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Abstract— The erasure correcting capability of LDPC codes
with parity-check matrices composed of permutation matrices is
considered. A new lower bound for number of the iteratively
correcting erasures for the Zyablov-Pinsker algorithm is given.

I. INTRODUCTION

Iterative decoding of LDPC codes for a binary erasure chan-
nel (BEC) was first studied by Zyablov and Pinsker [1]. They
suggested a simple iterative algorithm for erasures correction
and proved a lower bound on the number of corrected erasures.
Many researchers have studied iterative decoding of LDPC
codes for the erasure channel (see, for example, [2],[4]) and
obtaind interesting results in this area.

Zyablov and Pinsker have studied a special random en-
semble of irregular LDPC codes. In this paper, we consider
the same algorithm of erasures correction as in [1], but a
different ensemble of LDPC codes. We study the ensemble
of regular LDPC codes with parity-check matrices composed
of permutation matrices. This ensemble was introduced in [3]
where a lower bound on the minimum distance of LDPC
codes was derived , analogously to the Gallager bound on the
minimum distance of conventional regular LDPC codes [5].

A combinatorial approach which differs from both Zyablov-
Pinsker and Gallager approaches is used to derive of the
bound. Our bound is stronger than the Zyablov-Pinsker bound
for low rates and weaker for larger rates.

II. BASIC IDEA OF BOUND PROOF

Let v = (v0, v1, ...vN−1), vn ∈ {0, 1}, n = 0, 1, ..., N −
1, be a codeword of length n. It should satisfy the equality
vHT = 0 where HT is transposed N ×L parity-check matrix.
This equality assigns L parity-check equations defining the
codeword v.

Suppose a codeword v is transmitted over a BEC. Let
ṽ = (ṽ0, ṽ1, ..., ṽN−1) be the received codeword such that
ṽn ∈ {0, 1, e} where e denotes the erasure symbol. We call
the number of erased symbols e-weight.

Suppose that the number of erased symbols in a word
is equal to t and that there exists at least one parity-check
equation with exactly one erased symbol. Since this symbol is
equal to sum of the other symbols in this equation, it can be
restored. Then, t − 1 erased symbols is left in the codeword
and we can look for another parity-check equation with exactly
one erased symbol. If such an equation exists, we restore one

more erased symbol etc. The Zyablov-Pinsker algorithm is
based on the same idea. The decoder looks over the parity-
check equations until it finds an equation having exactly one
erased symbol. Then it restore the erased symbol and repeats
procedure.

Suppose there exists an LDPC code such that for any t,
0 < t < t0, and for any combination of t erasures there exists a
parity-check equation having exactly one erased symbol. Obvi-
ously the Zyablov-Pinsker decoder corrects all combinations of
erasures which number does not exceed t0. If all parity-check
equations either does not include erased symbols or include
two or more erased symbols, the corresponding combinations
of erasures are called a stop set.

We used this principle for derivation of our lower bound
on the number of iteratively correctable erasures. In fact,
consider an ensemble of LDPC codes. Let us upperbound
the mathematical expectation of the number of stop sets with
e-weight t. If for any t < t0 = αN this expectation is
upperbounded by a function exponentially decreasing with
block length N , then there exists an LDPC code of sufficiently
large block length N such that all combinations of less than
t0 erasures are iteratively correctable.

We have considered the ensemble C(KM,JK), introduced
in [3]. Parity-check matrices of codes in the ensemble are
composed of JK permutation M ×M matrices Pjk:

H = (Pjk), j = 1, 2, . . . , J, k = 1, 2, . . . ,K. (1)

In symbol representation, these parity-check matrices are
of size L × N where L = JM , N = KM . We assume
that matrices Pjk are chosen in the ensemble C(KM,JK)

independently and take on any of the M ! values with equal
probability.

III. MAIN RESULT

Theorem 1: If J ≥ 3, almost all codes of the ensemble
C(KM,JK) iteratively correct (with complexity O(N logN),
N is the block length) all combinations of t erasures, t ≤ t0,
where

t0 = min {αKM, 2M} + o(M). (2)
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Fig. 1. Lower bound α on the fraction of iteratively correctable erasures
and Zyablov-Pinsker lower bound α0 on the fraction of iteratively correctable
erasures as functions of R∗ for K = 5. For comparison the lower bound [3]
ρ∗ on the normalized minimum distance of the code ensemble C(KM,JK) is
presented.

