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Is the cyclic prefix necessary?

Naresh Sharma and Ashok Armen Tikku

Abstract

We show that one can do away with the cyclic prefix (CP) for SC-FDE and OFDM at the cost

of a moderate increase in the complexity of a DFT-based receiver. Such an approach effectively deals

with the decrease in the number of channel uses due to the introduction of the CP. It is shown that

the SINR for SC-FDE remains the same asymptotically with theproposed receiver without CP as that

of the conventional receiver with CP. The results are shown for Nt transmit antennas andNr receive

antennas whereNr ≥ Nt.

I. INTRODUCTION

Inter-symbol Interference (ISI) introduced by the time-varying multi-path channel is one

of the main limiting factors for high speed data communications. Discrete Fourier Transform

(DFT) based receiver used in SC-FDE (single-carrier frequency-domain equalization) and OFDM

(orthogonal frequency-division multiplexing) offer a lowcomplexity alternative to deal with this

problem (see for example [1], [2], [3] and references therein).

Fundamentally, these techniques rely on the redundancy in the form of CP that with appropri-

ately chosen length makes the linear convolution introduced by the physical channel look like a

circular convolution that can be dealt well with DFT or Inverse DFT (IDFT). This redundancy

however results in decrease of the number of channel uses available for signal transmission.

We will show that without CP and using a receiver that is designed to work with cyclic prefix,

one suffers from an interference component at the start and the end of the DFT frame. This edge

effect decays exponentially as one moves inside the DFT frame unless the poles of a certain

inverse filter are on the unit circle, in which case, the interference is present for the entire frame.
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We show that it is guaranteed that for the MMSE SC-FDE, the poles will never lie on the unit

circle and hence the edge effect will truly be at the edges assuming that the DFT frame is large

enough so that the symbols at the interior of the frame are unaffected due to the exponential

decay. Hence by discarding the symbols at the edges and re-processing the discarded symbols

by putting them in the interior of another frame, one can obtain a performance that can made

as close as possible to the one obtained with CP.

We define the notation as used throughout this paper:

• {ym} denotes a finite length sequence of vectors indexed bym whose length is specified

in the context, whereym is aNt × 1 vector whosekth element is denoted byym,k.

• DFT of aN-point vector-sequence is denoted by{ỹn} = DFT{ym} and is given by

ỹn =
1√
N

N−1∑

m=0

yme
−j2πmn/N . (1)

Note that DFT is element-wise and one can write (1) as

ỹn,k =
1√
N

N−1∑

m=0

ym,ke
−j2πmn/N . (2)

• Inverse DFT (IDFT) of aN-point vector-sequence is denoted by{ym} = IDFT{ỹn} and is

given by

ym =
1√
N

N−1∑

n=0

ỹne
j2πmn/N . (3)

• CN (0, σ2) denotes a circularly symmetric complex Gaussian random variable with zero

mean and variance ofσ2.

• Let xm = {hm ⊗ um} ∆
=
∑N−1

q=0 hqu(m−q)modN denote the circular convolution of the two

N-point sequences{hm} and {um}, wherehm is a Nr × Nt matrix andum is a Nt × 1

vector. Note that if{x̃n} = DFT{xm}, {h̃n} = DFT{hm}, and {ũn} = DFT{um}, then

x̃n =
√
Nh̃nũn.

• u∗ denotes the conjugate ofu.

• ||A||∞ denotes theL-infinity norm of matrixA given by ||A||∞ = maxi,j |Ai,j|.
• E{·} denotes the expectation.

• x† denotes the conjugate transpose ofx.
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II. SYSTEM MODEL

Let {um}, m = −∞, · · · ,∞, um ∈ CNt be the input to aL-tap channel given by

h = [h0, · · · , hL−1],

wherehi’s areNr ×Nt matrices. Ifxm andνm denote the channel output and noise respectively

at time instantm, then the system model is given by

xm =
L−1∑

l=0

hlum−l + νm. (4)

We will assume that the channel is perfectly known at the receiver, is quasi-static that remains

constant over a frame and changes independently from one frame to another, whose elements are

CN (0, 1), and the channel random process is spatially and temporallywhite, νm is i.i.d. whose

elements are uncorrelated and each element isCN (0, N0), and without loss of generality that

the average transmitted power is unity i.e. E{||um||2} = 1.

In what follows, we consider OFDM, CP SC-FDE, CP-less SC-FDE, and CP-less OFDM with

the CP present in the first two techniques.

