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Abstract— Assuming iterative decoding for binary erasure
channels (BECs), a novel tree-based technique for upper bound-
ing the bit error rates (BERs) of arbitrary, finite low-densi ty
parity-check (LDPC) codes is provided and the resulting bound
can be evaluated for all operating erasure probabilities, including
both the waterfall and the error floor regions. This upper bound
can also be viewed as a narrowing search of stopping sets, which
is an approach different from the stopping set enumeration used
for lower bounding the error floor. When combined with optimal
leaf-finding modules, this upper bound is guaranteed to be tight in
terms of the asymptotic order. The Boolean framework proposed
herein further admits a composite search for even tighter results.
For comparison, a refinement of the algorithm is capable of
exhausting all stopping sets of size≤ 13 for irregular LDPC
codes of lengthn ≈ 500, which requires

(

500

13

)

≈ 1.67×10
25 trials

if a brute force approach is taken. These experiments indicate
that this upper bound can be used both as an analytical tool and
as a deterministic worst-performance (error floor) guarantee, the
latter of which is crucial to optimizing LDPC codes for extremely
low BER applications, e.g., optical/satellite communications.

I. I NTRODUCTION

The bit error rate (BER) curve of anyfixed, finite, low-
density parity-check (LDPC) code on binary erasure channels
(BECs) is completely determined by its stopping set distri-
bution. Due to the prohibitive cost of computing the entire
stopping set distribution [1], in practice, the waterfall threshold
of the BER is generally approximated by the density evolution
and pinpointed by the Monte-Carlo simulation, while the error
floor is lower bounded by semi-exhaustively identifying the
dominant stopping sets [2] or by importance sampling [3].
Even computing the size of the minimum stopping sets has
been proved to be an NP-hard problem [4], which further
shows the difficulty of constructing the entire stopping set
distribution. Other research directions related to the finite code
performance include [5] and [6] on the average performance
of finite code ensembleson BECs and its scaling law, and a
physics-based asymptotic approximation for Gaussian chan-
nels [7].

In this paper, only BECs will be considered. We focus on
upper bounding the BER curves of arbitrary, fixed, finite parity
check codes under iterative decoding, and the frame error rate
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Fig. 1. A simple parity check code.

(FER) will be treated as a special case. Experiments are con-
ducted for the casesn = 24, 50, 72, 144, which demonstrate
the superior efficiency of the proposed algorithm. Application
of this bound to finite code optimization is deferred to a
companion paper.

II. B OOLEAN EXPRESSIONS WITHNESTEDSTRUCTURES

Without loss of generality, we assume the all-zero codeword
is transmitted for notational simplicity.

For BECs, a decoding algorithm for bitxi ∈ {0, e}, i ∈
[1, n] is equivalent to a functiongi : {0, e}n 7→ {0, e}, where
“e” represents an erased bit andn is the codeword length.
In this paper,fi,l, ∀i ∈ [1, n], is used to denote the iterative
decoder for bitxi after l iterations. If we further rename the
element “e” by “ 1,” fi,l becomes a Boolean function, and the
BER for bit xi after l iterations is simplypi,l = E{fi,l}.
Another advantage of this conversion is that the decoding
operation at the variable node then becomes “·”, the binary
AND operation, and the operation at the parity check node
becomes “+”, the binaryOR operation.

For example, suppose we further usefi→j,l to represent the
message from variable nodei to check nodej during thel-th
iteration, and consider the simple code described in Fig. 1.
The iterative decodersf2,l, l ∈ {1, 2}, for bit x2 then become

f2,1 = x2(x1 + x3)(x4 + x6)

f2,2 = x2 (x1(f5→4,1 + f6→4,1) + x3(f4→3,1 + f5→3,1))

· (x4(f3→3,1 + f5→3,1) + x6(f1→4,1 + f5→4,1))

= x2 (x1(x5 + x6) + x3(x4 + x5))

· (x4(x3 + x5) + x6(x1 + x5)) . (1)

The final decoder of bitx2 is f2 := liml→∞ f2,l, and in this
example,f2 = f2,2. Although (1) admits a beautiful nested
structure, the repeated appearance of many Boolean input
variables, also known as short “cycles,” poses a great challenge
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to the evaluation of the BERp2 = E{f2}. One solution is to
first simplify (1) by expanding the nested structure into a sum-
product Boolean expression [1]:

f2 = x1x2x4x5 + x2x3x4 + x2x3x5x6. (2)

E{f2} can then be evaluated by the inclusion-exclusion prin-
ciple: p2 = ǫ3 + 2ǫ4 − 2ǫ5, whereǫ is the erasure probability.

