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Abstract—We describe and analyze sparse graphical code saturating rate-distortion bounds requires that the igrell
constructions for the problems of source coding with decode constraint length be taken infinity [11]; consequently, the
side information (the Wyner-Ziv problem), and channel coding computational complexity of decoding, even using message-

with encoder side information (the Gelfand-Pinsker problem). . lorith tallv. It is theref
Our approach relies on a combination of low-density parity dieck passing —aigorithms, grows exponentially. IS theretore

(LDPC) codes and low-density generator matrix (LDGM) codes ©Of considerable interest to develop low-density graphical
and produces sparse constructions that are simultaneouslgood constructions for such problems. Past work by a number of

as both source and channel codes. In particular, we prove tha researchers [8], [12], [3], [9] has suggested that LDGM spde

under maximum likelihood encoding/decoding, there existdw- \yhich arise as the duals of LDPC codes, are well-suited to
density codes (i.e., with finite degrees) from our constru@ns that . o
various types of quantization.

can saturate both the Wyner-Ziv and Gelfand-Pinsker bounds

l. INTRODUCTION Our contributions: In this paper, we describe a sparse graphi-
) ) ) _cal construction for generating nested codes that are &imeH
Sparse graphical codes, particularly low-density parigysly good as both source and channel codes. We build on our
check (LDPC) codes, are widely used and well understoggsyious work [7], in which we analyzed constructions, loase
in application to channel coding problems [10]. For othejn 4 combination of LDPC and LDGM codes, for the problem
communication problems, especially those involving a8peGf standard lossy compression. Here we prove that theré exis
of both channel and source coding, there remain varioygriants of these joint LDPC/LDGM constructions with finite
open questions associated with using low-density cod@grees such that, when decoded/encoded using maximum
constructions. Two important examples are source codifigelihood, can saturate the Wyner-Ziv and Gelfand-Pinske
with side information (the Wyner-Ziv problem), and channgloynds. Although ML decoding is not practically viable, the
coding with side information (the Gelfand-Pinsker probJem|oy.density nature of our construction means that they have
This paper focuses on the design and analysis of loyy gegree, and with high probability (w.h.p.) high girthdan

density codes—more specifically, constructions based @Rpansion, all of which are important for the application of
a combination of LDPC and low-density generator matrixificient message-passing.

(LDGM) codes—for source and channel coding with side The remainder of this paper is organized as follows.
information. It builds on our previous work [7], in which wegection[]) provides background on source coding with side
proved that low-density constructions and ML decoding caRsormation (SCSI, or the Wyner-Ziv problem), and channel
saturate the rate-distortion bound for a symmetric Beﬂhou&oding with side information (CSSI, or the Gelfand-Pinsker
source. problem). SectionJll introduces our joint LDGM/LDPC
construction, and provides a high-level overview of its use
Related work: It is well-known that random constructions offor the SCSI and CCSI problems. In Sectigd IV, we prove
nested codes can saturate the Wyner-Ziv and Gelfand-Rinsfft our construction produces codes that are simultaheous

bounds [13], [15]. However, an unconstrained randomood” for both source and channel coding. We conclude
construction leads to a high-density code, which is @jith a discussion in SectidilV.

limited practical use. One practically viable approach to

lossy compression is trellis coded quantization (TCQ) [6jotation: Vectors/sequences are denoted in boddgy s),
A number of researchers have exploited TCQ as a quantizghdom variables in sans serif forg.g, s), and random vec-
for the Wyner-Ziv and related multiterminal source COdinﬁ)rs/sequences in bold sans sesfg, s). Similarly, matrixes
problems [2], [14] as well as for channel coding Withhre denoted using bold capital lettesg, G) and random
side information []. A disadvantage of TCQ is thainatrixes with bold sans serif capitals.g, G). We usel(-; ),

H(-), and D(:||-) to denote mutual information, entropy,
EM was supported by Mitsubishi Electric Research Labs andVMuas ( ) ( || ) Py

supported by an Alfred P. Sloan Foundation Fellowship, aav@zkFoundation a_nd relative entropy (Ku"baCk'Lelbler d'Star!ce)_' resm'
Research Grant, and NSF Grant DMS-0528488. Finally, we usecard{-} to denote the cardinality of a set,
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|| - ||, to denote thep-norm of a vectorBer(¢) to denote a
Bernoulli distribution, andH, (t) to denote the entropy of a
Ber(t) random variable.

