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Abstract— Image registration is an important component of
image analysis used to align two or more images. In this paper,
we present a new framework for image registration based on
compression. The basic idea underlying our approach is the
conjecture that two images are correctly registered when we can
maximally compress one image given the information in the other.
The contribution of this paper is twofold. First, we show that the
image registration process can be dealt with from the perspective
of a compression problem. Second, we demonstrate that the
similarity metric, introduced by Li et al., performs well in image
registration. Two different versions of the similarity metric have
been used: the Kolmogorov version, computed using standard
real-world compressors, and the Shannon version, calculated
from an estimation of the entropy rate of the images.

I. INTRODUCTION

The registration of two images consists in finding the

transformation that brings one image into the best possible

spatial correspondence with the other one. A common method

of solving the registration task is to treat it as a mathematical

optimization problem, using a similarity measure to quantify

the quality of the alignment of the two images for any given

transformation.

Some information-theoretic measures, such as mutual in-
formation (MI) [1], [2] and normalized mutual information
(NMI) [3], have become a standard reference, mainly in

medical imaging, due to their accuracy and robustness. On

the other hand, the normalization of information distance [4],

based on the non-computable notion of Kolmogorov com-

plexity, has been introduced for measuring similarity between

sequences [5], [6]. It has been successfully applied in areas

such as genome phylogeny [5], language phylogeny [6] and

classification of music pieces [7]. In essence, the idea behind it

is that two objects are similar if we can significantly compress

one given the information in the other.

In this paper, a normalized version of the information

distance, called the similarity metric [6], is applied to image

registration using two different versions. In the first case,

the Kolmogorov complexity is computed using standard real-

world compressors and, in the second case, an estimation

of the entropy rate of the images is used. In both cases,

experimental results demonstrate that the similarity metric
performs well in image registration. However, the entropy rate

approach is more accurate and robust than the Kolmogorov

version due to the compressor imperfections.

This paper is organized as follows. In Section II we survey

background and related work, and in Section III we present

our framework for image registration. Experimental results are

given in Section IV.

II. BACKGROUND

In this section we review the similarity metric based on

the Kolmogorov complexity [6], some basic information-

theoretic measures [8], [9] and their application to image

registration [1], [2], [10].

A. The Similarity Metric

The Kolmogorov complexity K(x) of a string x is the

length of the shortest program to compute x on an appropriate

universal computer. Essentially, the Kolmogorov complexity of

a string is the length of the ultimate compressed version of the

string. The conditional complexity K(x|y) of x relative to y
is defined as the length of the shortest program to compute

x given y as an auxiliary input to the computation. The

joint complexity K(x, y) represents the length of the shortest

program for the pair (x, y) [6].

In [4], the information distance is defined as the length of

the shortest program that computes x from y and y from x. It

was shown there that, up to an additive logarithmic term, the

information distance is given by

E(x, y) = max {K(y|x),K(x|y)}. (1)

It was also shown that E(x, y) is a metric. It is interesting to

note that long strings that differ by a tiny part are intuitively

closer than short strings that differ by the same amount.

Hence, there arises the necessity to normalize the information

distance. In [6], a normalized version of E(x, y), called

the normalized information distance (NID) or the similarity
metric, is defined by

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
=

K(x, y) − min{K(x),K(y)}
max{K(x), K(y)} . (2)

Li et al. have shown that NID(x, y) is a metric and takes

values in [0, 1]. It is also universal in the sense that if

two strings are similar according to the particular feature

described by a particular normalized admissible distance (not

necessarily metric), then they are also similar in the sense of

the normalized information metric [11].

Due to the non-computability of Kolmogorov complexity,

a feasible version of the normalized information distance (2),
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called the normalized compression distance, is defined as

NCD(x, y) =
C(x, y) − min{C(x), C(y)}

max{C(x), C(y)} . (3)

NCD is computed from the lengths of compressed data files.

Thus, C(x) (or C(y)) represents the length of compressed

string x (or y) and C(x, y) the length of the compressed pair

(x, y). Thus, NCD approximates NID by using a standard

real-world compressor.

