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An Improved Bound on the List Error Probability
and List Distance Properties

Irina E. Bocharova, Rolf Johannessdwllow, IEEE
Boris D. Kudryashov, and Maja Ld&ar, Student Member, IEEE

_ _ _ N as the cyclic redundancy check (CRC) code, is combined
Abstract— List decoding of binary block codes for the additive with an inner error correcting code. At the receiver, rather
white Gaussian noise channel is considered. The output of a list {5, using the ML decoder to decode the inner code, a list

decoder is a list of the L most likely codewords, that is, the L d d b | d to find a list of th t babl
signal points closest to the received signal in the Euclidean-metric ecoder may be employed to find a list or the most probable

sense. A decoding error occurs when the transmitted codeword is Sequences, which are subsequently checked by the outer CRC
not on this list. It is shown that the list error probability is fully ~ decoder. Only if none of the sequences on the list satisfies
described by the so-called list configuration matrix, which is the the CRC parity constraints, a retransmission is requested via a
Gram matrix obtained from the signal vectors forming the list.  faeqgpack channel. This scenario was investigated in [2], where
The worst-case list configuration matrix determines the minimum . . . . - .

list distance of the code, which is a generalization of the minimum the I'St'\,/'terb' algorithm was deve_loped for list decoding of
distance to the case of list decoding. Some properties of the list Convolutional codes. It was shown in [2] that already moderate
configuration matrix are studied and their connections to the list list sizes provide significantly lower error probability than
distance are established. These results are further exploited to decoding with list size equal to one. Similar applications of
obtain a new upper bound on the list error probability, which is it gecoding for speech recognition (where the outer CRC
tighter than the previously known bounds. This bound is derived - " . .

by combining the techniques for obtaining the tangential union ,COde is "replaced” by a Ianguagg processor) Werg investigated
bound with an improved bound on the error probability for a  in [3] where the search for the list of sequences is performed
given list. The results are illustrated by examples. with the tree-trellis algorithm (TTA)¢f. also [4].

Index Terms—List configuration matrix, list decoding, list Since the _IntrO(?iuctlon Of_ turbo codes_[5] more than a
distance, list error probability, tangential union bound decade ago, iterative decoding and detection algorithms have
received much attention. Iterative (turbo) schemes bypass
the prohibitively complex optimal decoding of the overall
concatenated code by employing simpler constituent decoders

The optimal decoding method that minimizes the sequengg separate entities which iteratively exchange soft informa-
error probability at the receiver is maximu@ posteriori tion on decoded symbols. Constituent soft-input soft-output
probability (MAP) sequence decoding, which reduces {&|S0) decoders can be realized with the BCJR algorithm [6];
maximum-likelihood (ML) decoding when all the sequencegowever, its complexity becomes prohibitively high for codes
(codewords) are priori equiprobable. When signalling overyjith large trellis state space. This is typically the case when the
the additive white Gaussian noise (AWGN) channel, ML dexonstituent codes are block codes, as is the case in the product
coding is equivalent to finding the codeword with the smallegbdes. In this contextjst-based SISO decoders have been
Euclidean distance from the received sequence. recently proposed as a low-complexity alternative to the BCJR

List decoding, introduced in [1], is a generalization of Mldecoding ¢f.[7], [8], and the references therein). These decod-
decoding—a list decoder is not restricted to find a singlag methods use a list of candidate codewords and their metrics
estimate of the transmitted codeword but delivers a list ﬂ; Compute approximate Symb0| reliabilities. In [8], the list is
most likely codewords, closest to the received word in terngptained by the bidirectional efficient algorithm for searching
of a given metric. Decoding is considered successful if th@de trees (BEAST) and it was demonstrated that a list of only
transmitted codeword is included in the list. a few most probable codewords suffices for accurate estimation

List decoding has found applications in concatenated codigg symbol reliabilities. More generally, the turbo receiver
schemes, often used in combination with automatic-repegtinciple is applicable to many communication systems that
request (ARQ) strategies: The outer error detection code, sigth be represented as concatenated coding schemes, where the

. , _ inner code is, for example, realized by a modulator followed
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I. INTRODUCTION



exact expressions for the error probability are most oftdimally, in the TSB, which is tighter than the previous bounds,
not analytically tractable, tight bounds are useful tools fdyoth approaches are combined and the re@lois a circular
estimating the performance of the system and for identifyingpne with the axis passing through the transmitted signal
the parameters that dominate its behavior. The earliest respitént. A detailed treatment and comparisons of various Fano-
regarding list decoding were obtained for codesembles Gallager-type bounds can be found in [23] and [24]. Recently,
using random coding arguments: Bounds on the asymptatieo new bounds that improve upon the TSB have been
rates of binary block codes used with list decoding over thpoposed: the so-called added-hyperplane (AHP) bound [25]
binary symmetric channel were investigated in [11], [12], anahd the improved TSB (ITSB) [26]. Both bounds are obtained
later also in [13] (for more references to related works séw upper-bounding the probabilitPr(e,» € R) using a
[13]). The asymptotic behavior of the list error probabilitgighter, second-orderBonferroni-type inequality instead of
was analyzed in [14] and [15], where bounds on the errtite union bound used in the TSB.
exponents were obtained. More recently, asymptotic boundsGeneralization of the bounds for ML decoding to list
on the code size and the error exponents for list decodingdacoding is not straightforward. A list error event is defined
Euclidean space were derived in [16]. with respect to a list of. codewords, which implies that the
When estimating the error rate performance of ML decodingirwise error events considered in ML decoding translate to
(that is, list decoding with the list of size one) forspecific (L + 1)-wise list-error events. Geometrical properties of list
code used for communicating over the AWGN channel, th®nfigurations were investigated in [27], and used to derive a
most commonly used upper bound is obtained by applying thaion bound on the list error probability. The notions of the
Bonferroni-type inequality which states that the probability dtuclidean and Hamming list distances were introduced and
a union of events is not larger than the sum of the probabilititsswas shown that these distances are generalizations of the
of the individual evenfs This yields the well-known union Euclidean and Hamming distances of the code.
bound, which upper-bounds the error probability by the sum|n this paper, we build upon the work of [27] and investigate
of pairwise error events. This bound is simple to compute amige properties of the so-called list distance and its relations to
requires only the knowledge of the code spectrum; howevertlie list configurations. Moreover, using the tangential-bound
is tight only at high signal-to-noise ratio (SNR) levels, whilapproach from [17], we improve the union bound of [27].
at low and moderate SNRs it becomes too loose due to ®inilarly as in [28], we first derive a tighter bound on the
fact that in the sum of pairwise error probabilities, the san@ror probability for agiven list and then obtain a new upper
error event may be counted many times. There have bessund on the list error probability by combining this tighter
several improvements during the past two decades that yiglsund with a modified tangential bound.
much tighter bounds than the union bound. These include the
tangential bound (TB) [17], the sphere bound (SB) [18], [19],
and the tangential-sphere bound (TSB) [20]. These bounds are
based on the well-known bounding principle introduced by In this section the notions of thiest distanceand thelist
Fano [21] for random codes and adapted by Gallager [22] feenfiguration matrixare introduced and their properties and
specific codes, where the received signal space is partitiorféttions are established. The results presented in the first two
into two disjoint regions;R and its complemenR¢, of few Subsections have mostly appeared in [27]; however, we present
and many errors, respectively. The error probabiliys) is them here in an extended form, supported by examples and
thus split into the sum of two error probabilities, when th&ore detailed discussion. In the last subsection, the relation
received signat resides inside and outsid®, that is,Pr(¢) = Of the list distance and thaverage radiusntroduced in [12]
Pr(e,r € R) 4 Pr(e,r € R°). The first term, referring to is discussed. This section serves as a basis for the derivation
the region of few errors can be upper-bounded usingian ©f the list-error probability bounds presented in Sections IlI
bound while the second term is bounded simply By(r ¢ and IV.
R¢). We call this principle the Fano-Gallager bounding; it is
also referred to as the Gallager-Fano bound [23] or GallageA’s
first bounding principle [24]. The TB for equi-energy signals
(which all lie on a hypersphere) was derived by splitting the LetS={si},i=0,1,..., M—1, be an arbitrary constellation
noise vector into radial and tangential components, which g |[S|= M equiprobable signal points; = (s{"s*) .. s\")
along and perpendicular to the transmitted signal, respectivélged to communicate over an additive white Gaussian noise
The few-error regiorR in the TB is a half-space where the °The probability of a union of eveni&;, i = 1,2 M can be expressed
magnitude of radial noise is not larger than a certain threshold. /7, v e
The SB is obtained by considering the spherical reqigrand asPr igl Ei | =Pr(E1) + Pr(B2 N EY) + Pr(Es N EY N E) + ... +

Il. GEOMETRICAL ASPECTS OFLIST DECODING

List Decoding

J ¢ ES C C )
1The probability of a union of eventss;, i = 1,2,...,M is Pr(Ea O EFNESN..O B, y), where denotes]g]e complement &;.
M M . /
equal toPr | U Ei | = 3. Pr(Ei) — Y. Pr(Ey N Eiy) + . + From here follows an upper bound used in [2B}: <iUl El> <Pr(Ei)+

i=1 i=1 1<iy <ig<M o e ) o ) . N .
(—1)M+1 ) Pr(E;, N EiyN...0 E;,, ). Truncating the right-hand Pr(bzmbg)fPr(bg ﬂ@; )+...+Pr(b]\?mb§1\{72), where the tlghtnegs
1<iy <in<...<ip <M of the bound is determined by the ordering of the events and the choices of
side expression after the first term yields an upper bound referred toiadicesji € {1,2}, jo € {1,2,3}, ..., jm—2 € {1,2,.... M — 1}.
the Bonferroni inequality of thdirst order, since it depends only on the This bound is a Bonferroni inequality of treecond ordersince it involves
probabilities of elementary events. pairwise joint event probabilities.