We will divide the transmitted symbols into frames of lengthN + C each, whereN denotes

the number of symbols carrying information andC denotes the number of redundant symbols

due to CP. It is well-known that forC ≥ L − 1, the linear convolution will be the same as

the circular convolution after discarding the firstC samples of the received signal. Let the

information carrying symbols be denoted by

ỹ = [ỹ0, · · · , ỹN−1]. (5)

For OFDM only, these symbols undergo an additional transformation by using the IDFT as

{ym} = IDFT{ỹn}. (6)

For CP SC-FDE and CP-less SC-FDE,

ym = ỹm, ∀ m. (7)

The transmitted frame of sizeNt × (N + C) is transmitted during the time instants from

−C,−C + 1, · · · , 0, 1, · · · , N − 1 and is given by

u = [

Cyclic Prefix,C
︷ ︸︸ ︷
yN−C, yN−C+1, · · · , yN−1,

Data,N
︷ ︸︸ ︷
y0, y1, · · · , yN−1]. (8)
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For the CP-less case,C = 0 and hence the transmitted signal in time instants−C, · · · , N − 1

is given by

u = [

From previous frame,C
︷ ︸︸ ︷

wN−C , · · · , wN−1,

Data,N
︷ ︸︸ ︷

y0, · · · , yN−1], (9)

wherewm’s are the transmitted vectors from the previous frame.

III. RECEIVER

The channel output is recorded at the time instantsm = 0, · · · , N−1 and we take theN-point

DFT given by

{r̃n} = DFT{xm}. (10)

A. OFDM Receiver

For the OFDM receiver, using (6) we have

r̃n =
1√
N

N−1∑

q=0

xqe
−j2πqn/N

=
1√
N

N−1∑

q=0

(
L−1∑

l=0

hluq−l + νq

)

e−j2πqn/N

=
1√
N

N−1∑

q=0

(
L−1∑

l=0

hly(q−l)modN + νq

)

e−j2πqn/N

=
√
Nh̃nỹn + ν̃n, (11)

where{ν̃n} = DFT{νq} and{h̃n} = DFT{hl}. Since DFT is unitary,{ν̃n} has the same statistics

as{νm}.

B. CP SC-FDE Receiver

Following the analysis for the OFDM receiver, we arrive at (11). Note that unlike OFDM

the information bearing signals for this case areym’s. We multiply (11) by aNt × Nr matrix
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denoted bỹgn and then take the IDFT to get

ŷm =
1√
N

N−1∑

n=0

g̃nr̃ne
j2πmn/N

=
1√
N

N−1∑

n=0

g̃nh̃nỹne
j2πmn/N +

1√
N

N−1∑

n=0

g̃nν̃ne
j2πmn/N

a
=

1√
N

N−1∑

k=0

pky(m−k)modN +

1√
N

N−1∑

n=0

g̃nν̃ne
j2πmn/N , (12)

where in a,p̃n = g̃nh̃n, and

{pm} = IDFT{g̃nh̃n}. (13)

Note that for the zero-forcing (ZF) SC-FDE,

g̃n =
1√
N
(h̃†nh̃n)

−1h̃†n, (14)

and for the MMSE SC-FDE,

g̃n =
√
N(Nh̃†nh̃n +N0I)

−1h̃†n. (15)

We note that in (15), we are first doing the ZF or MMSE receptionin the frequency domain and

then taking the DFT. Since DFT is a unitary operation, it can be easily shown that ZF or MMSE

in time domain can be written as a concatenation of ZF or MMSE respectively in frequency

domain followed by DFT. This is shown in the appendix.

C. CP-less SC-FDE

The receiver is kept the same as the CP SC-FDE except that one could vary the DFT frame size.

In this case, the absence of CP doesn’t make the linear convolution as a circular convolution

and there is a spill-over of the signals from the previous frame causing interference. As we

shall see below, for the MMSE case in particular, it is guaranteed that the interference levels

will fall exponentially as one moves inside the frame from either of the two ends. Because of

this phenomenon, one can discard the symbols at either ends of the frame and declare only

the interior symbols of the frame as the equalized symbols. The discarded symbols at either
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end can be equalized by putting them on the interior of a different frame. This indicates that

having sliding and over-lapping frames (with the overlap determined by the rate of decay of the

interference levels) will result in equalization of all symbols. It also follows that the additional

interference due to lack of CP can becontrolled by increasing the number of discarded symbols.

