjj

}
, i, j = 1, 2, . . . , L. Then the

Hamming list distance is

dHL(ΓH) = γHΓ−1
H γT

H =
(
γHD−1

)
︸ ︷︷ ︸

,v

V −1
(
D−1γT

H

)

= vV −1vT

wherev = γHD−1 =
(√

wH11
√

wH22 . . .
√

wHLL

)
.

SinceV is positive definite andv > 0, we apply the
Kantorovich inequality (27) and obtain

dHL(ΓH) = vV −1vT ≥ ||v||4
vV vT

.

Since

||v||4 =

(
L∑

i=1

γHii

)2

= (tr(ΓH))2

and

vV vT =
L∑

i=1

L∑

j=1

√
γHii

γHij√
γHiiγHjj

√
γHjj

=
L∑

i=1

L∑

j=1

γHij =
L∑

i=1

L∑

j=1

dH0i + dH0j − dHij

2

=
1
2


2

L∑

j=1

L∑

i=1

dH0i −
L∑

i=1

L∑

j=1

dHij




=
1
2


2L tr(ΓH)−

L∑

i=1

L∑

j=1

dHij




= L tr(ΓH)− 1
2

L∑

i=1

L∑

j=1

dHij

we obtain

dHL(ΓH) ≥ (tr(ΓH))2

L tr(ΓH)− 1
2

L∑
i=1

L∑
j=1

dHij

. (28)

Since the pairwise distance between any two codewords
satisfiesdHij ≥ dHmin, for i 6= j, and dHij = 0, for
i = j, then we have

L∑

i=1

L∑

j=1

dHij ≥ L(L− 1)dHmin

which, combined with (28), yields

dHL(ΓH) ≥ (tr(ΓH))2

L tr(ΓH)− 1
2L(L− 1)dHmin

. (29)

By taking the derivative of the right-hand side of (29)
with respect totr(ΓH) we find that its minimum is
achieved fortr(ΓH) = (L−1)dHmin. On the other hand,
all the diagonal entries ofΓH areγHii≥ dHmin, which
implies that tr(ΓH) ≥ LdHmin must hold. Clearly, in
this range oftr(ΓH), (29) is a monotonically increasing
function of tr(ΓH); hence, its minimum value is ob-
tained fortr(ΓH)=LdHmin and we obtain the following
bound

dHL(ΓH) ≥ 2L

L + 1
dHmin. (30)

Equality in (30) is achieved for a code with even mini-
mum Hamming distancedHmin and a list configuration
matrix of the form

ΓH =




dHmin
dHmin

2 . . . dHmin
2

dHmin
2 dHmin . . . dHmin

2
...

...
.. .

...
dHmin

2
dHmin

2 . . . dHmin


 . (31)

We call this matrix the worst-case list configuration
matrix; it corresponds to the list ofL codewords with
minimum weights and at minimal possible pairwise
distances, which are, for evendHmin, all equal todHmin

(cf. Tables II and III). It is easy to verify that matrix
(31) satisfies (30) with equality.
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5) If the Hamming weights of two codewords have the
same parity (both odd or both even), the Hamming
distance between them is always even. Hence, if a code
has odd minimum distancedHmin, the pairwise distances
between codewords of weightdHmin must be even, that
is, dHij ≥ dHmin+1. Then, ifdHmin is odd, we conclude
that the worst-case list configuration matrix (31) cannot
be constructed and the bound (30) is never tight.
To obtain the worst-caseΓH and the corresponding
minimum list distance whendHmin is odd, assume that
in a list of L codewords there arem ≥ 0 codewords
of odd weight andL − m codewords of even weight.
The pairwise distances between the codewords of same-
parity weights aredHij ≥ dHmin+1, while for opposite-
parity pairsdHij ≥ dHmin, which yields

L∑

i=1

L∑

j=1

dHij ≥

L(L−1)dHmin+m(m−1)+(L−m)(L−m−1).
(32)

Following the same procedure as in the previous case,
we insert (32) into (28) and, by taking the derivative
of the right-hand side of (28) with respect totr(ΓH),
we conclude that the bound (28) is a monotonically
increasing function oftr(ΓH) for

tr(ΓH)≥ 1
L

L∑

i=1

L∑

j=1

dHij

≥(L− 1)dHmin +
2m2

L
− 2m + L− 1.(33)

On the other hand, since them odd-weight codewords
from the list have weightsdH0i ≥ dHmin, while the
remaining(L−m) even-weight codewords havedH0i ≥
dHmin + 1, thentr(ΓH) has to fulfill

tr(ΓH) ≥ mdHmin + (L−m)(dHmin + 1)
= L(dHmin + 1)−m. (34)

The right-hand side of (34) is always larger than the
right-hand side of (33); hence, we conclude that the
right-hand side of (34) minimizes the bound (28) on
the list distance. Thus we obtain

dHL(ΓH) ≥ 2(L(dHmin + 1)−m)2

L(L + 1)(dHmin + 1)− 2m2
(35)

which holds for all list configuration matricesΓH. By
taking the derivative of (35) with respect tom we can
conclude that, assuming oddL, the minimum of the
bound (35) is achieved form = (L+1)/2, which yields

dHL(ΓH) ≥ 2L

L + 1
dHmin +

L− 1
L + 1

. (36)

Equality is achieved for the worst-case list configuration
matrix with m = (L + 1)/2 diagonal elements equal to
γHii = dHmin andL−m elementsγHii = dHmin+1, and
with the off-diagonal elements equal toγHij = (dHmin−
1)/2 if γHii = γHjj = dHmin, andγHij = (dHmin+1)/2

otherwise. If the list sizeL is even, the worst-case matrix
is obtained in the same way, withm = d(L + 1)/2e;
however, in this case, the lower bound (35) on the list
distance is not tight.