It can be proved that each product term corresponds to
an irreducible stopping set (IRSS) and vice versa. Instead of
constructing the exact expression offi, if only a small subset
of these IRSSs is identified, say “x2x3x4,” then a lower bound
E{fLB,2} = ǫ3 can be obtained, where

fLB,2 = x2x3x4 ≤ f2, andE{fLB,2} = ǫ3 ≤ E{f2}.

The major challenge of this approach is to ensure that all
IRSSs of the minimum weight/order are exhausted. Further-
more, even when all IRSSs of the minimum weight are
exhausted, this lower bound is tight only in the high signal-to-
noise ratio (SNR) regime. Whether the SNR of interest is high
enough can only be determined by Monte-Carlo simulations
and by extrapolating the waterfall region.

An upper bound can be constructed by iteratively computing
the sum-product form off2,l0+1 from that off2,l0 . To counter-
act the exponential growth rate of the number of product terms,
during each iteration, we can “relax” and “merge” some of the
product terms so that the complexity is kept manageable [1].
For example,f2,2 in (2) can be relaxed and merged as follows.

f2,2 = x1x2x4x5 + x2x3x4 + x2x3x5x6

≤ 1x2x41 + x21x4 + x2x3x5x6

= x2x4 + x2x3x5x6,

so that the number of product terms is reduced to two.
Nonetheless, the minimal number of product terms required to
generate a tight upper bound grows very fast and good/tight
results were reported only for the casesn ≤ 20. In contrast, we
construct an efficient upper boundUBi ≥ E{fi} by preserving
much of the nested structure, so that tight upper bounds can
be obtained forn = 100–300. Furthermore, the tightness of
our bound can be verified with ease, which was absent in the
previous approach. Combined with the lower boundE{fLB,i},
the finite code performance can be efficiently bracketed for the
first time.

III. A N UPPERBOUND BASED ON TREE-TRIMMING

Two fundamental observations can be proved as follows.
Observation 1:All fi’s are monotonic functions w.r.t. all

input variables. Namely,fi|xj=0 ≤ fi|xj=1 for all i, j ∈ [1, n],
which separatesfi’s from “arbitrary” Boolean functions. (Here
we use the point-wise ordering such thatf ≤ g iff f(x) ≤
g(x) for all binary vectorsx.)

Observation 2: The correlation coefficient between any
pair of fi and fj is always non-negative, i.e.,E{fi · fj} ≥
E{fi}E{fj}.

In this section, we assume thatfv = g ·h or fc = g+h for
variable or check node operations respectively. Definexg ⊆
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Fig. 2. Rule 1: A simple relaxation for check nodes.
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Fig. 3. Rule 2: A pivoting rule for variable nodes.

{x1, · · · , xn} as the set of input variables upon which the
Boolean functiong depends, e.g., ifg = x1x2 + x7, then
xg = {x1, x2, x7}. Similary, we can definexh.

A. Rule 0

If xg ∩ xh = ∅, namely, there is no repeated node
in the input arguments, then

E{fv} = E{g}E{h}

E{fc} = E{g}+ E{h} − E{g}E{h}.

B. Rule 1 – A Simple Relaxation

Supposexg ∩ xh 6= ∅, namely, there are repeated nodes in
the input arguments. By Observation 2 and Rule 0, we have

E{fc} = E{g}+ E{h} − E{g · h}

≤ E{g}+ E{h} − E{g}E{h}. (3)

The above rule suggests that when the incoming messages
of a check node are dependent, the error probability of the
outgoing message can be upper bounded by assuming the
incoming ones are independent. Furthermore, Rule 1 does not
change the order of error probability, as can be seen in (3),
but only modifies the multiplicity term. Due to the random-
like interconnection within the code graph, for most cases,g

andh are “nearly independent” and the multiplicity loss is not
significant. The realization of Rule 1 is illustrated in Fig.2,
in which we assume thatxi0 is the repeated node.