(AWGN) channel. Assume that th¥-tuple sq was transmit- where E is the symbol energy equal t6, = FE, R, where
ted. The discrete-time received signal is R = K/N is the code rate anf, is the energy per bit. All the
signal pointss;, i = 0,1,...,2% — 1, have the same energy,
r=s+mn (1) l|si|| = VNE, that is, they lie on a hypershere of radius
where the noise vectar consists of independent zero-mean/N E; in the N-dimensional Euclidean space. The squared
Gaussian random variables with varian¥g/2. We say that Euclidean distance between two signal points is proportional to

an error for a given lisC = {sy, s2,...,s.}, of sizeL < M, the Hamming distance between the corresponding codewords,

occurs ifsg ¢ £, which implies thats, is further from the thatis,

received signal than all signals on the list, that is, d(si,8;) = 4Fsdy (v, v;). (6)
d%(r,s0) < di(r,so), £=1,2,...,L (2) The minimum squared Euclidean distance of the code is

whered (r, s¢) = ||r—s,||? is the squared Euclidean distance 3 i = min {d3(si, s;)} = 4Eodmmin. (7)

between the received vectorand the vectos, from the list. Si78j

This is slightly pessimistic, since it implies that when (2) ighen the list configuration matrix can be written Hs =
fulfilled with equality, we always include the erroneod& 4F, Ty, whereI'y is thenormalized list configuration matrix
tuple in the list. By substituting (1) into (2) we obtain whose entries are

In+so = sel” < I, £=1,2,...L YHij = (dnoi + duoj — duij)/2 8)

which is equivalent to wheredy,;; = du(vi,v;). Examples ofl'y for the (7,4,3)

(n,sp — s0) > d%(s0,80)/2, ¢=1,2,...,L (3) Hamming code, the8,4,4) extended Hamming code, and
the (24,12,8) extended Golay code are given in Tables

where (a,b) = ab' denotes the inner product of the row || and III, respectively. Without loss of generality, we
vectorsa andb. assume that the reference signgl corresponds to the all-
Now let ¢, denote the inner product = (n, s, — so), { = zero codewords, = 0. Each row in Tables |-l corresponds
1,2,..., L. Then the vectot = (t1¢; ... tL) is a Gaussian g g distinct value of the Hamming list distandg; which
random vector with zero mean and covariance maitrix will be explained in the next subsection. Several configuration
B [tTt] _ %I‘. matr_ices can yield _the sgmﬁﬂ. For eagh list s_izeL, list
2 configurations are listed in the order of increasifig,. The

The entries of the, x L matrix T = {y;;}, 4,7 = 1,2,..., L, last column in the tables shows the number of IBt") with
are the same list configuration matrik. Note that the ordering
of the codewords on the list is irrelevant. Hence, for a given
= (8i —80,8; — 80) = (dby, + by —d5,)/2  (4) i i : i inati i
Yij = \Si 0,85 — 80) = (digg; + E0j Eij)/ (4)  list configuration,N(T") is the number of combinations with
wheredg;; = dg(si,s;) = ||s: — s;||. Thus,T is the Gram matricesT’ that are equal up to a permutation of the main-
matrix sz%he vecto?s;jz — 50 /= 132 L. We callT the diagonal and the corresponding off-diagonal entries.

list configuration matrix For list sizeL = 1, the normalized list configuration matrix
Let v denote the vector of the main-diagonal elements &fi reduces to codeword's Hamming weight, and values
the list configuration matrix, that is, of N(T') yield the distance spectrum of a code.
y ) For list size L = 2, consider, for example, thé7,4,3)
¥ = (dior dioo --- dior) - Hamming code from Table |. There are six possible weight

{combinations to form a list of two codewords, corresponding
to six list configuration matrice¥'y. Consider, for example,
lists with two minimum-weight codewordsdynin = 3.

P, (T') = Pr(t > ~/2). (5) There areN(T') = (]) = 21 such lists. All the minimum-

. 2 . . .
Consider a binary(N, K, dimin) block codeC = {v;}, weight codewords of the Hamming code have the pairwise
i=0,1,...,2K -1, of length N, dimensionk’, and minimum

distancedy,; = 4. Hence, the corresponding normalized list
. . . 3 1 . .
distancedimin. Since the distance spectrum is a property of genfiguration matrix isl'y = (1 3)- Next, consider lists-
linear code, we will hereinafter assume code linearity, althou@frtwo that contain one codeword of weightand one of
this condition is not necessary for the results presented Wgight 4. There are in totall x 7 = 49 such pairs, out of
this section. When the codé is used with binary phase which N(I') = 42 pairs have pairwise distanckand hence

shift keying (BPSK) to communicate over an AWGN channetheir configuration matrix id'y = g i . The remaining7

the binary code symbols,gj) € {0,1}, j = 1,2,...,N, are pairs are at the distance and their configuration matrix is

From (3) it follows that the list error probability for any lis
with given configuration matrix" is given by

mapped onto the symbols Ty = g 2 _
87(lj) =(1- 2v5j)) /E, In [27] the following union-type bound on the list error

probability for a given list sizd. was derived

SHereinafter, the relatiom > b between two vectors of the same length
L should be interpreted element-wise, thatds,> b holds if and only if Py < ZN(I‘)PEL(F) 9)
a; >b;,Vi=1,2,...,L. T



TABLE |
LIST CONFIGURATIONS FOR THE(7, 4, 3) HAMMING CODE

T Tn = T/(4E;) dn N
1 3) 3 7
(4) 4 7
(7) 7 1
31\ (3 2
2 <1 3) ; (2 4> 4.50 21, 42
12
5 : 5.33 21
3 0\ (3 3\ (4 4
(0 4)7 3 7 ’(4 7> 7 n
3 1 2
3 13 2 5 105
2 2 14
31 1\ /3 2 2
13 1), [2 4 2 5.40 35, 105
11 3) \2 2 4
4 2 2
2 4 2 6 35
2 2 4
3 1 3\ /3 2 0\ /3 2 3\ /4 2 4\ /3 1 0
13 3|, (2 4 2|, (2 4 4|, [2 4 4|, [1 3 2| |7 21, 42, 42, 21, 42
3 3 7/ \0o 2 4/ \3 4 7)°\a 4 7)o 2 1
3 0 3
0 4 4 o 7
3 4 7
31 1 2 /3 1 2 2
13 1 2] [1 3 2 2
4 RS I B O 5.50 140, 210
2 2 2 4) \2 2 2 1
31 1 1\ /3 2 2 2
13 1 1) [2 4 2 2
11 3 1]'|2 2 4 2 6 35, 140
111 3 \2 2 2 4
TABLE I

LIST CONFIGURATIONS FOR THE(8,4,4) EXTENDED HAMMING CODE

L Th =T /(4Es) daz | N(T)
i @) Z 14
(8) 8 1
1 2
2 (2 4> 5.33 84
4 0\ (4 4
(0 4> <4 8) 8 7,14
1 2 2
3 2 4 2 6 280
2 2 4
4 2 2\ (4 2 4
2 4 0],|2 4 4| |8 84, 84
2 0 4/ \4 4 8
40 4
0 4 4 00 7
4 4 8

where N(T') is the number of lists of siz& which have the B. List Radius and List Distance

same list configuration matriX'. It follows from (5) and (9)

that the list error probability can be fully described in terms Consider first maximum-likelihood decoding, that is, list
of the properties of the Gram matrik. For binary codes, decoding with list sizeL. = 1. The largest contribution to
this matrix determines the so-called minimum Hamming lihe error probability is obtained when the received peins
distance of the code [27HLmin, Which plays the same role €xactly between the two closest signal points, that is, signal
for list decoding as the minimum distance for maximumpPoints at the minimum Euclidean distanégin. Thus,r is

likelihood decoding. In the next subsection, the list distandge center of this constellation df + 1 = 2 signal points.
is defined and illustrated by examples. Next, we generalize this approach to arbitrary list size



TABLE Ill
LIST CONFIGURATIONS FOR THE(24, 12, 8) EXTENDED GOLAY CODE

L I'y =T/(4E;) dyr N(T)
1 (8) 8 759
(12) 12 2576
(16) 16 759
(24) 24 1
2 8 4 10.67 106260
4 8 -
g8 2\ /8 6 )
<2 s) g 12) 12.80 170016, 340032
8 4 12 8
1 12) 08 12) 14.40 1275120, 63760
8 0\ (12 6\ (8 8
(0 8>,<6 12>,<8 16) 16 11385, 2040192, 22770

Let S be an arbitrary constellation af|= M signal points and the centep of the sphere§7is given by
in the Euclidean space, and &y, be an arbitrary subset

St = {so, s1, ..., sp} € S of L + 1 signal points. Then, ) Z; : zg
the_mlmmum list radiusof the constellationS, for a list size p—so=-~T"'8S, S — _ . (12)
L, is defined as 2 :
S, — 8o
. . Proof: Since all the points o}, lie on the sphere”
R min £ d 0y . 10 . i ~ A L )
L T oglk%XL{ e(sk )} (10) its radiusR;, satisfies

Ri(D)=|lp—soll=|lp—sd|, ¢=1,2,...,L. (13
For a given signal subse&i;, the list radius is the radius of £(T) = llo = sol| = llp = & (13)

the smallest sphere” that contains (encompasses) the poinfsfom here it follows that

of Sy, (that is, the points li@n or insidethe sphere), and the

minimizing » is the center of this sphere. Minimization over

all possible subsetS;, C S yields the smallest list radius for awhich can be rewritten in vector form as

given list sizeL. Thus, if the noisen is such that the received 2p— 50)ST = (15)

signal pointr is closer thanRy, ,,;, to the transmitted signal p 0 v

point, it is guaranteed that the transmitted signal point will behere S is given by (12). Note thasS™ =T.

among theL points closest to the received signal and the list Now let ¢ = (¢1 ¢z ... (1) be a vector of coefficients of

decoder will not make an error. Clearly, the list radius is thiae decomposition of the vectar— s, in the L-dimensional

distance from the transmitted signal point to the closest poipasis consisting of the linearly independent vecters- s.

of the list error decision region. Like the minimum distancelhen we can write

the minimum list radius is also a constel_latlon Property. p— 50 = Ci(s1 — 50) + Ca(52 — 80) + - - + Co (51, — 80)
Let sp € Sp be the reference (transmitted) signal, and let

T be the list configuration matrix corresponding to the sign&r, equivalently,

subsetS;. Assume that the vectors, — s, ¢ = 1,2,.... L p—3s0=¢(S. (16)

are linearly independent; then the matEixhas full rank. The T . .

following theorem from [27] specifies the center and the radiuSSUbStItUtIng (16) into (13) yields

of the circumspheres” of the setS;, (that is, the sphere such  p (1) = | /|[p — 5,2 = \/CSSTCT _ \/CTCT_ 17)

that all the points ofS;, lie on the sphere). We also present

the proof, in an extended form, as some of its steps will prof&om (15) and (16) it follows tha@(T' = ~, which yields

useful later on. 1

= —~AT L. 18
Theorem 1:Let S, = {so, s1, ..., s} be a set ofL + 1 ¢ 27 (18)

signal points such that the vectars—so, £ = 1,2,..., L, are  Substituting (18) into (16) and (17) yields (12) and (11),
linearly independent. Ll be the corresponding Gram matrixrespectively, which completes the proof.