B. Information-Theoretic Measures

Let X be a finite set, let X be a random variable taking

values x in X with distribution p(x) = Pr[X = x]. Likewise,

let Y be a random variable taking values y in Y . The Shannon
entropy H(X) of a random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x). (4)

The Shannon entropy H(X) measures the average uncertainty

of random variable X . If the logarithms are taken in base 2,

entropy is expressed in bits. The conditional entropy is defined

by

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x|y), (5)

where p(x, y) = Pr[X = x, Y = y] is the joint probability

and p(x|y) = Pr[X = x|Y = y] is the conditional proba-

bility. The conditional entropy H(X|Y ) measures the average

uncertainty associated with X if we know the outcome of Y .

The mutual information between X and Y is defined by

I(X, Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X). (6)

It is a measure of the shared information between X and Y .

We review now the definition of entropy rate. The notation

used here is inspired by the work of Feldman and Crutch-

field [9]. Given a chain . . . X−2X−1X0X1X2 . . . of random

variables Xi taking values in X , a block of L consecutive

random variables is denoted by XL = X1 . . . XL. The

probability that the particular L-block xL occurs is denoted

by p(xL). The Shannon entropy of length-L sequences or L-
block entropy is defined by

H(L) = −
∑

xL∈XL

p(xL) log p(xL), (7)

where the sum runs over all possible L-blocks. The entropy
rate is defined by

hx = lim
L→∞

H(L)
L

(8)

and measures the average amount of information per symbol

x [8]. It can also be rewritten as

hx = lim
L→∞

hx(L), (9)

where hx(L) = H(XL|XL−1XL−1 . . . X1) is the entropy

of a symbol conditioned on a block of L − 1 adjacent

symbols. The entropy rate of a sequence is a measure of its

compressibility [12].

Fixed Image

Moving image

Metric

Interpolator

pixels

Transform

Optimizer

Transform
parameters

fitness valuepixels

pixels points

Fig. 1. Main components of the registration process.

C. MI-based Image Registration

Image registration is treated as an iterative optimization

problem with the goal of finding the spatial mapping that will

bring two images into alignment resulting in a fused image.

This process is composed of four elements (see Fig. 1). As

input, we have both fixed X and moving Y images. The

transform represents the spatial mapping of points from the

fixed image space to points in the moving image space. The

interpolator is used to evaluate moving image intensity at non-

grid positions. The metric provides a measure of how well the

fixed image is matched by the transformed moving one. This

measure forms the quantitative criterion to be optimized by

the optimizer over the search space defined by the parameters

of the transform.

The crucial point of image registration is the choice of a

metric. The registration between two images X and Y can be

represented by a channel X → Y , where its marginal and joint

probability distributions are obtained by simple normalization

of the corresponding intensity histograms of the overlap area

of both images [1]. The most successful automatic image

registration methods are based on the maximization of MI .

This method, almost simultaneously introduced by Maes et

al. [1] and Viola et al. [2], is based on the conjecture that the

correct registration corresponds to the maximum MI between

the overlap areas of the two images. Later, Studholme et al. [3]

proposed a normalization of mutual information defined by

NMI(X, Y ) =
I(X,Y )
H(X, Y )

= 1 − H(X|Y ) + H(Y |X)
H(X,Y )

, (10)

which is more robust than MI , due to its greater independence

of the overlap area. Another justification about its good

behavior is the following. In information theory, the most

basic information metric is given by H(X|Y ) + H(Y |X).
This measure fulfills the requirements for a true distance. The

normalization of this distance by the joint entropy is also a true

distance [6], [13]. In image registration literature, this fact has

not been sufficiently stressed. It has to be noted that 1−NMI
is very close to the Shannon version of NID (see [6], [13]).

III. REGISTRATION BASED ON THE SIMILARITY METRIC

Three different approaches for image registration based on

NID are proposed. The two first ones are based on the

Kolmogorov complexity (Sect. III-A) and the third one on

the Shannon information theory (Section III-B).
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Fig. 2. Lena image and its R, G and B channels. The similarity metric is
evaluated within the dashed window.

A. Kolmogorov Version

In this section, the similarity metric is implemented using

both image and text compressors.

1) Image compressor-based registration: A color image is

represented as a finite number of color image planes where

each color is obtained by filtering the image spectrum and

by measuring the resulting luminosity energy. Usually, digital

color images use three filters, corresponding to the red (R),

green (G) and blue (B) channels. In Fig. 2, we show a color

image with its RGB channels.