C. Rule 2 – The Pivoting Rule

Consider the simplest case in whichxg ∩ xh = {xi0}. By
Observation 1, we have

fv = gv|xi0
=0 · hv|xi0

=0

+xi0 · gv|xi0
=1 · hv|xi0

=1. (4)

The realization of the above equation is demonstrated in Fig. 3.
Once the tree in Fig. 3(a) is transformed to Fig. 3(b), all
messages entering the variable nodes become independent



Algorithm 1 A tree-based method to upper boundpi.
Initialization: Let T be a tree containing only the targetxi variable node.
1: repeat
2: Find the next leaf variable node, sayxj .
3: if there exists another non-leafxj variable node inT then
4: if the youngest common ancestor of the leafxj and any other existing

non-leafxj , denoted asyca(xj), is a check nodethen
5: As suggested by Rule 1, the new leaf nodexj can be directly

included as if there are no otherxj ’s in T .
6: else if yca(xj) is a variable nodethen
7: As suggested by Rule 2, a pivoting construction involvingtree

duplication is initiated, which is illustrated in Fig. 3.
8: end if
9: end if

10: Construct the immediate check node children and variable node grand
children ofxj as in the support tree of the corresponding Tanner graph.

11: until the size ofT exceeds the preset limit.
12: Hardwire all remaining leaf nodes to1.
13: UBi is evaluated by invoking Rules 0 and 1. Namely, all incoming edges

are blindly assumed to be independent.

since gv|xi0
=0 and hv|xi0

=0 then share no repeated input
variables. By reapplying Rules 0 and 1, the outputE{fv} is
upper bounded by

E{fv} ≤ E{fv|xi0 = 0}+ E{xi0}E{fv|xi0 = 1}

−E{fv|xi0 = 0}E{xi0}E{fv|xi0 = 1},

where for allb ∈ {0, 1},

E{fv|xi0 = b} = E{gv|xi0 = b}E{hv|xi0 = b}.

Note: the pivoting rule (4) does not incur any performance
loss. The actual loss during this step is the multiplicity loss
resulted from reapplying Rule 1. Therefore, Rule 2 preserves
the asymptotic order ofE{fv} as does Rule 1.

D. The Algorithm

Rules 0 to 2 are designed to upper bound the expectation of
single operations with zero or a single overlapped node. Once
carefully concatenated, they can be used to constructUBi for
the infinite tree with many repeated nodes, while preserving
most of the nested structure.

Theorem 1:The concatenation in Algorithm 1 is guaranteed
to find an upper boundUBi for pi of the infinite tree.

The proof ofTheorem 1involves the graph theoretic prop-
erties ofyca(xj) and an incremental tree-revealing argument.
Some other properties of Algorithm 1 are listed as follows.

• The only computationally expensive step is when Rule 2
is invoked, which, in the worst case, may double the tree
size and thus reduces the efficiency of this algorithm.

• Rule 1, being the only relaxation rule, saves much com-
putational cost by ignoring repeated nodes.

• Once the tree construction is completed, evaluating
UBi for any ǫ ∈ [0, 1] is efficient with complexity
O (|T | log(|T |)), where|T | is the size ofT .

• The preset size limit ofT provides a tradeoff between
computational resources and the tightness of the resulting
UBi. One can terminate the program early before the
tightest results are obtained, as long as the intermediate
results have met the evaluation/design requirements.

This tree-based approach corresponds to a narrowing search
of stopping sets. By denotingfT ,t as the corresponding
Boolean function of the tree1 T at time t, we have

Theorem 2 (A Narrowing Search):Let

Xt := {(x1, · · · , xn) ∈ {0, 1}n : fT ,t(x1, · · · , xn) = 1}.

We then have

{all stopping sets} ⊆ Xt+1 ⊆ Xt, ∀t ∈ N.