2(p — 50,80~ 50) = ||s¢ — s0l|” (14)

of the vectorss, — so, and lety be the row vector of its main- ]
diagonal elements. Then the radilig of the circumsphere” Clearly, if the vectorss, — s¢ are linearly independent, the
of Sy, is given by sphere. is L-dimensional. If, however, some of the vectors

are linearly dependent, the Gram matfixs singular, that is,
~ 1 ] det(T") = 0, and the radius i®;, = oo, since the signal points
Rp(T) =5 \/aT™ " (11) s, lie in a reduced subspacef(Examples 3—4 below).



For a given signal sef;, the circumsphere57, may, in pyramid, whose vertex i, and whose semi-infinite_edges
general, not be the smallest sphere that encompasses the poimsalongs, — so. If the centerp of the circumsphere” lies
of S;, (which is the sphere that determines the list radius). in this pyramid, then? is the smallest sphere that determines
Let . denote the smallest encompassing sphere of the #ed list radius. Otherwise, there exists a smaller sphere whose
S1, such that the reference poisg lies on the sphere, andcenter is inside this pyramid, and it is found by (19).
the remaining points,, £ = 1,2,..., L, lie either on or inside  When the vectorss, — so, £ = 1,2,...,L, are linearly

& (more precisely, at least one more poit € Sz, other independent, the inverse of the list configuration matrix is
than sg, will lie on such a sphere). Assume that the vectoggiven by

sy — sg are linearly independent. Then it was shown in [27] 1o 1 3T
that the radius?;, of the sphere¥ is given by = det(m) j(T)

1 - where adj(T") is the adjoint matrix ofI'. Furthermore
r)= Ve 2 A=A 19 ) - < e ’
Ru(T) 1:7311?2{120 { oV 1Thz 71} (19) det(T") > 0. Hence, condition (20) is equivalent to

where the maximization is performed over all signal subsets ~adj(T') > 0. (1)

7 C &, that contain the reference poist,, such that their

corresponding configuration matrlk; and its main-diagonal In fact, this condition is more general, since it is also appli-
vector v fulfill the condition v;T'z* > 0. Note thatT'; is cable for configurations where some of the vectsrs- s

a main submatrix of the configuration matidkx obtained by are linearly dependent. Hence, the expression (19) is easily
deleting those rows and columns that correspond to the siggeheralised to hold foany signal setS;, as:

points not included in the chosen sub3et

Theorem 1 and formula (19) imply the following: R, (T) = max {;\/ yzrzlﬁ} . (22)
o The list radiusRy, is the largest radius of the circum- FiazadiTz)=0

spheres of all the signal subséisuch thaty;T'7' > 0. Note that for a singular list configuration matr, the list
o Let 7,,.« denote the signal subset that yields the maxadius is not necessarily infinite.

imum in (19) and thus determines the list radius. Then For a given list configuratio;,, a list error with respect to

all the points fromZ,,,x lie on the spheres and the the transmitted signad, occurs if the received signal point

remaining points, fronsy, \ Zn.x, lie inside. falls in the error decision regio®, which is the intersection
o The centerd of the sphere? is given by €f. (12)) of all pairwise error decision region®,, ¢ = 1,2,...,L,
1 . between the signal points andsg, that is,D = ﬂle D,. The
0 —so = 3 Vo X T ST point of the regiorD that is closest to the signal poig§ is the
whereSz___ is the matrix whose rows arg — sg, s, € centen_9 O.f the sphereZ._lf the li.St radius (2.2) isi2,,(I') = oo,
T e the pairwise error decision regions do not intersgyt,, Dy =

(. For such a list configuration, the probability of a list error
_ for a given transmitted signad, is zero since there is no
R, (T) < RL(I) point in space that is simultaneously closer to thpointssy,
¢=1,2,..., L than to the point, (see Example 4 and Tables
I and Il for L = 3).

The minimum list radius (10) for list sizé of a signal
constellationS is obtained as
Hence, when determining the list radius of a signal

e SinceZ,.x C Sz, then

with equality if and only if the list configuration matrix
T fulfills
AT > 0. (20)

set S, the first step is to check whether condition Ry, min Zmrin{RL(I‘)}
(20) is satisfied. If so, then the circumsphefe is the L . _
smallest encompassing sphere aRg(T) = R, (T) = where the minimization is performed over all possible list

% /77I“17T. Otherwise, when at least one componerﬁpnﬁguraﬂon matrices foralist_sizle, '_[hat _is, over all po_ssible
of 711_1 is negative, the sphere’ and its radiusi,, () signal subset§; C S. The Euclidearist distancefor a signal
are determined by a reduced signal Egt.. C Sy.. subsetSy, with a list configuration matrix" is defined as

In some cases, the negative componentgldt! indicate A
which points should be removed fro§;, to obtain der(F) = 2R (T). (23)
the setZ,.x (see Examples 2, 3, and 5). However, iThus, from (19) it follows that the squared Euclidean list
general, there is no one-to-one correspondence betwegstance is
the negative components " ! and the setS;, \ Zimax
(see Example 6). dip(T) = max N {v:T7'vF}. (24)
Note that the condition (20) is equivalentdo> 0 (cf. (18)), Fiyzadifz)=0
that is, all the coefficients of the decompositionmf- s, in  The minimum Euclidean list distance of the signal constella-
the basis sefs, —so}, £ = 1,2, ..., L, should be nonnegative.tion S is then
The set of points in space described by the linear combination ]
¢S, where¢ > 0, constitutes anl.-dimensional unbounded dELmin = 2R min = H}ln{dEL(I‘)}-



When the signal constellatiof is a set of bipolar signals Thus we have
corresponding to the binary linear codewe can also define

the Hamming list distance of a codg for a list sizeL, as ~vadj(T') = (4 10) (1% _46) =(-20 16) #(00).
s A5 (T) —1, T The squared radiug? of the cicumsphere” is iver(lzg)
(D) = = = o, K, s YTz Yz ) (12): A ’ P e
The minimum Hamming list distance of a code is the(ﬁ5) R — i,yrﬂ,yT _ i (=5 4) <140) _5
¥ Lonin 2 d2E4Lénin - R%ﬂin_ and the coordinates of the cenjerare, according to (12),
The examples of Hamming list distances are shown in Tables p= %VF_IS - % (=54) (tl) §> =21

I-IIl. In general, the Hamming list distance is not an integer.

The following examples illustrate the list distance and th[%
list radius for a few signal configurations.

However, the point of the list error regidd which is nearest

sg is not p but @, or, equivalently, the sphete’ is not the

smallest sphere which encompasses the three signal points.
Example 1:Consider the set af+1 = 3 signal pointsS = This is indicated by the negative sign of some of the elements

{0, s1, 52} corresponding to the minimal weight codeword8f v adj(T’), as found in (26). Hence, in order to find the list

that have minimal pairwise distancés= dgmin, as illustrated radius and the list distance, we need to reduce the size of the

in Figure 1. Ifs, is the transmitted signal point, then a list errolist and find the subset of signal points for which the distance

(for list size L — 2) occurs if the received signal pointfalls YzT'z 77 is maximized. In our case, the signal point has

in the regiorD marked in the figure, where both signalsand larger distance frons, and thus the signal set is reduced to

s, are closer thasy. If, however,r is outside regiorD, then Zmax = {So,s2} for which 'z =~ = (10). The

so will always be one of the two signal points closesttand

hences, will be included in the list. The smallest sphere that

sphere encompassing the points does not coincide with the sphere on which
all the points are lying, and thu®;, # Ry, .

encompasses the three signal points is the circumsphere, that ) I
is, = ., and its centep is the center of the equilateral ] s
triangle. This is the point of the regioP which is closest to s )
sg. The Euclidean list distance i&; = 2Ry = 2d/\/§, and %’sl
it is invariant with respect to enumeration of the signal points. " % ) \
) T / 2,
s* Ry P
0 s [E—
A DN, ; :
\ T p ! Fig. 2. Configuration of three non-bipolar signals for which the smallest

7T sy

S0

Fig. 1. List configuration and the list error regi@nfor a list of sizeL = 2 /,' 50
with signals at equal pairwise distances. (Redldh and points™* illustrate

the bound (42).) ‘j'l Sy \l
A 77 //
Example 2:Consider now the se§ = {so, s1, s2} of non- Ri=R; D
bipolar signals shown in Figure 2, where the signal coordinates R
aresp = (0 0), s; = (0 2), andsy = (1 3). The squared
Euclidean distances ar#,,, = 4, d,, = 3% + 1? = 10, and
d,, = 2. The corresponding Gram matrix is, according to

(4),

&1 2

Fig. 3. The same configuration as in Fig. 2, but with changed reference signal
T = 4 6 point sp: in this case the two spheres coincide and the list error decision region
—\6 10/ D has a completely different shape compared to the previous case.



squared list distance is thus

d?EL = d%oz = 10,

and the list radius isR, = \/d} /4 = V10/2 = \/5/2,
which is smaller tharR;, = /5. The center of the spher#,

of radius Ry, is given by

0 = §7In1ax I‘Imax SI[U;“X

DO =

(13)=(5 3).

and the list radius is?;, = \/d%; /4 = 1. The center of the
sphere.” is the points;, which is formally obtained by

1 L 1

0= §'YImeImax 5 (02)=(01)=s;.