D. Center of Mass and Average Radius of a List

For a given setSL = {s0, s1, . . . , sL} of L + 1 signal
points, thecenter of massis located in the point̄s given by

s̄ =
1

L + 1

L∑

j=0

sj . (37)

The average squared radiusR2
Lav, introduced in [12], of the

signal setSL is the average squared Euclidean distance of the
signal pointssi ∈ SL from the center of mass̄s, that is,

R2
Lav =

1
L + 1

L∑

i=0

||si − s̄||2 =
1

L + 1

L∑

i=0

d2
E(si, s̄). (38)

The average squared distance between the signal points from
a setSL and a given reference point is often referred to as
the moment of inertiaof SL, cf. [16]. Clearly, the moment of
inertia is smallest when the reference point is the center of
masss̄, and then it equals the average squared radiusR2

Lav.
From the above definitions it follows that the average radius

is never larger than the list radius for the given listSL with
the configuration matrixΓ, that is,

R2
L(Γ) ≥ R2

Lav. (39)

By substituting (37) into (38) we obtain that the average
squared radius can also be written as

R2
Lav =

1
L + 1

L∑

i=0

∥∥∥si − 1
L + 1

L∑

j=0

sj

∥∥∥
2

=
1

(L + 1)2

L∑

j=0

L∑

i=0

||si||2 − 2
(L + 1)2

L∑

i=0

L∑

j=0

〈si, sj〉

+
1

(L + 1)3

L∑

i=0

∥∥∥
L∑

j=0

sj

∥∥∥
2

=
1

(L + 1)2

L∑

i=0

L∑

j=0

(
||si||2 − 〈si, sj〉

)

=
1

2(L + 1)2

L∑

i=0

L∑

j=0

||si − sj ||2

=
1

2(L + 1)2

L∑

i=0

L∑

j=0

d2
E(si, sj)

≥ 1
2(L + 1)2

L(L + 1)d2
Emin =

L

2(L + 1)
d2
Emin

which, combined with (39) yields

R2
L(Γ) ≥ R2

Lav ≥
L

2(L + 1)
d2
Emin (40)

with equality when all(L+1) points have minimum pairwise
distancesdEmin, that is, when they form anL-dimensional
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regular simplex. In this case, the center of mass ofSL

coincides with the center of the circumsphere ofSL, that is, the
minimum average radius is equal to the minimum list radius,

R2
Lav min = R2

Lmin =
Ld2

Emin

2(L + 1)
.

When the signal vectorssi ∈ SL are bipolar sequences of a
binary block codeC with minimum Hamming distancedHmin,
then (7) and (25) hold; hence (40) yields the bound

dHLmin ≥ dHL(Γ) ≥ 2L

(L + 1)
dHmin

which coincides with Statement 4 of Theorem 2. Statement 5
of Theorem 2 can be proved similarly, via the average radius,
taking into account the parity of pairwise distances.

The average radius and the moment of inertia of a list were
used in [12] and [16] (cf. also [30]) for deriving asymptotic
bounds on the code rates and list error performance.

III. U PPERBOUND ON THE L IST ERRORPROBABILITY

FOR A GIVEN L IST

Using properties of the list configuration matrixΓ we can
upper-bound the list error probabilityPr(t ≥ γ/2) in (5). In
[27] the following Chernoff-type bound was proved

PeL(Γ) = Pr(t ≥ γ/2) ≤ exp
(
−d2

EL(Γ)/(4N0)
)
. (41)

From (11), (13), and (23) it immediately follows that, for a
given list configurationΓ, the probability of list error is not
larger than the probability that the noise component along
ρ− s0 is larger than the radius̃RL, that is,

PeL(Γ) ≤ Pr
(
ν ≥ R̃L(Γ)

)
≤ Pr (ν ≥ RL(Γ))

where

ν =
〈n, ρ− s0〉
||ρ− s0||

is the noise component alongρ−s0. The above inequalities are
met with equality forL = 1. Sinceν is a zero-mean Gaussian
random variable with varianceN0/2 we obtain

PeL(Γ) ≤ Q

(
RL(Γ)√

N0/2

)
= Q

(√
2dHL(Γ)

Es

N0

)
(42)

where Q(x) = 1/
√

2π
∫∞

x
exp(−y2/2)dy. It is easy to see

that the bound (42) is tighter than (41). Figure 1 illustrates the
worst-case list configuration forL = 2. In this case, the bound
(42) corresponds to the probability that the received signal falls
into the decision regionD∗, which is the upper half-plane
containing the sphere centerρ. Note that if s∗ denotes the
virtual ”average signal point” (”average” of the set{s1, s2})
as shown in Figure 1, then the half-planeD∗ corresponds to
the error region for the pairwise error event betweens0 and
s∗.

Now we will derive a new upper bound onPeL(Γ) for the
worst-case list configuration, which is tighter than the bound
(42). We follow an approach similar to the one described in
[28]. First we orthogonalize the noise components and then
estimate the variances and integration limits for the system of
the transformed noise components.

The derivations are based on the following two lemmas,
which correspond to the worst-case matrixΓ for even and
odd minimum distance, respectively.

Hereinafter, we will use notations1(m) and 0(n) to de-
note vectors containingm ones andn zeros, respectively.
Thus, for example, vector(a a a b 0 0) can be written as
(a1(3) b 0(2)) = a(1(3) b/a 0(2)).

