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Abstract— Assuming iterative decoding for binary erasure
channels (BECs), a novel tree-based technique for upper bod-
ing the bit error rates (BERSs) of arbitrary, finite low-density
parity-check (LDPC) codes is provided and the resulting boad .
can be evaluated for all operating erasure probabilities,mcluding i=1 2 3 4 5 6
both the waterfall and the error floor regions. This upper bound Fig. 1. A simple parity check code.
can also be viewed as a narrowing search of stopping sets, whi
is an approach different from the stopping set enumeration ged
for lower bounding the error floor. When combined with optimal (rER) will be treated as a special case. Experiments are con-
leaf-finding modules, this upper bound is guaranteed to be gjht in ducted for th — 94 50.72.144. which d trat
terms of the asymptotic order. The Boolean framework proposd ucte o_r € _C"?‘SGS — AH O LS » W 'C_ emons_ra e
herein further admits a composite search for even tighter reults.  the superior efficiency of the proposed algorithm. Applimat
For comparison, a refinement of the algorithm is capable of of this bound to finite code optimization is deferred to a
exhausting all stopping sets of size< 13 for irregular LDPC  companion paper.
codes of lengthn ~ 500, which requires (%) ~ 1.67x 10*° trials

13
if a brute force approach is taken. These experiments indic®@ |l. BOOLEAN EXPRESSIONS WITHNESTED STRUCTURES

that this upper bound can be used both as an analytical tool ah Without | f lit the all d d
as a deterministic worst-performance (error floor) guarantee, the ithoutloss of generality, we assume the all-zero coaewor

latter of which is crucial to optimizing LDPC codes for extremely IS transmitted for notational simplicity.

low BER applications, e.g., optical/satellite communicabns. For BECs, a decoding algorithm for hit; € {0,¢}, i €
[1,n] is equivalent to a functiow; : {0,e}" — {0, e}, where
|. INTRODUCTION “e” represents an erased bit amdis the codeword length.

, ) " In this paper.f;,;, Vi € [1,n], is used to denote the iterative
The bit error rate (BER) curve of anfjxed finite, low-  yo.04er for bitz; after iterations. If we further rename the

density parity-check (LDPC) code on binary erasure Chamn%'lement " by “1 f,; becomes a Boolean function, and the

(BE_Cs) is completely de_tgr_mined by its stopping set dis_trBER for bit ; after | iterations is simplypi; = E{fi;}.
bution. Due to the prohibitive cost of computing the entirg e advantage of this conversion is that the decoding
stopping se?d|str|but|on [1],in practlce, the waterfaﬂeshold_ operation at the variable node then becomésthe binary

of the BER is generally approximated by the density evofut|oAND operation, and the operation at the parity check node
and pinpointed by the Monte-Carlo simulation, while theoerr becomes ", the binaryOR operation.

floor is lower bounded by semi-exhaustively identifying the For example, suppose we further uge,;; to represent the

dominant StOPping SEt_S [2] or by ?mportance sgmpling [Silnessage from variable noddo check nodeg during thel-th
Even computing the size of the minimum stopping sets has aiion and consider the simple code described in Fig. 1.

been proved to be an NP-hard problem [4], which furtheg,q jterative decoderg, ;, I {1,2}, for bit 25 then become
shows the difficulty of constructing the entire stopping set '

distribution. Other research directions related to thedinpde f21 = x2(x1 + z3) (x4 + z6)
performance include [5] and [6] on the average performan%,2 = 2o (@1 (fsman + foan) + 23(Fimsa + f553.1))
of finite code ensemblesn BECs and its scaling law, and a (@S +f )+ z6(f L )
physics-based asymptotic approximation for Gaussian -chan 4432317 /5=3.1 61/1=4,1 7 J5—4,1
nels [7]. = @2 (v1(zs + x6) + 23(Ts + T5))

In this paper, only BECs will be considered. We focus on (za(zs + 25) + w6 (21 + 25)) . 1)

upper bounding the BER curves of arbitrary, fixed, finite fyari The final decoder of bitrs is f» = limy_oc fou, @nd in this

check codes under iterative decoding, and the frame ener rgxample,fg — fas. Although (1) admits a beautiful nested

This research was supported in part by the Army Research rating Sm'_ICture’ the repeated appearance of many Boolean Input
Collaborative Technology Alliance under Contract No. DAAB-01-2-0011. variables, also known as short “cycles,” poses a greatexgd
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to the evaluation of the BER, = E{ f,}. One solution is to
first simplify (1) by expanding the nested structure into msu

product Boolean expression [1]:
!