Il. BACKGROUND
A. Source and channel coding

We begin with definitions of “good” source and channel
codes that are useful for future reference.

Definition 1. (a) A code family is ggood D-distortion binary Fig. 1. lllustration of compound LDGM and LDPC code
symmetric source codi for any ¢ > 0, there exists a code  construction. The top section consists of (anm) LDGM

; ; ; ; code with generator matrixc and constant check degrees
with rate R < 1._ Hb (D) + € that achleves dIStomOd.)' " = 4 i?s rate is R(G) = Z. The bottom sec%ion
(b) A code family is @yood BSCp)-noise channel codi for consists of(m, k1) and (m, k2) LDPC codes with degrees
any e > 0 there exists a code with ra® > 1 — H, (p) — ¢ (y0,7:) = (3,6), described by parity check matricéd;
with error probability less thar. andH; and ratesR(H;) = 1 — & and R(H,) = 1 — &2

respectively. The overall rate of the compound construactio
B. Wyner-Ziv problem is Reom = R(G)R(H)), where R(H) = R(H1) + R(Ha2).

Suppose that we wish to compress a symmetric Bernouhie middle layer, and in turn these middle variable nodes are
sources ~ Ber(%) so as to be able to reconstruct it withconnected td = k; + ko parity checks in the bottom layer.
Hamming distortionD. By classical rate distortion theory [4], Random LDGM ensembl&he top two layers define gm, m)
the minimum achievable rate is given B(D) = 1— H, (D). LDGM code. We construct it by connecting each of the
In the Wyner-Ziv extension [13], there is an additional smur checks at the top randomly tg variable nodes in the middle
of side information about—say in the formy = s ® w where layer chosen uniformly at random. We uée € {0,1}™*"

w ~ Ber(6) is observation noise—that is available only at thto denote the resulting generator matrix; by construction,
decoder. In this setting, the minimum achievable rate tékes each column ofG has exactlyy; ones, whereas each row
form  Rwz(D,p) =l.c.e. {H, (D xp) — H, (D), (p,0)}, (corresponding to a variable node) has an (approximately)
wherel.c.e. denotes the lower convex envelope. Note th&toisson number of ones. An advantage of this regular-Roisso
in the special casp = % the side information is useless, saglegree ensemble is that the resulting distribution of a@and
that the Wyner-Ziv rate reduces to classical rate-distarti  codeword is extremely easy to characterize:

C. Gelfand-Pinkser problem Lemma 1. Let G € {0,1}"*" be a random generator
. . . . . matrix obtained by randomly placing; ones per column.
Now consider the binary information embedding problen}:hen for any vectorw € {0,1}™ with a fraction of v

the channel has the forp = u ® s © 2z, whereu is the o5 4o distribution of the corresponding codewerd is
channel input,s is a host signal (not under control of theBernouIIi(d(v-'yt)) where

encoder), and: ~ Ber(p) is channel noise. The encoder is
free to choose the input vectar € {0,1}", subject to the §(v;ve) = 1. [1—(1—20v)"]. (1)
channel constrainful|; < wn, so as to maximize the rate 2

of information transfer. We writar = u,, wherem is the Random LDPC codeThe bottom two layers define a pair of
underlying message to be transmitted. The decoder wished-BPC codes, with parametefs:, k1) and(m, k2); we choose
recover the embedded message from the corrupted observatigse codes from a standard standeygl .)-regular LDPC
y. It can be shown [1] that the capacity in this set-up is givegnsemble originally studied by Gallager. Specifically,reat
by Rig(w, p)u.c.e. { Hy, (w) — Hy (p), (0,0)}, whereu. c.e. them variable nodes in the middle layer connectsytocheck

denotes the upper convex envelope. nodes in the bottom layer. Similarly, each of theheck nodes
in the bottom layer connects tg variable nodes in the middle
I1l. GENERALIZED COMPOUND CONSTRUCTION layer. For convenience, we restrict ourselves to even check