Lemma 1:Let K be anL × L matrix with the following
structure

K = β{kij}, kij =

{
1, i = j

κ, i 6= j
, i, j = 1, 2, . . . , L

(43)
whereβ and κ are arbitrary constants. Then its eigenvalues
are

λ1 = β(1 + κ(L− 1)) (44)

λ` = β(1− κ), ` = 2, 3, . . . , L (45)

with the corresponding eigenvectors

x1 = (1 1 . . . 1) = 1(L) (46)

x` =
1

`− 1
(−1(`−1) `−1 0(L−`)

)
, ` = 2, 3, . . . , L.(47)

Lemma 2:Let K be an L × L matrix of the following
structure

K =
(

A B

BT C

)
(48)

whereA is anm×m matrix of the form

A = {aij}, aij =

{
a0, i = j

a, i 6= j
, i, j = 1, 2, . . . , m (49)

C is ann× n matrix, with n = L−m, of the form

C = {cij}, cij =

{
c0, i = j

c, i 6= j
, i, j = 1, 2, . . . , n (50)

andB is anm× n matrix whose elements are all equal tob:

B = {bij}, bij = b, i = 1, 2, . . . , m, j = 1, 2, . . . , n
(51)

wherea0, a, c0, c, andb are arbitrary constant values.
Then the eigenvalues ofK are

ξ` = a0 − a, ` = 1, 2, . . . , m− 1 (52)

ξ` = c0 − c, ` = m, m + 1, . . . , L− 2 (53)

ξL−1 =
(λA1 + λC1)

2
− 1

2

√
(λA1 − λC1)

2 + 4b2m2n (54)

ξL =
(λA1 + λC1)

2
+

1
2

√
(λA1 − λC1)

2 + 4b2m2n (55)

where λA1 and λC1 are the dominant eigenvalues of the
matricesA andC, respectively, that is,

λA1 = a0 + a(m− 1) (56)

λC1 = c0 + c(n− 1). (57)
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Furthermore, the corresponding eigenvectors of the matrixK
are

x` =
1
`

(−1(`) `0(L−`−1)

)
, ` = 1, 2, . . . ,m− 1

x` =
1

`−m + 1
(
0(m) − 1(`−m+1) `−m+1 0(L−`−2)

)
,

` = m, m + 1, . . . , L− 2
xL−1 =

(
bn·1(m) (ξL−1−λA1)·1(n)

)

xL =
(
bn·1(m) (ξL−λA1)·1(n)

)
.

The proofs of Lemmas 1 and 2 are given in Appendix. Now we
are ready to state the following two theorems which we use to
obtain upper-bounds on the list error probabilityPeL(Γ), for
the worst-case list configuration, for even and odd minimum
distance, respectively.

Theorem 3:Let t be a Gaussian random vector of lengthL
with zero mean and covariance matrixK given by (43) from
Lemma 1, and letα = α1(L) be a vector ofL constant values
α. Then the probabilityPr(t ≥ α) can be upper-bounded by

Pr(t ≥ α) ≤
∫ ∞

αL√
σ1

f(y)
L∏

`=2

(∫ u`(y)

v`(y)

f(x)dx

)
dy (58)

with equality forL ≤ 2. The integration limits are given by

u`(y) =
y
√

σ1 − αL√
σ`

, v`(y) = −u`(y)
`− 1

whereσ1 = Lλ1, with λ1 given by (44), andσ` = λ``/(`−1),
` = 2, 3, . . . , L, with λ` given by (45). Hereinafter,f(x) and
f(y) denote the GaussianN (0, 1) probability density function.

Theorem 4:Let t be a Gaussian random vector of lengthL
with zero mean and covariance matrixK given by (48) from
Lemma 2 and letα = (α1(m) η1(n)) be a vector containing
m constant valuesα, andn = L−m constant valuesη. Then
the probabilityPr(t ≥ α) can be upper-bounded by

Pr(t ≥ α) ≤
∞∫

φ(α,η)√
σL

f(y1)

h(y1)∫

g(y1)

f(y2)dy2

m−1∏

`=1




u`(y1)∫

v`(y1)

f(x)dx




×
L−2∏

`=m




z`(y1)∫

w`(y1)

f(x)dx


dy1. (59)

The expressions for the integration limits in the above formula
are

φ(α, η) = n(bmα + η(ξL − λA1))

g(y1) = −y1
√

σL(λA1 − ξL−1)− bmnα(ξL − ξL−1)
(ξL − λA1)

√
σL−1

h(y1) =
y1
√

σL − nη(ξL − ξL−1)√
σL−1

u`(y1) =
y1
√

σL − φ(α, η)
bn
√

σ`

v`(y1) = −u`(y1)
`

z`(y1) =
y1
√

σL − φ(α, η)
(ξL − λA1)

√
σ`

w`(y1) = − z`(y1)
`−m + 1

where the values ofσ`, ` = 1, 2, . . . , L, are defined in the
following table

` σ`

1 ≤ ` ≤ m− 1 (a0 − a)(` + 1)/`
m ≤ ` ≤ L− 2 (c0 − c)(`−m + 2)/(`−m + 1)

` = L− 1 ξL−1

(
b2n2m + n(ξL−1 − λA1)2

)
` = L = m + n ξL

(
b2n2m + n(ξL − λA1)2

)

whereλA1, λC1, ξL−1, andξL are given by (56), (57), (54),
and (55), respectively.

Proofs of Theorems 3 and 4 are given in Appendix.

Consider now, for example, the worst-case list configuration
for a code with even minimum Hamming distancedHmin. The
corresponding matrixΓ is specified in Statement 4 of Theorem
2 and the Hamming list distance is

dHLmin =
2L

L + 1
dHmin.

According to (5), the list error probability for the given list is

PeL(Γ)=Pr
(

t ≥ 4Es
dHmin

2
1(L)

)
=Pr(t ≥ 2EsdHmin1(L)).