Ty xX; ,TZ-O

fQ = T1X2X4T5 + T2X3T4 + T2T3T5Tg. (2) — -
_ ) _ _ (a) Original (b) Relaxation
E{f2} can then be evaluated by the inclusion-exclusion prin-

ciple: p, = €3 + 2¢* — 2¢°, wheree is the erasure probability.

It can be proved that each product term corresponds to
an irreducible stopping set (IRSS) and vice versa. Instdéad o
constructing the exact expression £f if only a small subset
of these IRSSs is identified, says>x3x4,” then a lower bound
E{fug.2} = € can be obtained, where

fub2 = 22w324 < fo, andE{frp 2} = ¢ < E{fo}. -
i)

The major challenge of this approach is to ensure that all (a) Original (b) Decoupled
IRSSs of the minimum weight/order are exhausted. Further-
more, even when all IRSSs of the minimum weight are
exhausted, this lower bound is tight only in the high sigtoal-

noise ratio (SNR) regime. Whether the SNR of interest is hi -z} as the set of input variables upon which the

. . . 1"
enough can only be determined by Monte-Carlo simulatiofg)gjean functiong depends, e.g., iy = ziz2 + 7, then

and by extrapolating the waterfall region. x, = {1, 72, 27}. Similary, we can define,.
An upper bound can be constructed by iteratively computing

the sum-product form ofs ;,+1 from that of f» ;,. To counter- A. Rule 0

act the exponential growth rate of the number of productserm  |f x N x, = ), namely, there is no repeated node
during each iteration, we can “relax” and “merge” some of the  in the input arguments, then

product terms so that the complexity is kept manageable [1].

For example s » in (2) can be relaxed and merged as follows. E{f.} = E{g}E{n}

E{fc} = E{g}+E{h}-E{g}E{h}.

Fig. 2. Rule 1: A simple relaxation for check nodes.

Fig. 3. Rule 2: A pivoting rule for variable nodes.

fo2 = Z1ToTaTs 4+ T2X3T4 + T2X3T5T6
< Azowyl + xolay + TorsTsTs B. Rule 1 — A Simple Relaxation
= XoT4 + ToT3T5T6, Supposex, N x;, # 0, namely, there are repeated nodes in

_ the input arguments. By Observation 2 and Rule 0, we have
so that the number of product terms is reduced to two.

Nonetheless, the minimal number of product terms requised t E{fc} = E{g}+E{h}—E{g-h}

generate a tight upper bound grows very fast and good/tight < E{g} +E{h} — E{g}E{R}. (3)
results were reported only for the cases 20. In contrast, we The above rule suggests that when the incoming messages
construct an efficient upper bouftB; > E{ f;} by preserving -

much of the nested structure, so that tight upper bounds c%fna C,:hECk node are dependent, the error probability Pf the
be obtained fom = 100-300. Furthermore, the tightness Ofput90|_ng message can be upper bounded by assuming the
our bound can be verified with ease, which was absent in th&OMINg ONes are independent. F_u_rthermore, Rule 1 d‘?es not
previous approach. Combined with the lower bo&fdi ;). change the order of error probability, as can be seen in (3),

the finite code performance can be efficiently bracketecter tPut only modifies the multiplicity term. Due to the random-
first time. like interconnection within the code graph, for most cages,

andh are “nearly independent” and the multiplicity loss is not
I1l. AN UPPERBOUND BASED ON TREE-TRIMMING significant. The realization of Rule 1 is illustrated in FR&j.