Our proposal is to use an image compressor to register

monochrome images. To obtain the fused image, the method

places each one of the monochrome images in a different color

channel of an RGB image. Then, for each arrangement of

images, the fused image and the original ones are compressed.

In our experiments, we used the JPEG 2000 compressor, that

is based on wavelet technology. C(x, y), C(x), and C(y) are

given by the lengths of the JPEG 2000 files corresponding to

the compressed fused image and the original images X and Y ,

respectively. The correct registration would be achieved when

NCD is minimum.

Since the application of an image compressor requires

rectangular images and, in general, the overlap area is not

rectangular, different strategies can be considered to evaluate

the similarity. In our experiments, we reduce the area of

the image to be processed to the maximal rectangular area

contained in the overlap region.

2) Text compressor-based registration: Our proposal is now

to convert the registration process into a text compression

problem. To do this, the overlap area of the two images to

be registered is scanned (see Fig. 3). From the scan path,

strings x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are

obtained by taking in consecutive order the intensity value

of the pixels of both fixed and moving images, respectively.

In a similar way, string
(
x
y

)
=

((
x1
y1

)
,
(
x2
y2

)
, . . . ,

(
xn

yn

))
is

obtained by taking alternately the intensity value of the pixels

of both superimposed images. This notation has been extracted

Fig. 3. Scan path on the overlap area between images X and Y .

from [14]. For each iteration in the registration process, the

resulting string files are compressed. In our experiments, we

use the bzip2 compressor based on the Burrows-Wheeler

block-sorting text compression algorithm and Huffman coding.

The registration position is achieved minimizing NCD. In this

case, C(x, y), C(x), and C(y) are given by the length of files

compressed by bzip2. This method has no restrictions on the

shape of the overlap area.

B. Shannon Version

From (2), our proposal is to substitute the Kolmogorov

complexity by the entropy rate, which gives the average

information per intensity value. We assume here that strings

x, y and
(
x
y

)
are generated by finite-order stationary Markov

sources [14]. Thus, the Shannon version of the similarity
metric is defined by

NED(x, y) =
h(x

y) − min{hx, hy}
max{hx, hy} , (11)

where

h(x
y) = lim

L→∞
H

(
XL

Y L

)
L

= lim
L→∞

H

(
XL XL−1 . . . X1

YL YL−1 . . . Y1

)

(12)

represents the entropy rate of
(
x
y

)
, i.e., the degree of com-

pressibility of the two superimposed strings. With this pro-

posal, we make use of neighbor information by considering

the correspondence between blocks of pixels instead of the

correspondence between individual pixels.

Similar to the bzip case, to generate the blocks of pixels we

follow the scan path on the overlap area of the two images

to be registered (see Fig. 3). Each block is composed of L
consecutive pixels. Note that computations are influenced by

the size of the blocks, since the sparsity of the joint histogram

and also the computational cost of the process increases with

it. To overcome these limitations, reductions of the original

alphabet (0..255) to 8 or 16 symbols are appropriate.

IV. RESULTS

In this section, we analyze the performance of the

compression-based registration measures.

The first experiment analyzes the JPEG 2000-based regis-

tration approach. For this test we use the Lena image of Fig. 2,

moving the red channel through the X axis from -10 pixels

to 10 pixels around the origin. To guarantee a rectangular

overlap, we define a rectangular window as shown in Fig. 2.
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Fig. 4. JPEG 2000-based registration of Lena image. (a) Plot of the
compressed file length C(x, y). (b) Plot of NCD.

Fig. 5. Top row: CT, MR and CT-MR fused images. Bottom row: MR, PET
and MR-PET fused images.

The resulting images are compressed, obtaining C(x, y), C(x)
and C(y) from the length of the compressed RGB image,

the length of the green-blue image and the length of the red

image, respectively. Fig. 4 depicts the obtained compression

C(x, y) (a) and the values of the NCD measure (b). Observe

that both plots behave similarly, reaching the minimum at the

registration position.

For the next three experiments, we use two different pairs of

medical images of 256× 256 pixels obtained from a patient’s

brain (see Fig. 5). The first pair consists of a computed tomog-

raphy (CT), which provides precise anatomical characteristics

of the brain, and a magnetic resonance (MR) image, which

gives accurate information of the soft tissue. The second pair

consists of an MR image and a positron emission tomography

(PET), which provides functional information. Registration of

these modalities is of special interest for medical diagnosis.