In this section, we describe a compound construction tH#ggreesy.. Dividing the k check bits into two subsets, of
produces codes that are simultaneously “good”, in the sen§&ze k1 andk, with respective parity check matricé$, and
previously defined, as source and channel codes. We tHdn allows for the construction of nested codes, which will be
describe how the nested codes generated by this compoiggded for both the Wyner-Ziv and Gelfand-Pinsker problems
construction apply to the SCSI and CCSI problems. B. Good source and channel codes

A. Code construction The key theoretical properties of this joint LDGM/LDPC

Consider the compound code construction iIIustratecé)nsnm:tIon are summarized in the following results:

in Fig.[, defined by a factor graph with three layers. The topheorem 1 (Good source code)With appropriate finite
layer consists of: bits, each attached to an associated paritlegrees, there exisin, m, k) constructions that areD-good
check. These parity checks connectrtovariable nodes in source codes for all rates abov®(D) =1 — H;, (D).



Theorem 2 (Good channel code)With appropriate finite andv ~ Ber(p) is the channel noise. If the quantization noise
degrees, there exist, m, k) constructions that are goog- e were i.i.d. Ber(D), then the overall effective noise ® v
channel codes for all rates below capacity=1— H, (p).  would be i.i.d.Ber(D « p). In reality, the quantization noise

TheoremL on source coding was proved in our pl‘eViOLIJSS not exactly i.i.d.Ber(D), but it can be shown [15] that it

L . an be treated as such for theoretical purposes.
work [7], Whergas a proof of Theordh 2 is given in Secfloh l\ﬁ In summary then, the overall transmission rate of this
We now describe how these two theorems allow us to estabhs&

that our low-density construction achieves the Wyner-Zid a stheme for the Wyner-Zv problem is given by
Gelfand-Pinsker bounds. At a high level, our approach_| m— kl) _ (m— ky — k2) = Hy(Dxp)— Hy (D). (4)
closely related to standard approaches to SCSI/CSCI cpding n n

the key novelty is that appropriately nested codes can ®Rus, by applying Theorenid 1 afitl 2, we conclude that our

construction using low-density architectures. low-density scheme saturates the Wyner-Ziv bound.
C. Coding for Wyner-Ziv D. Coding for Gelfand-Pinsker
We focus only on achieving rates of the forh, (D * p) — The construction for the Gelfand-Pinsker problem is simila

Hy (D), as any remaining rates on the Wyner-Ziv curve caput with the order of the code nesting reversed. In particula
be achieved by time-sharing with the poipt 0). To do this, the Gelfand-Pinsker problem requires a ggedoise channel

we use the compound code in FI§. 1. Specifically, a soureede, and a nested subcode that is a goetistortion source

s is encoded toH,w wherew is chosen to minimize the code. As before, we focus only on achieving rates of the
distortion||s—w’G||; subject to the constraint thef,w = 0. form H;, (w) — H, (p). To encode a messaga with side
TheoremdIl anfll2 show that maximum likelihood decodirigformationy, the channel input isv'G wherew is chosen