Two fundamental observations can be proved as follows.n Which we assume that;, is the repeated node.
Observation 1:All f;’s are monotonic functions w.r.t. all C. Rule 2 — The Pivoting Rule
input variables. Namelyf;|,,—o < fil.,=1 forall i, j € [1,n],
which separateg;’s from “arbitrary” Boolean functions. (Here
we use the point-wise ordering such that< ¢ iff f(x) <
g(x) for all binary vectorsx.) fo
Observation 2:The correlation coefficient between any
pair of f; and f; is always non-negative, i.eE{f; - f;} >
E{f.}E{f;}. The realization of the above equation is demonstrated inFig
In this section, we assume thAt=g-h or f. = g+ h for Once the tree in Fig. 3(a) is transformed to Fig. 3(b), all
variable or check node operations respectively. DesipeC messages entering the variable nodes become independent

Consider the simplest case in whiglh) N x;, = {z;,}. By
Observation 1, we have

+xi0 : gU|$1:0:1 . hv|m¢0:1- (4)

;=0 " hv ;=0



Algorithm 1 A tree-based method to upper bound This tree-based approach corresponds to a narrowing search
Initialization: Let 7" be a tree containing only the targef variable node.  of stopping sets. By denotings; as the corresponding

1: repeat . Boolean function of the trée7 at timet, we have

2:  Find the next leaf variable node, say. Th 2 (AN ina S hi:

3: if there exists another non-leaf; variable node in7” then eorem 2 ( arrowing Search)-et

4 if the youngest common ancestor of the leatand any other existing L n . _
non-leafz, denoted agca(z;), is a check nodehen Xe={(z1, -+, 2n) €{0,1}": fra(zr, - @n) =1}

5: As suggested by Rule 1, the new leaf nadgcan be directly

included as if there are no other’s in 7. We then have

else ifyca(xz;) is a variable nod¢hen
As suggested by Rule 2, a pivoting construction involvinge
duplication is initiated, which is illustrated in Fig. 3.
8 end if
9: endif
10:  Construct the immediate check node children and variabbe grand IV. PERFORMANCE ANDRELATED TOPICS
children ofz; as in the support tree of the corresponding Tanner grapf\. The Leaf-Finding Module
11: until the size of7 exceeds the preset limit. . . . .
12: Hardwire all remaining leaf nodes 1o The tightness ofUB; in Algorithm 1 depends heavily on
13: UB; is evaluated by invoking Rules 0 and 1. Namely, all incomidges  the leaf-finding (LF) module invoked in Line 2. A properly
are blindly assumed to be independent. designed LF module is capable of increasing the asymptotic
order of UB; by +1 to +3. The ultimate benefit of an optimal
) ~ LF module is stated in the following theorem.
since gu|z;,=o and hy|s, =0 then share no repeated input Theorem 3 (The Optimal LF ModuleJollowing the nota-

variables. By reapplying Rules 0 and 1, the outp{lf,} is tion in Theorem 2with an “optimal” LF module, we have
upper bounded by

N

{all stopping sets} C X; 1 C X;,Vt € N.

{all stopping sets} = tlim X;.
ade el
E{fo} < E{folwi, = 0} + E{wi JE{ folziy = 1} Corollary 1 (Order Tightness oAlgorithm 1): When
—E{fu|zi, = 0}E{xs, }E{ fo|zi, = 1}, combined with an optimal LF module, th€B; computed
by Algorithm 1 is tight in terms of the asymptotic order.
where for allb € {0, 1}, Namely,3C' > 0 such thatU]f’ZS) < C forall e € (0,1].
E{fv|zi, = b} = E{gv|zi, = b}E{hy|zs, = b}. In [4], determining whether a fixed LDPC codes contains

a stopping set of size< ¢ is proved to be NP-hard. By

Note: the pivoting rule (4) does not incur any performancﬁheorem 2 a straightforward choice of the LF module, and
loss. The actual loss during this step is the multiplicitgdo the complexity analysis of Algorithm 1, we have '

resulted from_ reapplying Rule 1. Therefore, Rule 2 preserve Theorem 4:Deciding whether the stopping distance<ist
the asymptotic order ok{f,} as does Rule 1. is fixed-parameter tractable whens fixed.