Hence by increasing the receiver complexity, one can compensate for the absence of CP and

also increase the effective number of channel uses as compared to the CP-based transmission.

We take theN-point DFT of the received sequence as in OFDM/CP SC-FDE to get

r̃n =
1√
N

N−1∑

q=0

xqe
−j2πqn/N

=
√
Nh̃nỹn + ν̃n + κ̃n, (16)

where

{κ̃n} = DFT







L−1∑

l=q+1

hl (wN+q−l − yN+q−l)






. (17)

We note that the last summation term in (16) is the only difference between CP-less case and

the schemes with CP. We multiplỹrn in (16) by g̃n and then take the IDFT to get

ŷm =
1√
N

N−1∑

n=0

g̃nr̃ne
j2πmn/N

=
1√
N

N−1∑

k=0

pky(m−k)modN +

1√
N

N−1∑

n=0

g̃nν̃ne
j2πmn/N + ξm, (18)

wherep̃n = g̃nh̃n,

{pm} = IDFT{g̃nh̃n}, (19)

ξm =
L−2∑

q=0

L−1∑

l=q+1

γ(m−q)modNhl (wN+q−l − yN+q−l) , (20)

and{γm} = IDFT{g̃n}/
√
N i.e.

γm =
1

N

N−1∑

n=0

g̃ne
j2πmn/N . (21)

Let us assume that it is possible to choose aD > L − 1 andD ≤ m ≤ N − D, such that

||γm||∞ < ǫ, for any ǫ > 0. Then forD ≤ m ≤ N −D, one can upper bound||ξm|| as

|ξm| ≤
L−2∑

q=0

L−1∑

l=q+1

NrNtβ1β2β3ǫ (22)

≤ (L− 2)(L− 1)NrNtβ1β2β3ǫ

2
, (23)
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whereβ1 = maxq ||γ(m−q)modN ||∞, β2 = maxl ||hl||∞ andβ3 = ||wN+q−l − yN+q−l||∞.

Hence by choosingǫ small enough, one can make the interference termξm that arises due to

the absence of CP negligible. This makes the SINR of the symbols in the interior of the frame

the same as the corresponding symbols where the CP is present.

We now show that it is indeed possible to have||γm||∞ → 0 in the interior of a large enough

frame i.e. whenD ≤ m ≤ N −D andN is large if the poles of a certain inverse filter are not

on the unit circle. Let us write

g̃n =
[

H(z)H†(1/z∗) +K
]−1

H†(1/z∗), (24)

whereH(z) is matrix function of scalar variablez given by

H(z) =
L−1∑

l=0

hlz
l, (25)

z = e−j2πn/N , K = 0 for the ZF SC-FDE, andK = N0 for the MMSE SC-FDE. Note that for

z 6= 0, we can write

g̃n =
[

zL−1H(z)H†(1/z∗) +KzL−1
]−1

zL−1H†(1/z∗). (26)

Let us define

R(z)
∆
= det

(

zL−1H(z)H†(1/z∗) +KzL−1
)

. (27)

We note thatR(z) is self-reciprocal since

R(z) = z2L−2R∗(1/z∗). (28)

As a consequence ifφ (|φ| 6= 0) is a root ofR(z) i.e.R(φ) = 0, thenR(φ) = φ2L−2R∗(1/φ∗) = 0,

or 1/φ∗ is also a root ofR(z). Hence we can write

R(z) = c
Nr(2L−2)
∏

k=1

(z − βk)(z − 1/β∗
k), (29)

wherec is a constant dependent on the channel. Note that any elementof g̃n in (26) will have

R(z) in the denominator, and furthermore, the degree of the numerator (i.e. the highest power

of z) will be smaller thanR(z). Hence the partial fraction expansion of the(i, j) element ofg̃n

can be written as

g̃i,jn =
P∑

l=1

αi,j
l

z − βl
, (30)
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wherez = e−j2πn/N , P = 2Nr(L−1) for Nr > 1 andP = L−1 for Nr = 1 for the ZF SC-FDE,

and we have assumed that all theβl’s are distinct, an event that occurs with probability1 for

a stochastic fading channel. Then using (21), we have the following expression for the(i, j)th

element ofγm

γi,jm =
1

N

P∑

l=1

N−1∑

n=0

αi,j
l

e−j2πn/N − βl
ej2πmn/N

=
P∑

l=1

αi,j
l

N−1∑

n=0

ej2πmn/N

N

∞∑

q=0

[

ej2π(q+1)n/Nβq
l 1|βl|<1 −

e−j2πqn/N

(βl)q+1
1|βl|>1

]