Here o(M)/M → 0 if M → ∞, α is the smallest ρ ∈ [0, 1/2]
such that

FJ,K(ρ, λ) Δ=
1
K
f(λ) − λρ− J − 1

J
H(ρ) < 0 (3)

for some λ < 0. The functions f(λ) and H(ρ) are

f(λ) = ln
[
(1 + eλ)K −Keλk

]
(4)

and
H(ρ) = −ρ ln ρ− (1 − ρ) ln(1 − ρ). (5)

Corollary 1: If J ≥ 3, almost all codes of the ensemble
C(KM,JK) iteratively (with complexity O(N logN)) correct
all combinations of erasures which number does not exceed
some linear function αN of block length N , conditioned that
α ≤ 2/K .

The parameter α (conditioned that α ≤ 2/K) can be
considered as a lower bound on the fraction of iteratively
correctable erasures. In Figures 1-3, α is presented as a
function of the lower bound R∗ = 1 − J/K of the code rate
R. For comparison, the Zyablov-Pinsker [1] lower bound α 0

on the fraction of iteratively correctable erasures and lower
bound ρ∗ on the the normalized minimal distance of the code
ensemble C(KM,JK) are given.

We can see that for low rates the lower bound on the number
of correctable erasures for the ensemble C(KM,JK) is better
than the Zyablov-Pinsker bound but for large rates Zyablov-
Pinsker bound is better.

IV. ENSEMBLE ANALYSIS

Let us represent the received vector ṽ as the sequence of
K vectors of length M , i.e. ṽ = (ṽ1, ṽ2, . . . , ṽK), where
ṽk = (ṽk1, ṽk2, . . . , ṽkM ), k = 1, 2, . . . ,K . Let t1, t2, . . . , tK
be e-weights of vectors ṽ1, ṽ2, . . . , ṽK , t1 + t2 + · · ·+ tK = t
respectively. We say that the vector ṽ has e-weight composition
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Fig. 2. Lower bound α on the fraction of iteratively correctable erasures
and Zyablov-Pinsker lower bound α0 on the fraction of iteratively correctable
erasures as functions of R∗ for K = 7. For comparison the lower bound [3]
ρ∗ on the normalized minimum distance of the code ensemble C(KM,JK) is
presented.
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Fig. 3. Lower bound α on the fraction of iteratively correctable erasures
and Zyablov-Pinsker lower bound α0 on the fraction of iteratively correctable
erasures as functions of R∗ for K = 11. For comparison lower bound [3]
ρ∗ on the normalized minimum distance of the code ensemble C(KM,JK) is
presented.

t = (t1, t2, . . . , tK). There exist
K∏

k=1

(
M

tk

)
vectors ṽ with e-

weight composition t.
The codeword v satisfies L equations given by the parity-

check matrix H . These parity-check equations can be divided
into J subsets. The subset S (j), j = 1, 2, . . . , J , consists of
M parity-check equations determined by permutation matrices
P jk , k = 1, 2, . . . ,K .

Consider the word ṽ received after transmission of a code-
word v over the BEC. Let i-th equation, i = 1, 2, . . . ,M,
of subset S(j) is associated with theK-dimensional binary
vector p

(j)
i . The k-th component, k = 1, 2, . . . ,K of p

(j)
i is



equal to one if the k-th component of the vector ṽk is erased
and it is equal to zero otherwise. Let us introduce the vector
c(j) = (p(j)

1 ,p
(j)
2 , . . . ,p

(j)
M ).

The derivation of the upper bound on the mathematical ex-
pectation of the number of stop sets with e-weight composition
t is analogous to the derivation of the upper bound on the
mathematical expectation of the number of codewords with
weight composition d, described in [1]. We focus on the key
elements of the proof of our bound.

Let γ(j)
0 be a number of equations of subset S (j), j =

1, 2, . . . , J , not including the erased symbols of any of the
vectors ṽk, k = 1, 2, . . . ,K . Furthermore, let γ (j)

2 (k1, k2)
be a number of the equations of subset S (j), including two
erased symbols, one from vector ṽk1 and one from ṽk2 ; the
other K − 2 vector components of ṽ included in equations of
this subset are not erased. Generally, let γ (j)

i (k1, k2, . . . , ki),
i = 2, 3, . . . ,K be the number of the equations of subset
S(j), including i erased symbols, one symbol from each of
vectors ṽk1 , ṽk2 , . . . , ṽki ; the other K − i components of a
vector ṽ included in equations of this subset are not erased.
Note that arguments of the function γ

(j)
i (k1, k2, . . . , ki) are

different and that this function is invariant to permutation of
its arguments. To emphasize this fact, we henceforth write
γ

(j)
i ({k1, k2, . . . , ki}) for γ(j)

i (k1, k2, . . . , ki).
Analogous to equations (3), (5) of [3] we get

γ
(j)
0 +

∑
{k1,k2}

γ
(j)
2 ({k1, k2}) + (6)