To upper-bound the probabilityPr(t ≥ 2EsdHmin1(L)) we
apply Theorem 3 withα = 2EsdHmin. The integration limits
in the bound (58) from Theorem 3 depend on the eigenvalues
of the covariance matrix oft, that is, K = ΓN0/2. We
determine them by applying Lemma 1 withβ = 2EsdHminN0

and κ = 1/2. Thus we obtain that the largest eigenvalue of
K is λ1 = EsdHmin(L + 1)N0, while the other(L − 1)
eigenvalues are equal toλ` = EsdHminN0. By substituting
these values into (58) we obtain the following bound on the
error probabilityPeL(Γ):

PeL(Γ) ≤
∞∫

√
2dHLminEs/N0

f(y)
L∏

`=2

(∫ u`(y)

v`(y)

f(x)dx

)
dy

=

∞∫

√
2dHLminEs/N0

f(y)
L∏

`=2

(Q(u`(y))−Q(v`(y))) dy

(60)

where

u` =

√
L(L + 1)(`− 1)

`

(
y −

√
2dHLminEs/N0

)

v` = − u`

`− 1
, ` = 2, 3, . . . , L.

For L = 2, bound (60) holds with equality and it is illustrated
in Figure 1 as the probability that the received signal is in the
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decision regionD. In Figure 7 the new bound (60) is plotted
for dHmin = 4 and list sizesL ∈ {2, 3, 5}. For comparison,
bound (42) is shown in the same figure.

Eb/N0 [dB]

P
eL

(Γ
)

10−6

10−5

10−4

10−3

10−2

0 1 2 3 4 5 6

Bound (60), L = 2
Bound (42), L = 2
Bound (60), L = 3
Bound (42), L = 3
Bound (60), L = 5
Bound (42), L = 5

Fig. 7. Comparison of the bounds (60) and (42) on the list error probability
for a worst-case list configuration fordHmin = 4.

IV. GENERALIZED TANGENTIAL BOUND ON THE L IST

ERRORPROBABILITY

The bound given by (9) is a generalization of a union bound
for list decoding. It upper-bounds the list error probability by
a sum of error probabilitiesPeL(Γ) for all possible list con-
figurationsΓ of a given list size. The multiplicitiesN(Γ) of
error probabilitiesPeL(Γ) are, for most practically interesting
codes and list sizes, very large numbers (see,e.g., Table III).
Hence, the union bound is often not tight even at higher signal-
to-noise ratio (SNR) levels.

In order to improve the union-type bound (9) we start
from the Fano-Gallager bounding principle [22] which is a
commonly used approach for constructing good bounds on
the error probability of ML decoding (cf. [23], [24]). Namely,
if ε denotes a list error event, then the probability of list error
Pr(ε) can be decomposed and upper-bounded as

PeL ≡ Pr(ε) = Pr (ε, n ∈ A) + Pr (ε, n /∈ A)
= Pr (ε, n ∈ A) + Pr (ε|n /∈ A) Pr(n /∈ A)
≤ Pr (ε, n ∈ A) + Pr(n /∈ A) (61)

whereA denotes a subset of noise vectorsn. The region
A and its complementAc are interpreted as the regions of
few and many errors, respectively. In the above expansion,
the probabilityPr(ε|n ∈ Ac) is upper-bounded by1, which
yields the bound (61). Further bounding of (61) is obtained
by upper-bounding the error probability inside the regionA,
Pr (ε, n ∈ A). Clearly, the choice of the regionA influences
the tightness of the bound.

We adopt the tangential-bound approach from [17] and
decompose the noise vectorn into the radial component (along
the transmitted signals0) andL components orthogonal to the
radial component. Then letA be a set of noise vectorsn for

which the radial component is smaller than or equal to a given
thresholdT . In this case inequality (61) can be rewritten as

PeL ≤ Pr (ε, 〈n, s0〉 ≤ T ) + Pr (〈n, s0〉 > T ) . (62)

Since the radial noise component is a Gaussian random vari-
able, the probabilityPr (〈n, s0〉 > T ) is simply aQ-function
of the thresholdT . The exact computation of the first term of
(62) is infeasible; in the following we will develop an upper
bound for it.

The list error condition (3) is equivalent to

〈n, s`〉 ≥ 〈n, s0〉+ d2
E(s0, s`)/2. (63)

For a given valuex of the radial noise component, by
introducing notationz` = 〈n, s`〉, ` = 0, 1, . . . , L, the list
error condition (63) can be rewritten as

{
z0 = 〈n, s0〉 = x

z` = 〈n, s`〉 ≥ x + 2EsdH0`, ` = 1, 2, . . . , L
(64)

wheredH0` = dH(v0, v`). The vectorz = (z0 z1 . . . zL) has
Gaussian distribution with zero mean and covariance matrix

Kz =
N0

2
NEs{kij}, kij =

{
1, i = j

1− 2δij , i 6= j
(65)

where i, j = 0, 1, . . . , L and δij = δji = dHij/N is the
relative Hamming distance between theith andjth codewords.

Next, our goal is to orthogonalize the radial noise compo-
nentz0 with respect to the otherL componentsz`. Similarly as
in [28], we introduce transformed variablesy = (y1 y2 . . . yL)
such that they are uncorrelated withz0. The componentsy`

are given by

y` = z` − (1− 2δ0`)z0, ` = 1, 2, . . . , L. (66)

Then, for a givenz0 = x, the error condition (64) is equivalent
to

y` ≥ 2δ0`(x + NEs), ` = 1, 2, . . . , L. (67)

Indeed, the componentsy` are uncorrelated with the compo-
nentz0, that is,

E [z0y`] = E [z0z`]− (1− 2δ0`) E
[
z2
0

]

= (1− 2δ0`)NEsN0/2− (1− 2δ0`)NEsN0/2
= 0.