IV. PERFORMANCE ANDRELATED TOPICS

A. The Leaf-Finding Module

The tightness ofUBi in Algorithm 1 depends heavily on
the leaf-finding (LF) module invoked in Line 2. A properly
designed LF module is capable of increasing the asymptotic
order ofUBi by +1 to +3. The ultimate benefit of an optimal
LF module is stated in the following theorem.

Theorem 3 (The Optimal LF Module):Following the nota-
tion in Theorem 2, with an “optimal” LF module, we have

{all stopping sets} = lim
t→∞

Xt.

Corollary 1 (Order Tightness ofAlgorithm 1): When
combined with an optimal LF module, theUBi computed
by Algorithm 1 is tight in terms of the asymptotic order.
Namely,∃C > 0 such thatUBi(ǫ)

pi(ǫ)
< C for all ǫ ∈ (0, 1].

In [4], determining whether a fixed LDPC codes contains
a stopping set of size≤ t is proved to be NP-hard. By
Theorem 2, a straightforward choice of the LF module, and
the complexity analysis of Algorithm 1, we have

Theorem 4:Deciding whether the stopping distance is≤ t

is fixed-parameter tractable whent is fixed.
For all our experiments, an efficient approximation of the

optimal LF module, motivated by the proof ofTheorem 3,
is adopted. With reasonable computational resources, Algo-
rithm 1 is capable of constructing asymptotically tight UBs
for LDPC codes ofn ≤ 100. A composite approach will be
introduced later, which further extends the application range
to n ≤ 300.

B. Confirming the Tightness ofUBi

To this end, after each timet, we first exhaustively enu-
merate the elements of minimal weight inXt and denote the
collection of them asXmin.

Corollary 2 (Tightness Confirmation):If ∃x ∈ Xmin that
is a stopping set, thenUBi is tight in terms of the asymptotic
order.

Corollary 3 (The Tight Upper and Lower Bound Pair):
Let Xmin,SS ⊆ Xmin denote the collection of all elements
x ∈ Xmin that are also stopping sets. ThenXmin,SS exhausts
the stopping sets of the minimal weight, and can be used
to derive a lower boundE{fLB,i} that is tight in both the
asymptotic order and the multiplicity. This exhaustive lower
bound was not found in any existing papers.

1Algorithm 1 consists of the tree construction stage and the upper bound
computing stage (Line 13). In this paper,fT ,t : {0, 1}n 7→ {0, 1} is defined
on the constructed tree, which will then be used on evaluating UBi.



(a) n = 50 (b) n = 72 (c) n = 144

Order 3 4 5 6 7
Num. bits 3 11 10 20 6
order* 3 8 5

+ multi* 3 11 7 12 1

Order 2 4 5 6 7 8
Num. bits 4 4 5 28 28 3
order* 1 11 26 1

+ multi* 4 4 4 17 2

Order 2 5 7 8 9
order* 4 3 7 27 2
order> 6 90 5

TABLE I

PERFORMANCESTATISTICS: “Num. bits” is the number of bits with the specified asymptotic order. “order*” is the num. bits with UBs tight only in the order. “+ multi*” is the

num. bits with UBs tight both in the order and in the multiplicity. “order >” is the num. bits with aUB of the specified order while no bracketing lower bound can be established.

C. BER vs. FER

The above discussion has focused on providingUBi for a
pre-selected target bitxi. Bounds for the average BER can be
easily obtained by taking averages over bounds for individual
bits. An equally interesting problem is bounding the FER,
which can be converted to the BER as follows. Introduce an
auxiliary variable and check node pair(x0, y0), such that the
the new variable nodex0 is punctured and the new check
nodey0 is connected to alln + 1 variable nodes fromx0 to
xn. The FER of the original code now equals the BERp0 of
variable nodex0 and can be bounded by Algorithm 1. Since
the FER depends only on the worst bit performance, it is easier
to construct tightUB for the FER than for the BER. On the
other hand,UBi provides detailed performance prediction for
each individual bit, which is of great use during code analysis.

D. A Composite Approach

The expectationE{fi} can be further decomposed as

E{fi} =

M
∑

j=1

E{Aj}E{fi|Aj},

whereAj ’s areM events partitioning the sample space. For
example, we can define a collection of non-uniformAj ’s by

A1 = {x0 = 0}

A2 = {x0 = 1, x7 = 0}

A3 = {x0 = 1, x7 = 1}.