+
∑

{k1,k2,k3}
γ

(j)
3 ({k1, k2, k3}) + · · · +

+ γ
(j)
K ({1, 2, . . . ,K}) = M,

∑
{k2}

γ
(j)
2 ({k1, k2}) +

∑
{k2,k3}

γ
(j)
3 ({k1, k2, k3}) + (7)

+ · · · + γ
(j)
K ({1, 2, . . . ,K}) = tk1 ,

for k1 = 1, 2, . . . ,K .
Note that sums (7) and (8) do not contain γ

(j)
1 (k1), the

number of equations with exactly one erased symbol, but
in contrast to the sums (3) and (5) of [1], they contain the
numbers of the equations with three, five, etc. erased symbols.

Consider a vector

γ(j) = (γ(j)
0 , {γ(j)

2 ({k1, k2})}, . . . , γ(j)
K ({1, 2, . . . ,K})),

with components satisfying (7) and (8). The total number of
components of the vector γ (j) is equal to 2K −K . The vector
γ(j) is called the j-composition of constraints. Then

1

γ
(j)
0 !

∏
{k1,k2}

γ
(j)
2 ({k1, k2})!

× (8)

× M !∏
{k1,k2,k3}

γ
(j)
3 ({k1, k2, k3})! · · ·γ(j)

k ({1, 2, . . . ,K})!

various vectors c(j) correspond to a vector γ (j)

Next, consider a set Γ(j)(t) of vectors γ (j) having e-weight
composition t. The number of vectors c(j), corresponding to
this set is equal to

φ(j)(t) =
∑

Γ(j)(t)

1

γ
(j)
0 !

∏
{k1,k2}

γ
(j)
2 ({k1, k2})!

× (9)

× M !∏
{k1,k2,k3}

γ
(j)
3 ({k1, k2, k3})! · · ·γ(j)

K ({1, 2, . . . ,K})!
,

where summation is over all γ (j), included in set Γ(j)(t). The
following two lemmas are analogous to lemmas 1 and 2 from
[1].

Lemma 1: For the ensemble C(KM,JK), the probability
ψ(j)(t) that an arbitrary chosen vector ṽ = (ṽ1, ṽ2, . . . , ṽK)
with a e-weight composition t = (t1, t2, . . . , tk) has no
correcting checks in S (j) is equal to

ψ(j)(t) =
φ(j)(t)

K∏
k=1

(
M

tk

) . (10)

Lemma 2: The function φ(j)(t) is upperbounded by in-
equality

φ(j)(t) ≤ exp

[
M

(
g(λ1, λ2, . . . , λK)

K∑
k=1

λkρk

)]
, (11)

j = 1, 2, . . . ,K,

where

g(λ1, λ2, . . . , λK) = ln

[
K∏

k=1

(1 + eλk)
K∑

k=1

eλk

]
(12)

and ρk = tk/M , ρk ≥ 0 is the normalized e-weight of a vector
ṽk.

Note that the only essential difference between the bounds
(11),(12) and the corresponding bounds of [3] is the different
definition of the function g(λ1, λ2, . . . , λK).

The following lemma is similar to lemma 3 of [3].
Lemma 3: In the ensemble C(KM,JK), the average number

E(t) of stop sets with e-weight composition t is upperbounded
by

E(t) ≤
∏

k∈K+

σ(ρk,M) exp [JMFK(λ1, . . . , λK , ρ1, . . . , ρK)],

(13)
where

FK(λ1, . . . , λK , ρ1, . . . , ρK)) = (14)

= g(λ1, λ2, . . . , λK)
K∑

k=1

λkρk
J − 1
J

K∑
k=1

H(ρk),

σ(ρ,M) =
√

2πMρ(1 − ρ) exp
[

1
12Mρ(1 − ρ)

]
, (15)

H(ρ) is defined by (5) and K+ = {k|ρk > 0}.
The further derivation of the bound is reduced to an



analysis of function FK(λ1, . . . , λK , ρ1, . . . , ρK). First, we
find variables λ1, . . . , λK for which this function has a mini-
mum. Substituting these values into function FK(λ1, . . . , λK ,
ρ1, . . . , ρK) we get

GK(ρ1, ρ2, . . . , ρK) Δ= min
λ1,...,λK

FK(λ1, . . . , λK , ρ1, . . . , ρK).