The covariance matrix of the vectory is equal to

Ky = 2N0NEs{kij}, kij =
δ0i + δ0j − δij

2
−δ0iδ0j (68)

wherei, j = 1, 2, . . . , L. Then, according to (62) the list error
probability PeL can be upper-bounded by

PeL ≤

min
T





T∫

−∞
f(x)min



1,

∑

Ky

N(Ky)PeL(Ky, x)



dx + Q(T )





(69)

where we have used a union-type bound for the first term in
(62). The minimization over threshold valuesT is performed
in order to obtain the tightest upper bound.N(Ky) is the
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number of lists that yield the covariance matrixKy and
PeL(Ky, x) is the error probability for the list described by
the covariance matrixKy, under the condition that the radial
noise level isz0 = x. From (67) it follows that

PeL(Ky, x) = Pr(y ≥ 2(x + NEs)δ0) (70)

where δ0 = (δ01 δ02 . . . δ0L). For the worst-case list con-
figurations, with even and odd minimum distance, the error
probability (70) can be upper-bounded using Theorems 3 and
4, respectively.

We now consider linear block codes with even minimum
Hamming distance. For rather high signal-to-noise ratios the
dominant term in (69) corresponds to the worst-case list
configuration, where all codewords have relative Hamming
weight δ = dHmin/N , and they are at the relative pairwise
distancesδij = δ, i 6= j. In this case, the covariance matrix
Ky from (68) simplifies to

Ky = 2N0NEs{kij}, kij =

{
δ(1− δ), i = j

(1− 2δ)/2, i 6= j

for i, j = 1, 2, . . . , L. The eigenvalues ofKy are obtained
by applying Lemma 1 withβ = 2N0NEsδ(1 − δ) and κ =
1−2δ

2(1−δ) . The dominant error term (70)

PeL(Ky, x) = Pr(y ≥ 2(x + NEs)δ1(L))

can be upper-bounded by applying Theorem 3 withα = 2(x+
NEs)δ. For example, for a list of sizeL = 2 we obtain

PeL(Ky, x) =

∞∫

2
√

2δ√
N0NEs(3−4δ)

(x+NEs)

f(y) (Q(u(x, y))−Q(−u(x, y))) dy

where

u(x, y) = y
√

(3− 4δ)− 2
√

2δ√
N0NEs

(x + NEs).

As follows from the examples shown in Tables I–III, list
configuration matrices corresponding to other terms of the
bound (69) can have rather complicated structures. In order
to simplify the computations, for the rest of the terms we
use bounds which, like the bound (42), are based only on the
list distancesdHL(Γ) and do not take into account the fine
structure of the Gram matrixΓ.

In the case of list sizeL = 1, the bound (69) reduces to

Pe1 ≤

min
T





T∫

−∞
f(x)min

{
1,

∑

dH

N(dH)Pe(dH, x)

}
dx + Q(T )





(71)

whereN(dH) are the spectrum coefficients of the code and
Pe(dH, x), according to Theorem 3, equals

Pe(dH, x) = Q

(√
2dH

N0NEs(N − dH)
(x + NEs)

)
. (72)

As an analogy to (71) we have the tangential bound for list
decoding

PeL ≤

min
T





T∫

−∞
f(x)min

{
1,

∑

Γ

N(Γ)Pe(dHL(Γ), x)

}
dx+ Q(T )





(73)

where the termsPe(dHL(Γ), x) are given by (72). Finally,
by combining bounds (69) and (73) we obtain our new
generalized tangential bound

PeL ≤

min
T





T∫

−∞
f(x)min {1, N(Ky)PeL(Ky, x)

+
∑

Γ

N(Γ)PeL(dHL(Γ), x)

}
dx + Q(T )

}
(74)

where the dominant term is estimated as in (70), while the
remaining terms are upper-bounded only by using the list dis-
tancedHL(Γ), which is equivalent to replacing the codeword
sets with list configurationΓ by an ”average codeword” at
distancedHL(Γ) from the transmitted codeword.

We illustrate the obtained bounds using the(24, 12, 8)
Golay code and list decoding with the list sizeL = 2.
The list configuration matrices and their multiplicities are
shown in Table III. In Figure 8 the union bound (9), the
tangential bound (73), and the improved tangential bound
(74) are shown and compared with the list error probability
obtained by simulations. When computing the union bound
(9), each error probability for a given list,PeL(Γ), is upper-
bounded by aQ-function given by (42). Note that bound (42)
is looser than bound (60) for the worst-case list configuration
(which dominates the performance for high SNR), as already
illustrated in Figure 7. Moreover, from Table III it follows
that the multiplicitiesN(Γ) of the possible list configuration
matrices are very large—there are more than105 codeword
pairs with the worst-case list configuration yielding minimum
list distance. Therefore, union bound (9) is quite loose, even
at higher SNR. The new bound (74) is significantly tighter
than the union bound in the whole range of the observed SNR
levels.

Further improvement of the new bound, for example, using
the TSB technique, is a challenging problem which is a topic
of future research.

V. CONCLUSIONS

In this paper, list decoding is considered. The so-called
minimum list distance of a signal constellation is defined,
which plays the same role for list decoding as the minimum
distance for maximum-likelihood decoding. It was shown
that the list distance is determined by the list configuration
matrix, which is a Gram matrix obtained from the signal
vectors forming the constellation. Several properties of the list
configuration matrix are established. Using these properties,
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Fig. 8. Comparison of bounds (9), (73), and (74) for list decoding of the
(24, 12, 8) Golay code with list sizeL = 2.

the minimum list distance is computed for binary linear
codes with even and odd minimum distance. For both cases,
the worst-case list configurations, which yield the minimum
list distances are identified and a new upper bound on the
list error probability for a given worst-case list is derived.
Furthermore, an improved tangential union bound is derived
and by combining it with the bound for a given worst-case
list a new upper bound on the list decoding error probability
is obtained. The new bound is tighter than previously known
union bound.
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VII. A PPENDIX

A. Proof of Lemma 1

The eigenvaluesλ`, ` = 1, 2, . . . , L, of the matrixK are
the solutions of the characteristic equation

det(K − λI) =

∣∣∣∣∣∣∣∣∣

β − λ βκ . . . βκ
βκ β − λ . . . βκ
...

...
. . .