ST ax
Example 4:Consider the signal constellation shown in

Figure 5, with the signalssy =0, s; = —1, and s, = 1.

This configuration corresponds to the one from the previous

example, with changed reference point. The pairwise decision

Note that, unlike in Example 1, the list distance for theegions, indicated by the two dashed lines, do not intersect,
configuration in Figure 2 is not symmetric with respect to théat is,D = Dy N D, = (), which implies that the probability
signal points, that is, it changes if we change the referengtlist error is zero (because the received signal point can never
signal point. For example, if we exchange signal poists be closer to boths; and s, than tosg). This corresponds to
and so, we obtain the configuration as illustrated in Figure 3an infinite list distance as we will now formally verify. The

The shape of the error decision regiBhis changed and, in list configuration matrix is

this case, the two spheres coincide. Thus, the list distance is

determined by the radius of the
4R? = 20.

circumsphere, thatljs, =

r:(ﬂ zv_

Example 3:Consider the signal constellation shown in FigThe matrixI is singular, thuslet(I') = 0 and R, = co. Now

ure 4, with the signalssg

Euclidean distances aw,,, = 1,

(O 0), S1

d0 = 4, and d

B2 = L

and the corresponding Gram matrix is

1 2
r=(y ]

).

The matrixIT' is singular due to linear dependency of the

signals. Sincelet(T') =0 it follows from (11) thatR;, = oo,
i.e., the circle on which the signal points are lying is a straig

line.

Let us now determine the list radiu®;. We have that

yadi(r) = (1)

J) =iz

which indicates that in order to obtaiR;,, we need to reduce
the list size, as in the previous example. The signal psint

has larger distance from, and thus the signal set is reduce

to Imax = {30, 82} for which I‘I
squared list distance is thus

max

= (4). The

= Vax

d%L = d]2-302 = 4;

e SIL"/
0 T l}]_:(X)

Fig. 4. List configuration with
linearly dependent signal points
for which R;, = oo, but the list
radius Ry, is finite.

Fig. 5. List configuration with
linearly dependent signal points
for which R, = R, = co. The
list error probability is0.

(0 1), and We consider the vectoy adj(I'):

s = (0 2). The intersection of the pairwise error regions
is D = D; N Dy = Dy, as shown in the figure. The squared

yadim) = (1 )] 1) =2z (00)

Since the elements ofyadj(I") are positive, we conclude
that the submatrixd’z which maximizes the quadratic form
7[‘17T is the matrixT' itself, and thereforelg;, = 2Ry =
2RL = Q.

Example 5:Consider the set of. + 1 = 4 bipolar signal

iﬂoints corresponding to the codewords

vo = (000000)
vi = (111110)
ve = (011111)
vs = (011000).

The pairwise Hamming distances atlgrg; = dpge = 5,

(ﬁ]H03 = 2, du1o = 2, dg13 = dugoz = 3, which yields the
|

st configuration matrix
5 4 2
F=4FE,[4 5 2
2 2 2

The L =3 dimensional circumsphere has the squared radius
R? = 14T 'yT=1.4-4E,. However,
vadj(T) = (6 6 —2) #(0 0 0)

which implies that the list distancég; is determined by

a reduced signal set. In our case, we need to remove the
sequencevs in order to maximize the quadratic form (24)
and, thus, fotZ,,.x = {vo,v1,v2} we obtain

A, =~z T7' ~F  =556-4E,

and the squared list radius 187 = dg; /4 = 1.389 - 4E,. A
sphere of the radiu®; contains the signal points froffi, .«
on its surface, whilas lies inside.



Example 6:Consider a set of. +1 = 4 points in the three- block code with the minimum Hamming distan€g.,;,. Then
dimensional spacey;, = {so, s1, S2, 83}, where the reference the quadratic formdy(T') = 'yHI‘I}l'yE has the following
point is the origin,so = (0 0 0), and the remaining points areproperties:

s1 = (434
Sy = (4 3 2)
ss = (311).
The list configuration matrix is
41 33 19
'=133 29 17
19 17 11

The circumspheré;of the setS;, has the radiug;, = 4.32,
and it is illustrated in Figure 6. Since

AT ' =(1.82 —5.2)#(000)

the list radius is determined by a reduced signal set. Using
(22), we find that the smallest spheré encompassing the

signal points contains only signalg,., = {so,s1} on its

surface, while the pointSy \ Z,.x = {82, s3} lie inside. Note
that only the third element ef "' is negative; however, both
so andss are inside”. The sphere? is illustrated in Figure
6. Pointssy and s; are visible on the intersections of the two

spheres. The corresponding list radius is

1
Ry = ix/fz 3.2.

Fig. 6. The circumspheré’N’ and the smallest encompassing sphefeor
the signal set from Example 6.

C. Properties of the List Configuration Matrix

Hereinafter, we consider sets of linearly independent bipolar

code signals,, / = 1,2, ..., L, for which the matrixt" fulfills

the conditionyI'"* > 0. The following theorem establishes a

connection between the Hamming list distarkg, (T'y) and
some properties of the matriky.

Theorem 2:Let T'y = {yu;,}, i,j = 1,2,...,L, be the

normalized Gram matrix (with entries given by (8)) of linearly

independent bipolar signal vectors — sy of the binary

1) All vy,; are integers, andm;; > vu;; > 0.

2) TI'y is positive definite.

3) If A\nax is the maximal eigenvalue of'y, then the
Hamming list distance satisfies

| yell* 2
dur(Tu) > ————= > ||7ull”/Amax-
7HFH7E "

4) For any binary code with the minimum Hamming dis-
tancedymin, the minimum Hamming list distance is

2L
d min Z —d min
HEL L+1 ™

where equality is achieved for eve,,;,, with a matrix
T'y whose main-diagonal and off-diagonal elements are
Vi = dHmin andyHij = dmmin/2, respectively, if such
a matrix exists.

5) For any binary code with oddy,,;,, the minimum
Hamming list distance is

d > 2L g+
HLmlIl_L+1 Hmin L—|—1

where the equality is achieved for odd list sizeand a
matrix 'y with main diagonal elements

dHmin, 1<i< L
THii = L+1 .
dein+17 T+1SZSL
and off-diagonal elements
(dein - 1)/27
THij =
(dein + 1)/2a

if such a matrix exists.

if YHi = VHjj = dtmin
otherwise

Remark:From Statement 4 of Theorem 2, it follows that the

ratio between the minimum Hamming list distankg, i, and
the minimum distance of the codg,;, (Whendy,,;, is even)

dHLmin > 2L )
dein L +1

The ratio on the right-hand side of the above inequality was
derived in [2] using simplex geometry and defined as the
asymptotic list decoding gaifover ML decoding).

Proof:

1) The entries of the matriX'y are given by (8). Since
the Hamming distance satisfies the triangle inequality,
we immediately obtain thaty,; = (duo; + duo; —
d;;)/2 > 0. Furthermore, we have

duo; + duoj — duij

YHi; — VHis = D) — duo;
_ duoj — (duo; + duj) <0
5 <

which yieldsyy;; > ;5 > 0.1n order to prove that the
entries of the matriX'y are integers, it suffices to verify
thatdug; + duo; — du;; is always an even number. This



2)

3)

4)

follows directly from the fact that when two codewords
have weightsdy,, and du; of the same parity (both
odd or both even), then their pairwise distanksg; is
always even; while for codeword weights of opposite
parity, the pairwise distance is an odd number.

The matrixI'y is a Gram matrix of linearly independent
vectors (s; — sg), normalized by4E,. Hence,I'y is
positive definite ¢f. Theorem 7.2.10 in [29]).

According to the Kantorovich inequality [29], for every
positive definite symmetric matriT'y and any non-
negative row vector: > 0 we have

4)\minAmax
()\min + )\max)2 -

(aT)? <1 (27)
(xTpxT)(xlg'zT) ~

where A\, and Ay are the smallest and the largest
eigenvalue ofl'y, respectively. By applying the right
side of the Kantorovich inequality (27) witlk = ~
we obtain

[yull*

dur(Ew) YuTuvh
H H

=yula' i >

Furthermore, according to Theorem 4.2.2 in [29],
Yaluvg < [|7al*Amax- Thus we obtain

[yull*

|lyall?
| '
Y HYH

>\max

>

dur(Tu) >
The matrixI'y can be decomposed as follows
'y = DVD"

where D is the diagonal matrix with entrieg~s;; and

V = {wHi‘j/,/wHiinjj}, i,j = 172, A 7L. Then the
Hamming list distance is
dur(Tn) =vuly'vi = (D) V™ (D 'vg)
—_———
= oV T
wherev = ")’H_l)i1 = (\/lel v/ WH22 .- - ‘/wHLL)'

Since V is positive definite ancb > 0, we apply the
Kantorovich inequality (27) and obtain

[lv]*

vVoT’

dHL(FH) =ovV"~ 1’UT >

Since

|lv||* = (ZVW) (tr(Tn))?
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and

L L
VHi YH

L L
" dro; + duo;

i—1 i=1 j=1

L L L L
= 2ZZdHOi_ZZdHij
=1 i=1 j=1

=1 1i=1

— duj

N | =

1
=3 2Ltr(Ty) —

Z Z drij

=1 j5=1

= Ltr(Tu) — %ZZdH”

=1 j=1

we obtain
(tr(Tn))®
L L :
Ltr(Tu) — 3 Zj z duj

Since the pairwise distance between any two codewords
satisfiesdy;; > damin, for i # j, anddg;; = 0, for
i = 7, then we have

L L
>0 duy; > L(L = 1)dumin

i=1 j=1

which, combined with (28), yields

(tr(lﬂH))2
Ltr(FH) L(L - ]-)dein .