D. The Algorithm For all our experiments, an efficient approximation of the
o&timal LF module, motivated by the proof dfheorem 3

Rules 0 to 2 are designed to upper bound the expectation dopted. With bl tational Al
single operations with zero or a single overlapped nodeeOrig, aC0Pted. With reasonable computational resources, -Algo

carefully concatenated, they can be used to constiiitfor rithm 1 is capable of constructing asymptotically tight UBs

the infinite tree with many repeated nodes, while preserviﬂﬁ LDPC codes Ofn_ < 100. A composite approa_lch .W'" be
most of the nested structure introduced later, which further extends the applicationge

Theorem 1:The concatenation in Algorithm 1 is guarantee&o n < 300.
to find an upper boun@B; for p; of the infinite tree. B. Confirming the Tightness &fB;

The proof of Theorem linvolves the graph theoretic prop- T this end, after each timg we first exhaustively enu-
erties ofyca(z;) and an incremental tree-revealing argumenterate the elements of minimal weight X, and denote the
Some other properties of Algorithm 1 are listed as follows. cgjlection of them aX,,,;,,.

« The only computationally expensive step is when Rule 2 Corollary 2 (Tightness Confirmation)f Ix € X, that

is invoked, which, in the worst case, may double the tree a stopping set, thetiB; is tight in terms of the asymptotic
size and thus reduces the efficiency of this algorithm. order.

« Rule 1, being the only relaxation rule, saves much com- Corollary 3 (The Tight Upper and Lower Bound Pair):

putational cost by ignoring repeated nodes. Let X nin,ss € Xpmin denote the collection of all elements

« Once the tree construction is completed, evaluatinge X,,;, that are also stopping sets. ThER,;,, 55 exhausts

UB; for any e € [0,1] is efficient with complexity the stopping sets of the minimal weight, and can be used
O (|T|log(|T|)), where|T| is the size ofT. to derive a lower bound{ fi,5;} that is tight in both the
« The preset size limit off” provides a tradeoff betweenasymptotic order and the multiplicity. This exhaustive éow
computational resources and the tightness of the resultisgund was not found in any existing papers.
UB;. One can terminate the program early before the, _ _ .
Algorithm 1 consists of the tree construction stage and et bound

tightest results are obtained, as long as the intermedigl, ;i ting stage (Line 13). In this papgt, : {0,1}" — {0, 1} is defined
results have met the evaluation/design requirements. on the constructed tree, which will then be used on evalgatiis; .




(@) n =50 (b)y n="72 (c)n =144
Order 3 4 5 6 7 Order 2 4 5 6 7 8
Num. Bits 3 11 10 20 6 Numbts 4 4 5 28 28 3 --der 2 5 7 8 9
N N order 4 3 7 271 2
order 3 8 5 order 1 11 26 1 order> 6 90 5
+mult* 3 11 7 12 1 +mult* 4 4 4 17 2
TABLE |

PERFORMANCESTATISTICS: “Num. bits” is the number of bits with the specified asymptatider. “order*” is the num. bits with UBs tight only in thedsr. “+ multi*” is the
num. bits with UBs tight both in the order and in the multifilic “order >" is the num. bits with aUB of the specified order while no bracketing lower bound candieldished.

C. BER vs. FER tight lower bound (LB), on bits 0, 5, and 20. As illustrated, C
The above discussion has focused on providifigy for a UB and LB tightly bracket the MC-S results, which shows that

pre-selected target bit;. Bounds for the average BER can b@Ur UB and C-UB are capable of decoupling evem-sparse
easily obtained by taking averages over bounds for indadiduT@ner graphs with plenty of cycles.

bits. An equally interesting problem is bounding the FER, 2) A (3,6) LDPC Code witl = 50: A (3,6) LDPC code
which can be converted to the BER as follows. Introduce d#th » = 50 is randomly generated, and the UB, the C-UB, the
auxiliary variable and check node pdito, 7o), such that the MC-S, and the tight LB are performed on bits 0, 26, and 19, as
the new variable node, is punctured and the new checkplotted in Fig. 5, and the statistics of all 50 bits are predd
nodey, is connected to alh + 1 variable nodes fromy to N TABLE I(a). Our UB is tight in the asymptotic order for
z.,. The FER of the original code now equals the BERof all bits while 34 bits are tight in multiplicity. Among the 16
variable noder, and can be bounded by Algorithm 1. Sinc&its not tight in multiplicity, 11 bits are within a factor of
the FER depends only on the worst bit performance, it is easiBreée of the actual multiplicity. In contrast with the Golay
to construct tightUB for the FER than for the BER. On thecode example, the tight performance can be attributed to the
other handUB; provides detailed performance prediction fopParse connectivity of the corresponding Tanner graph.ahs ¢

each individual bit, which is of great use during code arialys P seen in Fig. 5(c), the C-UB possesses the greatest adeanta
over those UBs without tight multiplicity. The C-UB and the