...
βκ βκ . . . β − λ

∣∣∣∣∣∣∣∣∣
= 0.

The above determinant is easily obtained by, for example,
transforming the matrix into triangular form, whose determi-
nant is then the product of the diagonal elements. Thus we
obtain

(β(1 + κ(L− 1))− λ) · (β(1− κ)− λ)L−1 = 0

which yields the solutionsλ1 as in (44) andλ`, ` =
2, 3, . . . , L, as in (45).

The eigenvectorsx` = (x(1)
` x

(2)
` . . . x

(L)
` ) corresponding

to the eigenvaluesλ`, ` = 1, 2, . . . , L, of the matrixK satisfy
the equation

λ`x` = x`K. (75)

For λ1 = β(1 + κ(L− 1)), (75) yields

x
(1)
1 = x

(2)
1 = · · · = x

(L)
1 =

1
L

L∑

i=1

x
(i)
1 .

Hence, any vector withL identical components can be chosen
as an eigenvector. Without loss of generality we choosex1 =
(1 1 . . . 1) = 1(L).

For λ` = β(1− κ), ` = 2, 3, . . . , L, (75) yields

L∑

i=1

x
(i)
` = 0.

Hence, any set of(L− 1) linearly independent vectors, such
that their elements sum up to 0, is a set of eigenvectors. We
choose

x` =
(
− 1

`− 1
− 1

`− 1
. . . − 1

`− 1︸ ︷︷ ︸
`−1 times

1 0 . . . 0
)

=
1

`− 1
(−1(`−1) `−1 0(L−`)), ` = 2, 3, . . . , L

which completes the proof.
¥

Remark 1:The equation (75) can be rewritten in a matrix
form as

K = V ΛV −1

whereΛ = diag(λ1 λ2 . . . λL) is the diagonal matrix con-
taining the eigenvalues ofK, andV is the eigenvector matrix
whose columns are eigenvectorsxT

` , ` = 1, 2, . . . L, that is,

V =
(
xT

1 xT
2 . . . xT

L

)

=




1 −1 −1/2 −1/3 . . . −1/(L− 1)
1 1 −1/2 −1/3 . . . −1/(L− 1)
1 0 1 −1/3 . . . −1/(L− 1)
1 0 0 1 . . . −1/(L− 1)
...

...
...

...
.. .

...
1 0 0 0 . . . 1




. (76)

SinceK is a normal matrix, its eigenvector matrixV describes
an orthogonal transform, that is,

V TV = D

whereD = diag(d1 d2 . . . dL) is the diagonal matrix with
elements

d` =

{
L, ` = 1
`/(`− 1), ` = 2, 3, . . . , L.

This orthogonal transform reduces the matrixK to the diag-
onal matrix:

V TKV = DΛ = diag(σ1 σ2 . . . σL) (77)
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where

σ` = λ`d` =

{
Lλ1, ` = 1
λ``/(`− 1), ` = 2, 3, . . . , L.

(78)

This transform will be used for proving Theorem 3.

B. Proof of Lemma 2

The matricesA and C from (49) and (50) have the same
general structure as the matrix (43) from Lemma 1 withβ =
a0, κ = a/a0, andβ = c0, κ = c/c0, respectively. Hence, it
follows from (44)-(45) that the eigenvalues ofA are

λA1 = a0 + a(m− 1)
λAi = a0 − a, i = 2, 3, . . . , m

and the corresponding eigenvectors are

xA1 = 1(m) (79)

xAi =
1

i− 1
(−1(i−1) i−1 0(m−i)

)
(80)

wherei = 2, 3, . . . , m. Similarly, the eigenvalues ofC are

λC1 = c0 + c(n− 1)
λCj = c0 − c

for j = 2, 3, . . . , n, and the corresponding eigenvectors are

xC1 = 1(n) (81)

xCj =
1

j − 1
(−1(j−1) j−1 0(n−j)

)
(82)

where j = 2, 3, . . . , n and n = L − m. Now consider the
L× L block-diagonal matrix

G =
(

A 0
0 C

)
.

Its eigenvalues are simply those ofA and C, and its eigen-
vectors are

xGi = (xAi 0(n)), i = 1, 2, . . . ,m

xGm+j = (0(m) xCj), j = 1, 2, . . . , n.

All the vectorsxAi except the all-one vector,xA1 = 1(m),
have the property that their components sum up to zero. Hence,
for thosem− 1 vectors we have

(xAi 0(n))K = (xAi 0(n))
(

A B

BT C

)

= (xAiA xAiB) = λAi(xAi 0(n))

which follows from the fact that all elements of the matrixB
are the same. We conclude that the eigenvectors(xAi 0(n)),
i = 2, 3, . . . , m, are also eigenvectors ofK and the cor-
responding eigenvalues are the eigenvalues ofA, that is,
λAi = a0 − a.

Equivalently, we obtain that the vectors(0(m) xCj), except
the one withxC1 = 1(n), are also eigenvectors ofK and the
corresponding eigenvalues are the eigenvalues ofC, that is,
λCj = c0 − c, j = 2, 3, . . . , n.

Thus, we have determinedm + n− 2 = L− 2 eigenvalues
of K:

ξ` = a0 − a, ` = 1, 2, . . . , m−1
ξ` = c0 − c, ` = m, m+1, . . . , L−2

and the corresponding eigenvectors

x` = (xA`+1 0(n)), ` = 1, 2, . . . ,m−1 (83)

x` = (0(m) xC`−m+2), ` = m, m+1, . . . , L−2. (84)

wherexAi andxCj are given by (80) and (82), respectively.
Now we only need to determine the remaining two eigen-

valuesξL−1 and ξL, and the corresponding eigenvectors. To
this end, we first exploit the property that the trace of any
square matrix is equal to the sum of its eigenvalues. Thus we
have

tr(G) =
m∑

i=1

λAi +
n∑

j=1

λCj

and also

tr(K) =
m∑

i=2

λAi +
n∑

j=2

λCj + ξL−1 + ξL.