By taking the derivative of the right-hand side of (29)
with respect totr(I'y) we find that its minimum is
achieved fortr(T'y) = (L—1)dgmin- On the other hand,
all the diagonal entries df'y are yu,; > dumin, Which
implies thattr(T'y) > Ldgmin must hold. Clearly, in
this range oftr(T'y), (29) is a monotonically increasing
function of tr(I'y); hence, its minimum value is ob-

tained fortr(T'y ) = Ldgmin and we obtain the following

bound
2L 2L,
L+ 1 Hmin -

Equality in (30) is achieved for a code with even mini-
mum Hamming distancéy,,;, and a list configuration
matrix of the form

dur(Tg) > (28)

dur(Tu) > (29)

dur(Ty) > (30)

dHmin dHmin
dHmin 5 g
dHmin dHmin
HT dein ce HT
'y = (31)
dHmin dHmin
S S dHmin

We call this matrix the worst-case list configuration
matrix; it corresponds to the list of codewords with
minimum weights and at minimal possible pairwise
distances, which are, for evely,,;,, all equal tody,,
(cf. Tables Il and lll). It is easy to verify that matrix
(31) satisfies (30) with equality.



5) If the Hamming weights of two codewords have the

same parity (both odd or both even), the Hamming
distance between them is always even. Hence, if a code

11

otherwise. If the list sizd. is even, the worst-case matrix
is obtained in the same way, withh = [(L +1)/2];
however, in this case, the lower bound (35) on the list

has odd minimum distanegy,.in, the pairwise distances distance is not tight.

between codewords of weight,,;, must be even, that ™
iS, dni; > dimin+1. Then, ifdum, is 0dd, we conclude

that the worst-case list configuration matrix (31) cann@y  canter of Mass and Average Radius of a List

be constructed and the bound (30) is never tight.

To obtain the worst-cas&'y and the corresponding
minimum list distance whedg,,;, is odd, assume that
in a list of L codewords there arev > 0 codewords

For a given setS;, = {so, s1, ..., s} of L + 1 signal
points, thecenter of masss located in the poing given by
of odd weight and. — m codewords of even weight.

1 L
ST
The pairwise distances between the codewords of same- j=0
parity weights arely;; > dimin +1, while for opposite-  The average squared radiug?__, introduced in [12], of the
parity pairsdu;; > drmin, Which yields signal setS;, is the average squared Euclidean distance of the
signal pointss; € Sy, from the center of mass, that is,

(37)

L L
i=1j=1 R%av = mZHS’L_EHZ = mZdQE(SZ,E) (38)
L(L—1)dgmin+m(m—1)+(L—m)(L—m—1). =0 =0

(32) The average squared distance between the signal points from
. . . a setSy and a given reference point is often referred to as

FO”(.)W'ng the same procedure as |n.the PrEVIOUS Ca3fy moment of inertiaof S, cf. [16]. Clearly, the moment of

we mse_rt (32) |nto. (28) and, by. taking the denvatlv?nertia is smallest when the reference point is the center of

of the right-hand side of (28) with reSpeCt to(FH).’ masss, and then it equals the average squared radifis .

we conplude th.at the bound (28) is a monotonically From the above definitions it follows that the average radius

increasing function ofr(I'y) for is never larger than the list radius for the given ligf with

1 I E the configuration matriX’, that is,
tr(I‘H) > — dy;
L ;; ’ R} (T) > Ri,,. (39)
) 2 . . . .
> (L = 1)dstmin + 2 o L — 1.(33) By substituting (37) into (38) we obtain that the average

L squared radius can also be written as

On the other hand, since the odd-weight codewords

L
. . ; 1 2
from the list have weightslg; > dumin, While the R} = S; § st

1
L+1§’

remaining(L —m) even-weight codewords hawg,; > L+l §=0
dimin + 1, thentr(Ty) has to fulfill 1 L L 9 L L
2
= — S|l — S, S
tI'(I‘H) Z demin + (L - m)(dein + 1) (L + 1)2 ; ; || || (L + 1)2 ; j;0< ]>

= L(dein + 1) - m. (34)

The right-hand side of (34) is always larger than the
right-hand side of (33); hence, we conclude that the

1 L L 2
) 30

~

right-hand side of (34) minimizes the bound (28) on _ 1 XL: (Hs“g — (s, Sl>>
the list distance. Thus we obtain (L+1)* = = ‘ B
2(L(dymin + 1) — m)? L L
dur(Tu) > 5 (35) _ 1 _
L(L + 1) (dgmin + 1) — 2m = 2(L+1)2;§0|\31 85|

which holds for all list configuration matriceSy;. By L.
taking the derivative of (35) with respect to we can 1 Z Z 9
= — dg(si, s5)

conclude that, assuming odd, the minimum of the 2L+1)? ==
bound (35) is achieved for. = (L +1)/2, which yields ) s I
2 2
2L L—1 Z 2 2L<L + 1)dErnin = dEInin
Ty) > —— dyin + ———. (L+1) 2(L+1)
dur(Tu) > L+1dH + 1 (36)

which, combined with (39) yields
Equality is achieved for the worst-case list configuration

matrix with m = (L + 1)/2 diagonal elements equal to > Emin
Vi;; = dHmin @NdL—m elementsyy,; = dgmin+1, and 2(L+1)

with the off-diagonal elements equal{@;; = (dumin—  With equality when al(Z + 1) points have minimum pairwise
1)/2if yu;; = Y1 = dHmin, aNAYH;; = (damin+1)/2  distancesdemin, that is, when they form ar.-dimensional

L
RI(T) >R}, > -—di (40)
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regular simplex. In this case, the center of massSof The derivations are based on the following two lemmas,
coincides with the center of the circumspher&gf that is, the which correspond to the worst-case matiixfor even and
minimum average radius is equal to the minimum list radiusdd minimum distance, respectively.

Ld2. . Hereinafter, we will use notation%,,, and 0., to de-
R%av i = R%min = ——-Emin_ note vectors containingn ones andn zeros, respectively.

_ Q(L_+ 2 Thus, for example, vectofa ¢ a b 0 0) can be written as
When the signal vectors; € S;, are bipolar sequences of a1 b 0z)) = a1z bla 0()

binary block code& with minimum Hamming distancé,,;.,,

then (7) and (25) hold; hence (40) yields the bound Lemma 1:Let K be anL x L matrix with the following
oL structure
dHLmin 2 dHL (F) Z 7dein . )
(L + 1) 1’ 1=
. L . K:ﬁ{km}7 klj: . . 27]:1727' 7L
which coincides with Statement 4 of Theorem 2. Statement 5 K, 1#]
of Theorem 2 can be proved similarly, via the average radius, (43)
taking into account the parity of pairwise distances. where 5 and x are arbitrary constants. Then its eigenvalues
The average radius and the moment of inertia of a list weage
used in [12] and [16] ¢f. also [30]) for deriving asymptotic
bounds on the code rates and list error performance. A= B+k(L-1)) (44)
M = PB(l—-k), £=2,3,...,L (45)
1. UPPERBOUND ON THELIST ERRORPROBABILITY
FOR AGIVEN LIST with the corresponding eigenvectors
Using properties of the list configuration matdiXxwe can _ a1 =1 (46)
upper-bound the list error probabilifyr(t > ~/2) in (5). In 1= R €

_ 1

, -1
Per(T) =Pr(t >~/2) < eXP<—dEL(F)/(4N0))- (41)  Lemma 2:Let K be anL x L matrix of the following

From (11), (13), and (23) it immediately follows that, for @&tructure

given list configurationl’, the probability of list error is not K = ( A B) (48)

T
larger than the probability that the noise component along B C
p — 8o is larger than the radiug, that is,

[27] the following Chernoff-type bound was proved Ty (—1(e71) /—1 O(Lfé)) ,£=2,3,...,L.(47)

where A is anm x m matrix of the form
P.(T) < Pr (y > EL(F)) < Pr(v > Ri(T)) il
A:{aij}, aij:{ 0 J i,j:1,2,...,m (49)

where a, i#j’

V:<n7p—80> 7

[lp — soll C is ann x n matrix, withn = L — m, of the form
is the noise component alopg-sy. The above inequalities are o
met with eq_uallty f(_)rL =1 Sincev is a zero-mean Gaussian ¢ _ (e}, ¢y = Co, l —J. . ij=1,2,....n (50)
random variable with variancd, /2 we obtain ¢, 1#]
R (T’ Es and B is an matrix whose elements are all equalito
&dﬂé@( ﬁé)=@<2@m>N) (@) mxn “
0 0

B:{bij}, bij:b7 i:1,2,...,m,j21,27...,n
where Q(z) = 1/v2r [ exp(—y?/2)dy. It is easy to see (51)
that the bound (42) is tighter than (41). Figure 1 illustrates thﬂqereao, a, ¢y, ¢, andb are arbitrary constant values.
worst-case list configuration fdt = 2. In this case, the bound  Then the eigenvalues d& are
(42) corresponds to the probability that the received signal falls

into the decision regiorD*, which is the upper half-plane &=ap—a, £=1,2,...,m—1 (52)
cpntain"ing the sp.here ce_nt?r “Note tha,:t if s* denotes the Ce=co—c, L=m,m+1,...,L—2 (53)
virtual "average signal point” ("average” of the sgt;, s2}) (Aar+Acy) 1 5

as shown in Figure 1, then the half-plaf corresponds to  &r-1 = ~——5—— — 5\/(>\A1 —Ac1)” +4b>m?n (54)
the error region for the pairwise error event betwegnand Aas + A 1