Since for anyj, fi|Aj
is simply another finite code with a

modified Tanner graph, Algorithm 1 can be applied to each
fi|Aj

respectively and differentUBi,j ≥ E{fi|Aj
} will be

obtained. A composite upper bound is now constructed by

C-UBi =
M
∑

j=1

E{Aj}UBi,j ≥ E{fi} = pi.

In general, C-UB is able to produce bounds that are +1 or +2
in the asymptotic order and pushes the application range to
n ≤ 300. The efficiency of C-UB relies on the design of the
non-uniform partition{Aj}.

E. Performance

1) The (23,12) Binary Golay Code:The standard parity
check matrix of the Golay code is considered. Fig. 4 compares
the upper bound (UB), the composite upper bound (C-UB),
the Monte-Carlo simulation (MC-S), and the side product, the

tight lower bound (LB), on bits 0, 5, and 20. As illustrated, C-
UB and LB tightly bracket the MC-S results, which shows that
our UB and C-UB are capable of decoupling evennon-sparse
Tanner graphs with plenty of cycles.

2) A (3,6) LDPC Code withn = 50: A (3,6) LDPC code
with n = 50 is randomly generated, and the UB, the C-UB, the
MC-S, and the tight LB are performed on bits 0, 26, and 19, as
plotted in Fig. 5, and the statistics of all 50 bits are provided
in TABLE I(a). Our UB is tight in the asymptotic order for
all bits while 34 bits are tight in multiplicity. Among the 16
bits not tight in multiplicity, 11 bits are within a factor of
three of the actual multiplicity. In contrast with the Golay
code example, the tight performance can be attributed to the
sparse connectivity of the corresponding Tanner graph. As can
be seen in Fig. 5(c), the C-UB possesses the greatest advantage
over those UBs without tight multiplicity. The C-UB and the
LB again tightly bracket the asymptotic performance.

3) A (3,6) LDPC Code withn = 72: The UB, the C-UB,
the MC-S, and the tight LB are applied to bits 41, 25, and 60,
as plotted in Fig. 6 and the statistics are in TABLE I(b). Almost
all asymptotic orders can be captured by the UB with only two
exception bits. Both of the exception bits are of order 8, which
is computed by applying the C-UB to each bit respectively.

4) (3,6) LDPC Codes withn = 144: Complete statistics are
presented in TABLE I(c), and we start to see many examples
(101 out of 144 bits) in which our simple UB is not able to
capture the asymptotic order. For those bits, we have to resort
to the C-UB for tighter results. It is worth noting that the
simple UB is able to identify some bits with order 9, which
requires

(

144
9

)

= 5.7 × 1013 trials if a brute force method is
employed. Furthermore,all stopping sets of size≤ 7 have been
identified, which shows that Algorithm 1 is able to generate
tight UBs when only FERs are considered. Among all our
experiments, many of which are not reported herein, the most
computationally friendly case is when considering FERs for
irregular codeswith many degree 2 variable nodes, which are
one of the most important subjects of current research. In these
scenarios, all stopping sets of size≤ 13 have been identified
for non-trivial irregular codes withn = 576, which evidences
the superior efficiency of the proposed algorithm.

V. CONCLUSION & FUTURE DIRECTIONS

A new technique upper bounding the BER of any finite code
on BECs has been established, which, to our knowledge, is the
first algorithmic result guaranteeing finite code performance
while admitting efficient implementation. Preserving much
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of the decoding tree structure, this bound corresponds to a
narrowing search of stopping sets. The asymptotic tightness
of this technique has been proved, while the experiments
demonstrate the inherent efficiency of this method for codesof
moderate sizesn ≤ 300. One major application of this upper
bound is to design high rate codes with guaranteed asymptotic
performance, and our results specify both the attainable low
BER, e.g., 10−15, and at what SNR it can be achieved.
One further research direction is on extending the setting to
binary symmetric channels with quantized belief propagation
decoders such as Gallager’s decoding algorithms A and B.
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