Sincetr(G) = tr(K), we obtain that the sum of two unknown
eigenvalues is

ξL−1+ξL = λA1+λC1 = a0+c0+(m−1)a+(n−1)c. (85)

The determinant of the matrixK can be written as (cf. [31])

det(K) = det(A) det(C −BTA−1B). (86)

The inverse of the matrixA can be written as

A−1 = VAΛ−1
A V −1

A

where Λ−1
A = diag (1/λA1 1/λA2 . . . 1/λAm) and VA is

the eigenvector matrix of the form (76), whose columns are
eigenvectorsxA

T
i , i = 1, 2, . . . , m. Since the all-one vector

xA
T
1 is the first column ofVA, anddet(VA) = 1, we easily

obtain that

BTA−1B =
b2m2

λA1

1(n×n)

where 1(n×n) denotes the all-one matrix of sizen × n.
Thus, the eigenvalues of the matrixC − BTA−1B can be
obtained from Lemma 1 withβ = c0 − b2m2/λA1 and
βκ = c−b2m2/λA1, which yields the largest eigenvalue equal
to λC1 − b2m2n/λA1, while the remaining eigenvalues are
equal toλCj = c0 − c, j = 2, 3, . . . , n.

Since the determinant of the matrix is equal to the product
of its eigenvalues, (86) is equivalent to

ξL−1ξL

m∏

i=2

λAi

n∏

j=2

λCj =
m∏

i=1

λAi

n∏

j=2

λCj

(
λC1 −

b2m2n

λA1

)

which yields

ξL−1ξL = λA1

(
λC1 −

b2m2n

λA1

)
. (87)
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From (85) and (87), which specify the sum and the product
of two last eigenvalues ofK, we obtain

ξL−1 =
λA1 + λC1

2
− 1

2

√
(λA1 − λC1)2 + 4b2m2n

ξL =
λA1 + λC1

2
+

1
2

√
(λA1 − λC1)2 + 4b2m2n.

The eigenvectors corresponding toξL−1, ξL satisfy the
equation

ξ`K = x`K, ` = L− 1, L

which imposes the following structure of the eigenvectors:

x` =
(
%11(m) %21(n)

)
, %2 = %1

ξ` − λA1

bn
, ` = L− 1, L

for any arbitrary%1. Without loss of generality, we can choose
%1 = bn and thus we obtain

xL−1 =
(
bn·1(m) (ξL−1−λA1)·1(n)

)
(88)

xL =
(
bn·1(m) (ξL−λA1)·1(n)

)
(89)

which concludes the proof.
¥

Remark 2:The matrixK can be written in the form

K = TΨT−1

where Ψ = diag (ξ1 ξ2 . . . ξL) is the diagonal matrix con-
taining the eigenvalues ofK, andT is the eigenvector matrix
whose columns are the eigenvectorsxT

` , ` = 1, 2, . . . , L. From
(83), (84), (88), and (89), it follows that the structure of the
matrix T is

T =
(

XA 0(m×(n−1)) xT
L−1 xT

L0(n×(m−1)) XC

)

(90)
whereXA is them×(m−1) matrix whose columns arem− 1
eigenvectors of the matrixA, xA

T
i , i = 2, . . . , m, andXC is

the n × (n − 1) matrix whose columns are the eigenvectors
xC

T
j , j = 2, . . . , n. The matrix T describes an orthogonal

transform, that is
T TT = D

where D = diag(d1 d2 . . . dL) is the diagonal matrix with
elements

d` =





(` + 1)/`, ` = 1, 2, . . . , m− 1
(`−m + 2)/(`−m + 1), ` = m, m+1, . . . , L−2
b2n2m + n(ξL−1−λA1)2, ` = L−1
b2n2m + n(ξL−λA1)2, ` = L.

This orthogonal transform reduces matrixK to the diagonal
matrix:

T TKT = DΨ = diag(σ1 σ2 . . . σL) (91)

where

σ` = ξ`d` =





(a0 − a)(` + 1)/`, ` = 1, 2, . . . , m− 1
(c0 − c)(`−m + 2)/(`−m + 1),

` = m, m + 1, . . . , L− 2
ξL−1

(
b2n2m + n(ξL−1−λA1)2

)
, ` = L− 1

ξL

(
b2n2m + n(ξL−λA1)2

)
, ` = L.

(92)
This transform will be used for proving Theorem 4.

C. Proof of Theorem 3

Direct estimation of the error probabilityPr(t ≥ α) would
involve integration of theL-dimensional density functionf(t)
over the region where allt` ≥ α, ` = 1, 2, . . . , L. Consider
instead the vectorq obtained by the orthogonal transformation

q = tV (93)

where V is the eigenvector matrix ofK, given by (76).
The covariance matrix ofq is given by (77). Hence, it
follows that q`, ` = 1, 2, . . . , L, are independent Gaussian
random variables with variancesσ` given by (78). Therefore,
the L-dimensional density functionf(q) decomposes into a
product ofL marginal densitiesf(q`), ` = 1, 2, . . . , L, which
simplifies the estimation of the error probability. Now we need
to find the integration limits for eachq`, ` = 1, 2, . . . , L. To
this end, we rewrite the matrix equation (93) as

q1 =
L∑

i=1

ti (94)

q` = t` − 1
`− 1

`−1∑

i=1

ti, ` = 2, 3, . . . , L. (95)

From t ≥ α and (94) it immediately follows that

q1 ≥ Lα. (96)

For the remainingL − 1 componentsq`, ` = 2, 3, . . . , L,
consider the linear combinations

q1 + ϕq` =
L∑

i=1

ti + ϕt` − ϕ

`− 1

`−1∑

i=1

ti

=
(

1− ϕ

`− 1

) `−1∑

i=1

ti + (1 + ϕ)t`+
L∑

i=`+1

ti. (97)

For −1 ≤ ϕ ≤ ` − 1, all coefficients multiplyingt`, ` =
1, 2, . . . , L, in (97) are positive and their sum is

(
1− ϕ

`− 1

)
(`− 1) + (1 + ϕ) + (L− `) = L.