Let us introduce the function

θ(ρ) Δ= max
ρ1,ρ2,...,ρK : 1

K

K∑
k=1

ρk=ρ

GK(ρ1, ρ2ρK) (16)

Then, consider the set

A(ρ) = {t| 1
K

K∑
k=1

ρk = ρ}

of e-sets with normalized e-weight ρ. From lemma 3 follows∑
A(ρ)

E(t) ≤ (17)

≤ ∑
A(ρ)

exp

{
JM

[
θ(ρ) + J−1

JM ln

( ∏
k∈K+

σ(ρk,M)

)]}
.

Obviously, if all symbols in two vector components v k1 and
vk2 of a vector v are erased, then the vector ṽ define stop
set. In this case, there exists a set of 2M erasures which it
cannot correct. Hence, we can limit ourself by consideration
of vectors v with e-weights t < 2M , i.e. vectors, for which
ρ < 2/K . The following lemma similar to lemma 4 in [3]
determines a point (ρ1, ρ1, . . . , ρK) in the K-dimensional
space, corresponding to a maximum of GK(ρ1, ρ1, . . . , ρK)
for e-weight sets with the normalized e-weight ρ < 2/K .

Lemma 4: If J ≥ 3 and ρ =
1
K

K∑
k=1

ρk, ρ < 2/K , is fixed,

the conditional maximum of the function GK(ρ1, . . . , ρK) is
attained at the unique point ρ1 = · · · = ρK = ρ, i.e.

θ(ρ) = GK(ρ, . . . , ρ) = FK(λ, . . . , λ, ρ, . . . , ρ), (18)

where λ satisfies
d

dλ
[f(λ)] −Kρ = 0, (19)

and
f(λ) = g(λ1 = λ, . . . , λk = λ). (20)

The proof of this lemma almost exactly coincides with the
proof of the lemma 4 [3], which uses Appendices 1 and 2 of
[3]. The only differences are caused by the different definition
of function g(λ1, λ2, . . . , λK) in our work and in the paper
[3]. In particular, instead of the ratio (A.1.1 [3]) the following
equality should be used

ρk

1 − ρk
= eλk

∏
k′ �=k

(1 + eλk′ ) − 1∏
k′ �=k

(1 + eλk′ ) − ∑
k′ �=k

eλk′ , (21)

and instead of system of the equations (A.1.3 [3]) the follow-

ing system should be used:

e−
Jμ

K(J−1) = e−
λk

J−1

∏
k′ �=k

(1 + eλk′ ) − 1∏
k′ �=k

(1 + eλk′ ) − ∑
k′ �=k

eλk′ , (22)

where μ is Lagrange multiplier.
To prove that the system of the equations (22) has only the

solution λ1 = λ2 = · · · = λK and ρ1 = ρ2 = · · · = ρK = ρ,
we use the following equality

X
[
(1 + Y J−1)A− Y J−1 −B

] [
(1 +XJ−1)A− 1

]
= (23)

= Y
[
(1 +XJ−1)A−XJ−1 −B

] [
(1 + Y J−1)A− 1

]
,

where

X = e
λk1
J−1 ,

Y = e
λk2
J−1 ,

A =
∏

k′ �=k1,k2

(1 + eλk′ ),

B =
∑

k′ �=k1,k2

eλk′ .

From uniqueness of the real solution of (23), it follows
uniqueness of the solution of the system of the equations (22).

The second difference in the proof of lemma 4 and lemma 4
of [3] is because of the different definitions of function Δ(ρ)
used for the proof that

GK(ρ1 = ρ, . . . , ρK = ρ) ≥ (24)

≥ GK−1

(
ρ1 =

K

K − 1
ρ, . . . , ρK−1 =

K

K − 1
ρ

)
.

In our case we use definition (compare with (35) [1])

Δ(ρ) = ln
(1 + eλ)K −Keλ

(1 + eλ)K−1 + (K − 1)eλ
+ (25)

+
(
J − 1
J

)[
(K − 1)H

(
K

K − 1
ρ

)
−KH(ρ)

]
=

= ln
(

1
1 − ρ

)
+

+
(
J − 1
J

)[
(K − 1)H

(
K

K − 1
ρ

)
−KH(ρ)

]
,

where H(ρ) is defined by (5).
From Lemmas 3 and 4 follows the main result formulated

in Section III as the Theorem 1.

V. CONCLUSIONS

Most papers on iterative decoding of LDPC codes deal
with symbolwise decoding. Usually, upper bounds on the
probability of decoding error or failure is studied and for
upperbounding the block (or frame) error probability the union
bound is applied. In this paper, we are interested in iterative
decoding of LDPC codes for the erasure channel “as a whole”.
We got a new bound on the fraction of iteratively decodable
erasures and compared this bound with the Zyablov-Pinsker
bound.
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