5 g = Pt 1o ac)? + apmen (s5)

Now we will derive a new upper bound aR..(T') for the
worst-case list configuration, which is tighter than the bourdhere Ax; and Ac; are the dominant eigenvalues of the
(42). We follow an approach similar to the one described imatricesA and C, respectively, that is,

[28]. First we orthogonalize the noise components and then
estimate the variances and integration limits for the system of Aa1 = ao+a(m—1) (56)
the transformed noise components. Aci = ¢o+c(n—1). (57)
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Furthermore, the corresponding eigenvectors of the matrix we(y1) y1VoL — o, )

are bn./o,
ue(y1)
v = —
Ty = 1(—1g€0L_A4)7 0=1,2,....m—1 e(yn) 1
¢ 1() ( : ( ) yl\/O' _¢(0‘a77)
Ze(Y1 Y =
Ty, = y— (O(m) —L—my1) £—m+1 O(L,@,Q))7 (€L — Aa1)Var
z
l=m,m+1,...,L -2 welyr) = _E_zr(ihll
_1 = (bn-1, “1—Aa1) 10 _ _
o ( "l (Er-1=Aa1) (L)) where the values of,, ¢ = 1,2,..., L, are defined in the
= (bnLim) (E2=2a1) 1) following table

The proofs of Lemmas 1 and 2 are given in Appendix. Now we ¢ g¢

are ready to state the following two theorems which we use to L<t<m—1 | (a0 —a)(l+1)/¢

obtain upper-bounds on the list error probabiliy;, (T'), for m<t<L=21 (e~ 0)2(62* m+2)/(€—m+ é)
the worst-case list configuration, for even and odd minimum t=L-1 5L—12(b2n m+n(€r—1 — ;\Al) )
distance, respectively. (=L=m+n | & (®n’m+n(éL — Aa1)?)

Theorem 3:Let ¢t be a Gaussian random vector of lendth \where A, ;, Acy, &1, and¢y, are given by (56), (57), (54),
with zero mean and covariance matiig given by (43) from gnd (55), respectively.
Lemma 1, and letx = a1 be a vector ofL constant values . . .
a. Then the probabilityPr(£ > «) can be upper-bounded by Proofs of Theorems 3 and 4 are given in Appendix.

Consider now, for example, the worst-case list configuration

L ue(y) for a code with even minimum Hamming distanég,,;,. The
Pritzo)< [ - f( )] / f(x)dz | dy  (58) corresponding matrif is specified in Statement 4 of Theorem
=L =2 \Yve(v) 2 and the Hamming list distance is
with equality for L < 2. The integration limits are given by — idH )
min L + 1 min-
Yyy/01 — oL ue(y) According to (5), the list error probability for the given list is
W(Z/):T, “4(9)__5_1

PCL(I‘):PI‘ <t > 4F, dem 1(L)> :Pr(t > QESdein]-(L))'
whereo; = LA, with Ay given by (44), and, = \l/(¢—1),
¢=2,3,...,L, with \, given by (45). Hereinafterf(z) and To upper-bound the probablhtij’r(t > 2E duminl(r)) We

() denote the Gaussiax (0, 1) probability density function, @PPly Theorem 3 withy = 2Edymin. The integration limits
in the bound (58) from Theorem 3 depend on the eigenvalues

Theorem 4:Let t be a Gaussian random vector of length of the covariance matrix ot, that is, K = T'Ny/2. We
with zero mean and covariance mat# given by (48) from determine them by applying Lemma 1 with= 2Edymin No
Lemma 2 and letx = (a1, nl(,)) be a vector containing and x = 1/2. Thus we obtain that the largest eigenvalue of
m constant values, andn = L —m constant valueg. Then K is \; = E,dumin(L + 1)Ny, while the other(L — 1)

the probabilityPr(t > ) can be upper-bounded by eigenvalues are equal ty = E,duminNo. By substituting
these values into (58) we obtain the following bound on the
oo h(y1 o1 { ue(y) error probability P.r, (T):
r(t > a) /f Y1) / (y2)dys H / f(x)dx 3 L u.g(y)
9(y1) =1 \o () FPer () < / H< >dy
=2 ve(y)
r—o [ #W1) v QdHL"‘;"OES/NO 3
dz | dy;. (59
X [H / f(z)dz | dyr.  (59) - / ] @ Que(y))) dy
l=m we(y1) =5
V 2dHLmlnE‘ /NO
The expressions for the integration limits in the above formula (60)
are where
L(IL+1)(t-1
(]5(0[7 77) = n(bma + 77(5[1 - )\Al)) Up = % (y -V 2dHLIIliIlES/NO)
_ yiyor(Aar — 1) —bmna(§r — €p-1) w
gy1) = - v = — , 0=23,...,L
(6 — Aa1)yv/oL—1 (-1
yiv/or —nn(€r —&r-1) For L = 2, bound (60) holds with equality and it is illustrated

hy) = o1 in Figure 1 as the probability that the received signal is in the



14

decision regiorD. In Figure 7 the new bound (60) is plottedwhich the radial component is smaller than or equal to a given
for duymin = 4 and list sizesL € {2, 3, 5}. For comparison, thresholdT. In this case inequality (61) can be rewritten as

bound (42) is shown in the same figure. Pup < Pr(e, (n, s0) < T) + Pr((n, s9) > T). (62)

1072 = i f Since the radial noise component is a Gaussian random vari-
8.3 able, the probabilityPr ((n, sg) > T') is simply a@-function
1 of the thresholdl’. The exact computation of the first term of
1073 (62) is infeasible; in the following we will develop an upper
bound for it.
o The list error condition (3) is equivalent to
) o)
3107 . (n,80) > (n, s0) + d2(s0, s¢) /2. (63)
o- Egﬂzj EZ(Z);: é z; ) For a given valuex of the radial noise component, by
10-5 H —%— Bound (60), L = 3 introducing notationz, = (n,s;), £ = 0,1,..., L, the list
-%- Bound (42),L =3 error condition (63) can be rewritten as
—— Bound (60), L =5 % B 7
~o- Bound (42), L =5 Z2p=(n,so) =x (64)
107%, 1 2 3 4 5 6 2o = (n,s) > 2+ 2Bydug,, (=1,2,...,L
Ey/No [dB]

wheredy o, = du(vg, ve). The vectorz = (2p 21 ... z1,) has

Fig. 7. Comparison of the bounds (60) and (42) on the list error probabilifg@ussian distribution with zero mean and covariance matrix

for a worst-case list configuration fel,i, = 4. . ,
o NO 17 =]

T2 1—20;, i#]

wherei,j = 0,1,...,L and é;; = d;; = du;;/N is the
IV. GENERALIZED TANGENTIAL BOUND ON THELIST relative Hamming distance between title and;jth codewords.
ERRORPROBABILITY Next, our goal is to orthogonalize the radial noise compo-

The bound given by (9) is a generalization of a union bourftntzo with respect to the othet components;. Similarly as
for list decoding. It upper-bounds the list error probability byn [28], we introduce transformed variablgs= (y1 y2 ... yz)
a sum of error probabilitied’, (T') for all possible list con- Such that they are uncorrelated with. The componentg,
figurationsT" of a given list size. The multiplicitiesv(T") of ~are given by
error probapilitie.sPeL(I‘) are, for most practically interesting yo =2 — (1 —2000)20, £=1,2,...,L. (66)
codes and list sizes, very large numbers (seg, Table IlI).
Hence, the union bound is often not tight even at higher signdiben, for a giver, = z, the error condition (64) is equivalent
to-noise ratio (SNR) levels. to

In order to improve the union-type bound (9) we start Yo > 200¢(x + NEs), €=1,2,...,L. (67)
from the Fano-Gallager bounding principle [22] which iS §yyeeqd, the components are uncorrelated with the compo-
commonly used approach for constructing good bounds ABnt ,, that is,
the error probability of ML decodingct. [23], [24]). Namely,
if ¢ denotes a list error event, then the probability of list erro [z0y:] = E [z02¢] — (1 — 260¢) E [25]
Pr(e) can be decomposed and upper-bounded as (1 — 260¢) NEsNy/2 — (1 — 280, ) NE,Ny /2

K NE{ki;}, kij= { (65)

P.p=Pr(e) = Pr(e,ne A)+Pr(e,né¢ A = 0
= Pr(e,ne A)+Pr(en ¢ A)Pr(n ¢ A) The covariance matrix of the vectgris equal to
< P ,neA)+P A 61 00; + 00; — 04
< Pr(e,me A)+Pr(n ¢ A) (61) K, = 2NoNE,{ky;}, kij — %_501450]. (68)

where A denotes a subset of noise vectois The region

A and it | e int ted th . herei,j =1,2,..., L. Then, according to (62) the list error
and its complemeni4® are interpreted as the regions Ogﬁ/robability P., can be upper-bounded by

few and many errors, respectively. In the above expansion
the probabilityPr(c|n € A°) is upper-bounded by, which P <
yields the bound (61). Further bounding of (61) is obtained T
by upper-bounding the error probability inside the regidn . .
Pr(e,n € A). Clearly, the choice of the regiad influences " /f(x) ming 1, N(K,)Per (K, 2) pda + Q(T)
the tightness of the bound. —00 Ky