Therefore, sincet` ≥ α, we have

q1 + ϕq` ≥ αL, ` = 2, 3, . . . , L

which yields
{

q` ≤ q1−αL
|ϕ| , −1 ≤ ϕ < 0

q` ≥ − q1−αL
ϕ , 0 < ϕ ≤ `− 1.

The valuesϕ = −1 andϕ = `− 1, respectively, minimize the
domain of integration. Thus, we obtain that

−q1 − αL

`− 1
≤ q` ≤ q1 − αL. (98)

Finally, in order to have the GaussianN (0, 1) distribution, we
change the variables according toy = q1/

√
(σ1) and x` =

q`/
√

(σ`), ` = 2, 3, . . . , L, and obtain from (96) and (98):

αL√
σ1

≤ y ≤ ∞

−y
√

σ1 − αL

(`− 1)
√

σ`
≤ x` ≤

y
√

σ1 − αL√
σ`

, ` = 2, 3, . . . , L
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which yields the bound (58) in Theorem 3.
¥

D. Proof of Theorem 4

Following the same approach as in the proof of Theorem 3,
we consider the vector

q = tT (99)

where T is given by (90). From (91) it follows thatq`,
` = 1, 2, . . . , L, are independent zero-mean Gaussian random
variables with variancesσ` given by (92). In order to find the
integration limits we rewrite the matrix equation (99) as

q` = t`+1 − 1
`

∑̀

i=1

ti, ` = 1, 2, . . . , m− 1 (100)

q` = t`+2 − 1
`−m+1

`+1∑

i=m+1

ti, ` = m, . . . , L−2 (101)

qL−1 = bn

m∑

i=1

ti + (ξL−1 − λA1)
L∑

i=m+1

ti (102)

qL = bn

m∑

i=1

ti + (ξL − λA1)
L∑

i=m+1

ti. (103)

From the conditiont ≥ (α1(m) η1(n)) and (103) it follows
directly that

qL ≥ bnmα + nη(ξL − λA1). (104)

To estimate the limits forq`, ` = 1, 2, . . . , m − 1, given by
(100), we consider the linear combinations

qL + ϕq` =
(
bn− ϕ

`

) ∑̀

i=1

ti + (bn + ϕ)t`+1

+ bn

m∑

i=`+2

ti + (ξL−λA1)
L∑

i=m+1

ti, ` = 1, 2, . . . , m− 1.

(105)

If ϕ ∈ [−bn, bn`] then all the coefficients in (105) that
multiply ti, i = 1, 2, . . . , L, are positive and their sum is equal
to bnm + n(ξL − λA1). Therefore we have

qL + ϕq` ≥ bnmα + nη(ξL − λA1), ` = 1, 2, . . . , m− 1.

The valuesϕ = −bn and ϕ = bn` minimize the domain of
integration. Thus we obtain that

− qL − n(bmα + η(ξL − λA1))
bn`

≤ q`

≤ qL − n(bmα + η(ξL − λA1))
bn

, ` = 1, . . . , m− 1.

(106)

Analogously, to estimate the limits forq`, ` = m, . . . , L−2,
from (101), we consider linear combinations

qL+ϕq` = bn

m∑

i=1

ti+
(

(ξL − λA1)−
ϕ

`−m + 1

) `+1∑

i=m+1

ti

+ (ϕ + (ξL − λA1))t`+2 + (ξL − λA1)
L∑

i=`+3

ti

and conclude that for all values ofϕ in the interval ϕ ∈
[−(ξL − λA1), (ξL − λA1)(`−m− 1)], all the coefficients
multiplying t`, ` = 1, 2, . . . , L are positive and they sum up
to bnm + n(ξL − λA1). This implies that

qL+ϕq` ≥ bnmα+nη(ξL−λA1), ` = m, m+1, . . . , L−2

from where it follows that for our set ofϕ, the shortest
integration interval is

− qL − n(bmα + η(ξL − λA1)
(`−m + 1)(ξL − λA1)

≤ q`

≤ qL − n(bmα + η(ξL − λA1))
(ξL − λA1)

, ` = m, . . . , L− 2.

(107)

Finally, we consider the linear combination of (102) and
(103):

qL + ϕqL−1 = (1 + ϕ)bn
m∑

i=1

ti

+ ((ξL − λA1) + ϕ(ξL−1 − λA1))
L∑

i=m+1

ti.

Forϕ ∈ [−1, (ξL−λA1)/(λA1−ξL−1)] all coefficients on the
right-hand side are positive and their sum is equal tobnm(1+
ϕ) + n((ξL − λA1) + ϕ(ξL−1 − λA1)). By taking ϕ = −1,
from the condition thatt ≥ (α1(m) η1(n)), we obtain that

qL−1 ≤ qL − nη(ξL − ξL−1). (108)

Similarly, for ϕ = (ξL − λA1)/(λA1 − ξL−1) we obtain

qL−1 ≥ qL(ξL−1 − λA1) + bmnα(ξL − ξL−1)
ξL − λA1

. (109)

Inequalities (104), (106), (107), (108), and (109) define the
integration limits over the probability density functionf(q)
for obtaining an upper bound on the probabilityPr(t ≥ α).
In order to have unit-variance variables with theN (0, 1)
distribution, we introduce the following change of variables:
y1 = qL/

√
σL, y2 = qL−1/

√
σL−1, and x` = q`/

√
σ`,

` = 1, 2, . . . , L − 2, which yields the expression (59) in
Theorem 4.

¥
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