D. A Composite Approach LB again tightly bracket the asymptotic performance.

The expectatiorE{ f;} can be further decomposed as 3) A (3,6) LDPC Code wittw = 72: The UB, the C-UB,
the MC-S, and the tight LB are applied to bits 41, 25, and 60,
as plotted in Fig. 6 and the statistics are in TABLE I(b). Akho
all asymptotic orders can be captured by the UB with only two
exception bits. Both of the exception bits are of order 8,0lhi
where A;’s are M events partitioning the sample space. FQ§ computed by applying the C-UB to each bit respectively.
example, we can define a collection of non-unifartyis by 4) (3,6) LDPC Codes with = 144: Complete statistics are

A = {z0=0} presented in TABLE I(c), and we start to see many examples
(101 out of 144 bits) in which our simple UB is not able to
Az = {wo=Lar =0} capture the asymptotic order. For those bits, we have tatreso
A3 = {xo= 1,27 =1} to the C-UB for tighter results. It is worth noting that the

Since for anyj, fi|, is simply another finite code with aS|mpIe UI134415 able to identify some bits with order 9, which

: a 13 vt .
modified Tanner graph, Algorithm 1 can be applied to eagﬁqwres( 9 ) =5.7x10 tnal_s if a brute _force method is
fila, respectively and differentB,, > E{f;| } will be employed. Furthermorell stopping sets of siz& 7 have been

. . . identified, which shows that Algorithm 1 is able to generate
obtained. A composite upper bound is how constructed bytight UBs when only FERs are considered. Among all our

E{fi} =D E{AJE{fil4;},

j=1

M experiments, many of which are not reported herein, the most
C-UB, = > E{A;}UB,; > E{f;} = p:. computationally friendly case is when considering FERs for
j=1 irregular codeswith many degree 2 variable nodes, which are

In general, C-UB is able to produce bounds that are +1 or -epe of the most important subjects of current research dseth
in the asymptotic order and pushes the application rangeseenarios, all stopping sets of sizel3 have been identified
n < 300. The efficiency of C-UB relies on the design of thdor non-trivial irregular codes witl = 576, which evidences
non-uniform partition{ A, }. the superior efficiency of the proposed algorithm.

E. Performance V. CONCLUSION & FUTURE DIRECTIONS

1) The (23,12) Binary Golay CodeThe standard parity A new technique upper bounding the BER of any finite code
check matrix of the Golay code is considered. Fig. 4 compareis BECs has been established, which, to our knowledge, is the
the upper bound (UB), the composite upper bound (C-UBjtst algorithmic result guaranteeing finite code perforoen
the Monte-Carlo simulation (MC-S), and the side produat, thwhile admitting efficient implementation. Preserving much
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of the decoding tree structure, this bound corresponds tg2nT. Richardson, “Error floors of LDPC codes,” iRroc. 41st Annual
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in Proc. IEEE Int'l. Symp. Inform. Theory Chicago, 2004.
C. Di, D. Proietti, E. Telatar, T. J. Richardson, and RUrbanke, “Finite-
decoders such as Gallager’s decoding algorithms A and B.

length analysis of low-density parity-check codes on theaby erasure
channel,” IEEE Trans. Inform. Theoryvol. 48, no. 6, pp. 1570-1579,
June 2002.

[7] M. G. Stepanov, V. Chernyak, M. Chertkov, and B. Vasicjd@nosis of
weaknesses in modern error correction codes: a physiceagpt Phys.
Rev. Lett. to be published.

REFERENCES

[1] J. S. Yedidia, E. B. Sudderth, and J.-P. Bouchaud, “PRtime algebra
analysis of error correcting codes,” Mitsubishi Electries@arch Labora-
tories, Technical Report TR2001-35, 2001.