We adopt the tangential-bound approach from [17] and (69)
decompose the noise vectaiinto the radial component (alongwhere we have used a union-type bound for the first term in
the transmitted signaly) and L components orthogonal to the(62). The minimization over threshold valu&sis performed
radial component. Then led be a set of noise vectors for in order to obtain the tightest upper bound(K,) is the
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number of lists that yield the covariance matri, and As an analogy to (71) we have the tangential bound for list
P.r.(K,, ) is the error probability for the list described bydecoding
the covariance matrix<,, under the condition that the radial

noise level iszg = x. From (67) it follows that P <
T
Fer(BCy, ) = Prly 2 20+ NEJo0) - (10) -y, /f(x) min{L S N () Pu(durr (), x)} do+ Q(T)}
where g = (do1 002 ... dor). For the worst-case list con- —o0 r
figurations, with even and odd minimum distance, the error (73)

probability (70) can be upper-bounded using Theorems 3 a\%ere the termsP, (duz (T),z) are given by (72). Finally,

4, respectively. ) . . .. by combining bounds (69) and (73) we obtain our new
We now consider linear block codes with even m'”'murﬂeneralized tangential bound

Hamming distance. For rather high signal-to-noise ratios the

dominant term in (69) corresponds to the worst-case listp , <

configuration, where all codewords have relative Hamming B T

weight § = dumin/N, and they are at the relative pairwise . .

distances’;; = 4, i # j. In this case, the covariance matrix min / f(a) min {1, N(Ky) Per (K, )
K, from (68) simplifies to —00

§(1—10), i=j +ZN(F)PeL(dHL(F)’x)}d$+Q(T)} (74)

(1-20)/2, i#j
where the dominant term is estimated as in (70), while the
fori,j = 1,2,..., L. The eigenvalues ok’, are obtained remaining terms are upper-bounded only by using the list dis-
by applying Lemma 1 with3 = 2NoNE.5(1 —6) andx = tancedy, (T'), which is equivalent to replacing the codeword
21(1122)- The dominant error term (70) sets with list configuratiorT" by an "average codeword” at
distancedy,(T') from the transmitted codeword.
PeL(Ky,x) = Pr(y > 2(.T + NES)§1(L))

We illustrate the obtained bounds using t@4,12,8)
can be upper-bounded by applying Theorem 3 with 2(z+ Golay code and list decoding with the list size = 2.

Ky = 2NONEs{kij}7 kij = {

NE,)s. For example, for a list of sizé& = 2 we obtain The Iist_ configuration mgtrices and the_ir multiplicities are

shown in Table Ill. In Figure 8 the union bound (9), the
¥ tangential bound (73), and the improved tangential bound

Per(Ky,z) = / f) (Q(u(z,y)) — Q(—u(x,y)))dy  (74) are shown and compared with the list error probability
2y "N, obtained by simulatior'\§. When gompgting the gnion bound

VNoNEs (5-49) (9), each error probability for a given lisE.., (T"), is upper-

where bounded by a)-function given by (42). Note that bound (42)
is looser than bound (60) for the worst-case list configuration
_ —40) — 2v/26 (which dominates the performance for high SNR), as already

u(z,y) = yv/ (3 — 49) (z + NE). . e ;
VNoNE, illustrated in Figure 7. Moreover, from Table Il it follows

As follows from the examples shown in Tables I-III, listhat _the multiplicitiesN (T") of the possible list configuration

configuration matrices corresponding to other terms of tﬁga_ltnce_s are very Iarge—Fhere are more th_@ﬁ _code\{V(_)rd

bound (69) can have rather complicated structures. In or irs with the worst-case list configuration yielding minimum
ist distance. Therefore, union bound (9) is quite loose, even

to simplify the computations, for the rest of the terms w high H s sianif v tiah
use bounds which, like the bound (42), are based only on i nigher SNR. The new bound (74) is significantly tighter

list distancesdis; (T') and do not take into account the finethan the union bound in the whole range of the observed SNR

structure of the Gram matrik. Ievels.h i fth bound. f | )
In the case of list sizd, = 1, the bound (69) reduces to Further |mpr_ovem§nt of the new bounda, for éxample, using
the TSB technique, is a challenging problem which is a topic

Py < of future research.

T

min{ /f(ac) min{l, ZN(dH)PC(dH,w)} dz + Q(T) V. CONCLUSIONS
T e du In this paper, list decoding is considered. The so-called
(71) minimum list distance of a signal constellation is defined,
which plays the same role for list decoding as the minimum
where N (dy) are the spectrum coefficients of the code angistance for maximum-likelihood decoding. It was shown
Pe(du, ), according to Theorem 3, equals that the list distance is determined by the list configuration
matrix, which is a Gram matrix obtained from the signal

2dy forming th tellation. Several ties of the list
Pu(dy.7) = Q ©+ NE,)|. (72) Vectors forming the constellation. Several properties of the lis
(1, 2) (\/NONES(N —dn) ( )> (72) configuration matrix are established. Using these properties,
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100 * 3 . _ (D) (2 (L) i
. The eigenvectorse, = (z, 'z, ... ;') corresponding
1 to the eigenvalued,, ¢ = 1,2, ..., L, of the matrixK satisfy
10~ the equation
)\@(L’g = :BgK. (75)
1072
For A\ = 8(1 + k(L — 1)), (75) yields
2 10°° 1
(1) (2) (L) (4)
Ty = = =2 = — .
104 L ;
— Simulations . . .
_. || = Union bound (9) Hence, any vector witlh identical components can be chosen
10 —o— Tangential bound (73) as an eigenvector. Without loss of generality we chooge-
| —o~ New bound (74) (11...1)=1(.
1077, 1 2 3 I 5 6 For A\, = B(1 — k), £ =2,3,..., L, (75) yields
Ey /Ny [dB] L
Fig. 8. Comparison of bounds (9), (73), and (74) for list decoding of the 4 :
(24,12, 8) Golay code with list sizel, = 2. i=1

Hence, any set ofL — 1) linearly independent vectors, such
that their elements sum up to 0, is a set of eigenvectors. We
the minimum list distance is computed for binary lineachoose
codes with even and odd minimum distance. For both cases, 1 1 1
the worst-case list configurations, which yield the minimum ¢ = (-m U1 T 7-1
list distances are identified and a new upper bound on the .
list error probability for a given worst-case list is derived. ¢=1 times

10...0)

1

Furthermore, an improved tangential union bound is derived = ——(=1p—1) {=10—p), £=2,3,...,L
and by combining it with the bound for a given worst-case -1
list a new upper bound on the list decoding error probabilitwhich completes the proof.
is obtained. The new bound is tighter than previously known |
union bound. Remark 1:The equation (75) can be rewritten in a matrix
form as
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VII. APPENDIX =1 o 0 1 .o=1/(L-1)|-(76)
A. Proof of Lemma 1 S : : ) :
The eigenvalues\, ¢ = 1,2, ..., L, of the matrix K are 1 0 0 0 1
the solutions of the characteristic equation
G-\ Bs B SinceK is a normal matrix, its eigenvector matfix describes
an orthogonal transform, that is,
Bk B—X ... Pk
det(K — M) = : : . : =0. VIV =D
P B ... BA where D = diag(d; ds ... d;) is the diagonal matrix with
The above determinant is easily obtained by, for exampklements
transforming the matrix into triangular form, whose determi- I 01
nant is then the product of the diagonal elements. Thus we dy = ’ -
(BA+K(L—-1)=N-(B0—-r)=NET=0 This orthogonal transform reduces the matfxto the diag-

) ] ] ] onal matrix:
which vyields the solutions\; as in (44) and),, ¢ =

2,3,...,L, as in (45). VT'KV = DA = diag(o, 03 ... 01) (77)



where
L\ /=1
o0 = \edy = { b

78
(=2,3,...,L. (78)

/\Zé/(g - 1)7

This transform will be used for proving Theorem 3.

B. Proof of Lemma 2

The matricesA and C from (49) and (50) have the same

general structure as the matrix (43) from Lemma 1 vtk
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Thus, we have determined + n — 2 = L — 2 eigenvalues
of K:

& = ag—a, £=1,2,...,m—1
& = cg—c, L=m,m+1,...,L-2
and the corresponding eigenvectors
Ty = (wAl-i-l 0(71))’ = 1727"'7m_1 (83)
Ty = (O(m) TCr_mi2), L=m, m+1,...,L—2. (84)

ap, k = a/ag, and B = ¢y, k = c/co, respectively. Hence, it wherex,; andzc; are given by (80) and (82), respectively.

follows from (44)-(45) that the eigenvalues df are

AA1 ap + a(m —1)
Apg = ag—a, 1=23,....,m
and the corresponding eigenvectors are
zar = L (79)
1 )
Tai = Ty (=1—1) i—1 Ogm—s)) (80)
wherei = 2,3,...,m. Similarly, the eigenvalues af’ are
Aci = cote(n—1)
Agj = cp—c

for j =2,3,...,n, and the corresponding eigenvectors are

(81)
(82)

o1 = 1l
1

Toj = jfl(—l(a‘ﬂ) j=1 0—j)

wherej = 2,3,...,n andn = L — m. Now consider the

L x L block-diagonal matrix

o (4 2)

Its eigenvalues are simply those df and C, and its eigen-

vectors are

(CL'AZ- O(n))7 i:1,2,...,m

(O(m) xcj),

Ta;

me"rj j:1,2,...,n.

All the vectorsz 5, except the all-one vectoga; = 1),

Now we only need to determine the remaining two eigen-
values¢ér, 1 and &y, and the corresponding eigenvectors. To
this end, we first exploit the property that the trace of any
square matrix is equal to the sum of its eigenvalues. Thus we
have

m n

and also

tr(K) = Aai+ > Acj+&n-1+EL.

i=2 j=2

Sincetr(G) = tr(K), we obtain that the sum of two unknown
eigenvalues is
£r—1+&L = Aa1+Ac1 = ap+co+(m—1)a+(n—1)c. (85)
The determinant of the matrik” can be written ascf. [31])

det(K) = det(A) det(C — BT A™'B). (86)

The inverse of the matriXd can be written as
AT =VaA YV

where At = diag (1/Aa1 1/Aas .. 1/Aa,,) and Vy is
the eigenvector matrix of the form (76), whose columns are
eigenvectorses}, i = 1,2,...,m. Since the all-one vector
xa] is the first column ofV,, anddet(V,) = 1, we easily
obtain that

b%m?