In the tests with the CT-MR pair, the CT image has been

taken as a fixed image and the MR image as the moving one,

and in the tests with the MR-PET pair, the PET image has

been taken as the moving one. In both cases, the moving

images are translated through the X axis from -10 pixels to 10

pixels around the registration position. The obtained results for

each one of the methods (JPEG 2000, bzip2, and entropy rate)

are illustrated, respectively, in Fig. 6 (a), (b) and (c). For the

CT-MR pair, Fig. 6(i.a-b) show the compression C(x, y) and

Fig. 6(i.c) the entropy rate h(x
y), and Fig. 6(ii.a-b) the NCD

measure and Fig. 6(ii.c) the NED measure. For the MR-PET

pair, Fig. 6(iii.a-b) shows the NCD measure and Fig. 6(iii.c)

the NED measure.

To apply the JPEG 2000-based registration method, we

define a rectangular window in all test images in order to

obtain a rectangular overlap area. Observe that for the MR-

CT pair, the compression C(x, y) (Fig. 6(i.a)) has several local

minima and the absolute minimum is not at the registration

position. On the contrary, the NCD plot (Fig. 6(ii.a)) has a

smooth shape, reaching the minimum at the correct position.

The undesirable behaviour obtained in the NCD plot of the

MR-PET pair (Fig. 6(iii.a)) is due to the high level of noise

of the PET images.

From the results obtained with the bzip2-based registration

for the MR-CT pair (see Fig. 6(i-ii.b)), it can be seen that the

minima of the C(x, y) and NCD plots do not coincide, and

nor do the different shape at the extremes of the plots. Observe

that the compression C(x, y) decreases with long translations

(more than 5 pixels). This behaviour is due to the fact that

long translations lead to small overlap regions and a reduction

of the information to be compressed. As it can be seen in the

NCD plot (Fig. 6(ii.b)), this measure corrects this undesirable

behaviour and, moreover, the minimum of the function coin-

cides with the registration position. Observe that the NCD
plot obtained with the MR-PET pair (Fig. 6(iii.b)), although

it behaves better than the JPEG 2000 method (Fig. 6(iii.a)), it

still has some local minima. In our experiments with bzip2,

we also observe that NCD ≥ 1, which is a consequence of

bzip2 compressor imperfections (see [11]).

We evaluate the NED measure (Fig. 6(c)) considering three

different L values, 1, 2 and 3, represented by solid, dash-dotted

and dashed lines, respectively. Due to the high dimensionality

of the joint histogram in the L=3 case, the number of bins has

been reduced to 8. For comparison purposes, this quantization

has been kept in all cases. In Fig. 6(ii-iii.c), the bold plot rep-

resents the standard image registration measure NMI . As we

expected, entropy rate estimation decreases with L (Fig. 6(i.c)),

giving us a more approximate measure of the real entropy

rate and, equivalently, the string compressibility. Observe in

Fig. 6(ii-iii.c) the smoothness of the NCD curves, without

local minima, and the accuracy of the registration, achieving

their minimum at the correct position for both MR-CT and

MR-PET pairs. Note also that NMI behaves very similar

to the entropy rate approach when L=1. This behaviour was

also noted by Kraskov et al. [13] in clustering applications.

From our experiments, we can conclude that registration based

on Shannon information shows more accuracy and robustness

than real-world compressor-based registration.

V. CONCLUSIONS AND FUTURE WORK

We have presented a new compression-based framework for

image registration using the similarity metric. The behaviour

of this measure has been analyzed using two different perspec-

tives: the Kolmogorov complexity and the Shannon informa-

tion theory. Experimental results reveal the good performance

of both versions, computed using standard real-world compres-

sors and an estimation of entropy rate, respectively. Due to the
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Fig. 6. (i) Compression and (ii) distance results of MR-CT images, and (iii) distance results of MR-PET images, using (a) JPEG 2000-based method, (b)
bzip2-based method, and (c) entropy rate-based method.

compressor imperfections, more accurate and robust results

are obtained in the second case. In contrast to traditional

MI-based registration algorithms, which only use individual

pixel information to perform computations, our approaches

take into account spatial or structural information contained

in the images.

Future work will be addressed to analyze the Shannon

version of the similarity metric using different scan space-

filling curves and uniformly distributed random lines [15] in

order to improve the capture of structural information.
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