(31)

=
P∑

l=1

αi,j
l

∞∑

q=0

1

N

N−1∑

n=0

[

ej2π(m+q+1)n/Nβq
l 1|βl|<1 −

ej2π(m−q)n/N

(βl)q+1
1|βl|>1

]

(32)

=
P∑

l=1

αi,j
l

∞∑

q=0

[

δq,(rN+N−1−m)β
q
l 1|βl|<1 − δq,(m+rN)1|βl|>1

]

(33)

=
P∑

l=1

αi,j
l

[

βN−1−m
l

∞∑

r=0

βrN
l 1|βl|<1 −

1

(βl)m+1

∞∑

r=0

(βl)
−rN1|βl|>1

]

(34)

=
P∑

l=1

αi,j
l

[

βN−1−m
l

1− βN
l

1|βl|<1 −
1

(βl)m+1

1

[1− (βl)−N ]
1|βl|>1

]

(35)

=
P∑

l=1

αi,j
l

βN−1−m
l

1− βN
l

, (36)

where in (33),δi,j = 1 if i = j and is zero otherwise,1condition is the indicator function that is

1 when the ‘condition’ is true and is zero otherwise. It follows from the above expression that

the contribution of the poleβl to the ‘Edge Effect’ decreases exponentially asβ−m−1
l as one

moves inside the frame from its head for|βl| > 1, and asβN−m−1
l as one moves inside the frame

from its tail for |βl| < 1. For the case of MMSE SC-FDE where the roots occur in conjugate

reciprocal pairs, the ‘Edge Effect’ is determined primarily by the pair of roots closest to the unit

circle that make it decay with the same rate from both the headand the tail of the frame.

We also note that forK > 0,

R(ejw) = ejw(L−1) det
(

H(ejw)H†(ejw) +KI
)

> 0, ∀ w. (37)

Hence for the MMSE SC-FDE, there is no pole on the unit circle and the edge effect will decay

exponentially as one moves within the frame.
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D. CP-less OFDM

For the OFDM transmission, one can recover the symbol tones by taking the DFT of the

equalized signal recovered without the CP as in the previoussection. The SINR expression

unlike the SC-FDE, doesn’t have a closed form expression.

IV. CASE OF A TWO-PATH FADING CHANNEL

Let us consider the case of a two tap fading channel forNr = Nt = 1 whosez-transform is

given by

H(z) = h0 + h1z
d, (38)

whered is an integer that denotes the delay of the second path, andh0 andh1 are CN (0, 1).

For the case of ZF SC-FDE, we look at the roots ofH(z) that have a magnitude of|h0/h1|1/d.
The probability that there are roots that have the magnitudein the interval(1 − ǫ, 1 + ǫ), with

ǫ ∈ (0, 1), is given by

pǫ = E
{

Prob
[

|h0|2/d ∈ (|h1|2/d(1− ǫ)2, |h1|2/d(1 + ǫ)2|h1
]}

(39)

=
(1 + ǫ)2d − (1− ǫ)2d

1 + (1− ǫ)2d + (1 + ǫ)2d + (1− ǫ2)2d
. (40)

For d = 1, this simplifies to

pǫ =
ǫ

1 + ǫ4/4
. (41)

For smallǫ, pǫ ≈ dǫ. pǫ increases withd since it makes the roots ofH(z) to be closer to the

unit circle. This implies that the response of the inverse filter (see (21)) will take longer to die

down.

For the case of the MMSE SC-FDE, we need to look at the roots of

R(z) = zdH(z)H∗
(
1

z∗

)

+Kzd

= h0h
∗
1 + (|h0|2 + |h1|2 +K)zd + h∗0h1z

2d.

The roots ofR(z) are thedth roots of

ρ1,2 =
−ψ ±

√

ψ2 − 4|h0|2|h1|2
2h∗0h1

, (42)
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whereψ = |h0|2 + |h1|2 +K. It is easily shown thatρ1 = 1/ρ∗2, |ρ2| > |ρ1|, and hence|ρ2| ≥ 1,

and

|ρ2| ≥ max

(∣
∣
∣
∣
∣

h0
h1

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

h1
h0

∣
∣
∣
∣
∣

)

, (43)

|ρ1| ≤ min

(∣
∣
∣
∣
∣

h0
h1

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

h1
h0

∣
∣
∣
∣
∣

)

. (44)

This implies that the roots ofR(z) are farther away from the unit circle as compared to the roots

of H(z), and hence the response of the inverse filter in (21) dies faster for the MMSE SC-FDE

than the ZF SC-FDE.