A1l

BTA'B =

1(n><n)

have the property that their components sum up to zero. Henetere 1(,,.,,) denotes the all-one matrix of size x n.

for thosem — 1 vectors we have

A B
= (xa;A xA;B) = Mai(za; O())

which follows from the fact that all elements of the mat#ik
are the same. We conclude that the eigenvedtess 0,)),

i = 2,3,...,m, are also eigenvectors dk and the cor-
responding eigenvalues are the eigenvaluesAgfthat is,
AAi = ag — a.

Equivalently, we obtain that the vecta8,,) xc,), except
the one withzc; = 1,), are also eigenvectors df and the
corresponding eigenvalues are the eigenvalue€'ofhat is,
Acj=co—¢Jj=23,...,n.

(xa; Oy K =

Thus, the eigenvalues of the matfX — BTA~!B can be
obtained from Lemma 1 with3 = ¢y — b?>m?/Ax; and
Bk = c—b?>m? /A1, Which yields the largest eigenvalue equal
to Acq1 — b>m?n/Aa1, While the remaining eigenvalues are
equal todc; =co—¢, j =2,3,...,n.

Since the determinant of the matrix is equal to the product
of its eigenvalues, (86) is equivalent to

1L H A H Acj = H A H Aos (Aer = -
=2 j=2 =1 j=2
which yields
b2m?n
§L—1& = A <)\Cl B ) . (87)
Al
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From (85) and (87), which specify the sum and the produ€t Proof of Theorem 3

of two last eigenvalues ok, we obtain

Aar+ A 1

€L—1 = % - 5\/()\A1 — )\01)2 +4b2m2n
Aar+ A 1

&L %Jri\/()‘Al —Ac1)? + 402m?n.

The eigenvectors corresponding §o_, &, satisfy the
equation

YK =x/K, (=L-1,L
which imposes the following structure of the eigenvectors:
- A
x = (011(m) 021(n)), 02= Q1§eb7nmr t=L-1,L

Direct estimation of the error probabilifyr(t > «) would
involve integration of theL.-dimensional density functioifi(¢)
over the region where all, > «, ¢ = 1,2,..., L. Consider
instead the vectog obtained by the orthogonal transformation

q=tV (93)

where V' is the eigenvector matrix of<, given by (76).
The covariance matrix ofg is given by (77). Hence, it
follows that ¢,, £ = 1,2,...,L, are independent Gaussian
random variables with variances given by (78). Therefore,
the L-dimensional density functiorf(g) decomposes into a
product of L marginal densitieg (¢,), ¢ =1,2,..., L, which

for any arbitraryp;. Without loss of generality, we can choos&implifies the estimation of the error probability. Now we need

01 = bn and thus we obtain

Tr—1 (bn'l(m) (SL—lfAAl)'l(n)) (88)
zp = (bn-1gy (EL—Aa1) 1) (89)

which concludes the proof.
[ ]

Remark 2:The matrix K can be written in the form
K=TvT!

where & = diag (£ & ... &) is the diagonal matrix con-
taining the eigenvalues dk, andT' is the eigenvector matrix
whose columns are the eigenvectais ¢ = 1,2, .

to find the integration limits for eacly, £ = 1,2,..., L. To
this end, we rewrite the matrix equation (93) as
L
n o= >t (94)
=1
1 -1
@ = ti— ﬁ;t ¢=23,...,L. (95
Fromt > « and (94) it immediately follows that
q1 > La. (96)
» L. From  For the remainingl — 1 componentsg,, ¢ = 2,3,...,L,

(83), (84), (88), and (89), it follows that the structure of thegnsider the I|near combinations

XA \ O(7n><(n—1)) \
0(n><(m—1)) ' Xc

T

matrix T' is

o ( (90)

whereX 4 is themx(m—1) matrix whose columns are — 1
eigenvectors of the matrid, zA}, i =2,...,m, and X ¢ is

T |
Tr_q |

the n X (n — 1) matrix whose cqumns are the eigenvectorg,

a1+ pqe

-1
= ;E-HPU— g_ilztz

:Z(l‘m)

Zt + (1 + @)te+ th (97)

i=0+1

-1 < ¢ < ¢ —1, all coefficients multiplyingt,, £ =
:ccj , j = 2,...,n. The matrixT describes an orthogonall 2,..., L, in (97) are positive and their sum is
transform, that is
T'T=D (1—“)(5—1) (1+¢)+ (L—10) =
where D = diag(di ds ... dy) is the diagonal matrix with
elements Therefore, since, > a, we have
(€ +1)/¢, 0=1,2,....m—1 @ +eq>al, (=2,3,...,L
4, (l—=m+2)/(t-=m+1), £=m, m+1,...,L—=2  which yields
© 2,2 _ 2 — _
Z2n2m+nE§LI)\ )\?21) 3 i_é’ 1 q < q1| l‘l , —-1< o< 0
n“m + n(§r —Aa1)*, = q > — ql(po‘L, O<p<l-—1.

This orthogonal transform reduces mati# to the diagonal
matrix:

TT"KT = DV = diag(oy 02 ... 0) (91)
where
(ap—a)(l+1)/¢, £=1,2,...,m—1
(co—c)l —m+2)/({ —m+1),
op = &edy = l=m,m+1,...,L -2

Eo—1 (0*n®m+n(Ep—1—Aa1)?), (=L—-1

& (PP m+n(€L—Aa1)?), =1L
(92)
This transform will be used for proving Theorem 4.

The valuesp = —1 andy = £ — 1, respectively, minimize the
domain of integration. Thus, we obtain that
¢1 —al
-1
Finally, in order to have the Gaussiaf(0, 1) distribution, we
change the variables according go= ¢;/+/(01) andz, =
qe/\/(00), £ =2,3,...,L, and obtain from (96) and (98):

<q < q—oal. (98)

al ey <
— [ee]
Jm Svs
L JoT—al
AL e TR A ALy I Y
(5—1)\/ ¢ NGT



which yields the bound (58) in Theorem 3.
[ |

D. Proof of Theorem 4

Following the same approach as in the proof of Theorem 3,

we consider the vector
q=tT (99)

where T is given by (90). From (91) it follows thaty,,
0=1,2,..

variables with variances, given by (92). In order to find the

integration limits we rewrite the matrix equation (99) as

0
1
qutm—zgti, (=1,2,....m—1  (100)

{+1

1
G =tep2 = g D by £=m, L=2 (101)
1=m-+1
m L
g1 = b ti+(Eeo1—Aa1) Dt (102)
=1 1=m+1
m L
qr = b ti+(€L— A1) Y i (103)
=1 1=m+1

From the conditiont > (a1, 1n1¢,)) and (103) it follows
directly that

(104)

To estimate the limits fog,, £ = 1,2,...,m — 1, given by
(100), we consider the linear combinations

qr, > bnma +nn(€r — Aayq).

¢
L+ ¢qe = <bn - %) Zti + (bn + )te
=1

m L
+bn > ti+ (Co—Aar) D ti, £=1,2,...,m—L
i=04+2 1=m-+1

(105)

., L, are independent zero-mean Gaussian random _ qr — n(bma + n(§r — Aa1)
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and conclude that for all values af in the interval o €
[—(&L — Aa1), (€L —Aa1)( —m —1)], all the coefficients
multiplying ¢, £ = 1,2, ..., L are positive and they sum up
to bnm + n(&r, — Aa1). This implies that
QL+<PQZ2bnm04+m7(€L—)\A1)a ezmv m+177L_2

from where it follows that for our set ofp, the shortest
integration interval is

C—m+ 1)L — ) 0

s I n(bma +n(r — Aa1))
- (L — Aa1) 7

b=m,...,L—2.
(107)

Finally, we consider the linear combination of (102) and
(203):

gL+ a1 = (L+@)bn > 1

i=1

L
+ (€0 = M) + o€ — M) D i
1=m-+1
Forp € [—1, (€L —Xa1)/(Aa1—&r—1)] all coefficients on the
right-hand side are positive and their sum is equatio (1 +

) +n((€r — Aa1) + ¢(€r—1 — Aa1)). By takingp = —1,
from the condition that > (a1,,) 71(,)), we obtain that

qr—1 < qr —mm(r —&-1)- (108)

Similarly, for ¢ = (£, — Aa1)/(Aa1 — €r—1) we obtain
qr(§p—1 — Aaq) +bmna(€r — €p-1)
qr—1 =
£L — Aag

Inequalities (104), (106), (107), (108), and (109) define the
integration limits over the probability density functiof(q)
for obtaining an upper bound on the probabilky(t > «).
In order to have unit-variance variables with thé(0, 1)

. (109)

If ¢ € [~bn, bnf] then all the coefficients in (105) thatdistribution, we introduce the following change of variables:

multiply ¢;,7 = 1,2, ..., L, are positive and their sum is equab1 = aL/\oL, Y2 =

to bnm + n(&L, — Aa1). Therefore we have

qr + pqe > bnma +nn(€r, — Aa1), £=1,2,...,m—1.

The valuesp = —bn and ¢ = bnf minimize the domain of

integration. Thus we obtain that

_qr —n(bma+n(§L — Aai))

< qe
bnt
L& — n(bma +n(€L *AA1))7 (=1 m—1.
bn
(106)
Analogously, to estimate the limits fgg, ¢ = m, ..., L—2,
from (101), we consider linear combinations

m 0 +1

qrLteqe = bn;tﬁ((& —Aa1) — f—m—&-l) i:;_l ti
L
+(p+ (= da)tepe + (Eo—Aan) D b
i={+3

qr-1/\/or—1, and xy = qu/ /00,

¢ = 1,2,...,L — 2, which yields the expression (59) in
Theorem 4.
[ |
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