One can simplify (42) to get

|h0|2 −
(

|ρ2|+
1

|ρ2|

)

|h0||h1|+ (|h1|2 +K) = 0, (45)

which admits a solution for|h0| only if

|h1|2 ≥
4|ρ2|2K

(1− |ρ2|2)2
. (46)

For |ρ2| = 1 + ǫ, whereǫ > 0, this amounts to

|h1|2 ≥
(

1 + ǫ

1 + ǫ/2

)2
K

ǫ2
>
K

ǫ2
, (47)

an event which occurs with the probability of less thane−K/ǫ2. For ǫ < 0.5
√
K andǫ < 0.25

√
K,

the probability is less than2% and 0.000012% respectively. Hence there are no roots ofR(z)

in ((1 + 0.25
√
K)−1/d, (1 + 0.25

√
K)1/d) with probability approaching unity. Hence one can

be sure with probability approaching unity that the response of the inverse filter in (21) decays

exponentially with the exponent of at least(1 + 0.25
√
K)1/d from the head and the tail. Hence

one can chooseD large enough such thatξm in (20) or more conveniently the upper bound to

|ξm| in (23) is small.

If the second path is weaker than the first path i.e. has an average power ofσ2 whereσ2 < 1,

then there are no roots ofR(z) in ((1 + 0.25
√
K/σ)−1/d, (1 + 0.25

√
K/σ)1/d) with probability

less than0.000012%. This makes the response of the inverse filter decrease faster than the case

when both paths have same average power. Note that if the second path has larger average power

than the first path, then we can view (45) as a quadratic equation in |h1|2 and follow the same

arguments to get to the same conclusion as above.
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Fig. 1. Symbol Error Rate (SER) versus SNR curves for QPSK forthe two-path fading channel withd = 1, D =

0, 4, 8, 12, 16, 20, and DFT frame size of512.

We plot the numerical results for this channel for QPSK modulation in Fig. 1 with maximum

likelihood sequence estimation using the Viterbi algorithm and the SC-FDE with or without CP.

We also plot the case when there is no self-interference i.e.a flat fading channel with the same

average received power of unity as the ISI channel. The size of the DFT frame is512. For

the case of SC-FDE with no CP, we consider the inner portion (quantized by parameterD) as

equalized in one frame and the exterior portion of the frame from both ends forms the interior

portion of some other frame. As one can see in Fig. 1, asD increases, the performance of

CP-less SC-FDE approaches that of CP SC-FDE. This matches well with the earlier analytical

observation that the SINR for the inner portion of the frame without CP approaches that of the

SINR with CP for SC-FDE.

V. CONCLUSIONS

It is shown that for SC-FDE without the cyclic prefix by increasing the length of the DFT

and by discarding the symbols on either ends of the DFT frame one can asymptotically obtain

the same value of SINR as the case when the cyclic prefix is present. We showed for a two-path

fading channel (whose inverse channel has a long tail) that the proposed method presents a

method to do away with the redundancy due to the cyclic prefix by a moderate increase in the
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receiver complexity. The loss of redundancy could be used toachieve high data rates due to

increase in the number of channel uses.
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APPENDIX

We can write using (11)

R̃ =
√
NH̃F †Y + Ṽ, (48)

where R̃ = [r̃0 · · · r̃N−1]
T , F is a NNt × NNt block diagonal unitary matrix given byF =

diag[F, · · · , F ], whereF is the N × N DFT unitary matrix, Ỹ = [ỹ0 · · · ỹN−1]
T , and Ṽ =

[ν̃0 · · · ν̃N−1]
T . Since we are interested in obtainingY , we can write the ZF or MMSE pre-

multiplying matrix as (withK = 0 for ZF andK = N0 for MMSE)

G =
√
N
(

NFH̃†H̃F † +KI
)−1FH̃†

=
√
NF

(

NH̃†H̃ +KI
)−1 H̃†,

which is a concatenation of ZF or MMSE in the frequency domainfollowed by DFT. Note that

G = diag[g0, · · · , gN−1] is a block diagonal matrix, where

g̃n =
√
N(Nh̃†nh̃n +KI)−1h̃†n. (49)
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