of How using side informatiory approaches the Wyner-Ziv to minimize|ly—w’G/|; subject toH; w = m. Details follow.
bound in the sense that this construction yields a gbded Source coding component:We begin by describing the
distortion binary source code, and a nested subcode that i8ested subcode for the source coding component. The idea
good D * p-noise channel code. Details follow. is to embed a message into the transmitted signal during the
Source coding component:The D—distortion source code quantization process. The first set &f lower parity bits
component of the construction involves thevariable nodes remain fixed to zero throughout the scheme. On the other
representing the source bits, theintermediate variable nodes,hand, we use the remainirig lower parity bits to specify a
and the subset ¥, lower layer check nodes. This subgraphparticular messagen € {0,1}*2 that the decoder would like
represented by the generator matehand parity check matrix to recover. With the lower parity bits specified in this wag w
H, (see Fig[), define a code (on thevariable nodes) with Use the resulting code to quantize a given source sequence

effective rate to a compressed versian If we choosen, m andk such that
_k _ m—ky —k
Rlzzm(1 ) _m—k ) Ri = 7; 2 = 1-H,(w), ®)
n n

Choosing the middle and lower layer siz@sandk; such that then Theprent[]l guarantees that_ the resulting code is a good
-distortion source code. Otherwise stated, we are guadnte

Ri =1 - H, (D) guarantees (from Theordm 1) the existenc P o
L »(D) g ( : . ) . . iﬁat w.h.p, the errore := s @ s in our quantization has
of finite degrees such that that this code is a gbbdistortion . . .
source code Hamming weight upper bounded hyn. Thus, transmitting
: ) the errore ensures that the channel constraint is met.
Channel coding component:Now suppose that the sourse . ;
: . . Channel coding component:At the decoder, the:; lower
has been quantized, and is represented (up to distofipn : . . ) . . .
. m : parity bits remain set to zero; the remainikg parity bits,
by the compressed sequenkec {0,1}™. We transmit the :
which represent the message, are unknown to the coder.

. b k . . :
as_somated seque.nﬁ_gx €{0,1} 2 of parity bits asksomated We now choosék; such that the effective code used by the
with the codeHs,; doing so requires rat®,..s = “2. The

n decoder has rate

task of the decoder is as follows: given thdseparity bits

as well as thek; zero-valued parity bits, the decoder seeks to Ry, = m — ky =1—-Hy(p). (6)
recover the quantized sequencen the basis of the observed N no ) .
side-informationy. Note that from the decoder’s perspectivél addition, the decoder is given a noisy channel obsemvatio
the effective code rate is given by of the formy =e®s®v = s® v and its task is to recover
s. With the channel coding rate chosen as in equafibn (6) and
R, = m—ki— ks (3) channel noisev ~ Ber(p), Theorem[R guarantees that the
n decoder will w.h.p. be able to recovér By design of the

Suppose that we chooge such thatR, = 1 — Hy, (D xp); quantization procedure, we have the equivalemce s H; so

then Theorenk]2 guarantees that the decoder will (w.h.p.) that a simple syndrome-forming procedure allows the detode
able to recover a codeword corrupted @§ * p)-Bernoulli to recover the hidden message. Thus, by applying Thedikms 1
noise. Note that the side information can be written amndl2, we conclude that our low-density scheme saturates the
y=8Sd®edv, wheree := s @ s is the quantization noise, Gelfand-Pinsker bound under ML encoding/decoding.



IV. PROOF OFTHEOREM[Z Proof. Let N = 2"feom denote the total number of codewords

As described in the previous sections, Theorins 1[@&ndnzthe joint LDGM/LDPC code. Then we can upper bound the
allow us to establish that the Wyner-Ziv and Gelfand-Pinsk@robability of error using the union bound as follows:

bounds can be saturated under ML encoding/decoding. The N
source coding part—namely Theorélin 1—was proved in oup.,. < P[||v||; > d(n)] + ZP[”ZZ' Gavli <dn)]. (9)
earlier work [7]. Here we provide a proof of Theordrh 2, i=2

which ensures that these joint LDGM/LDPC constructiorgy Bernstein’s inequality, the probability of the first erro
are good channel codes. We consider a joint construction,&&nt vanishes for large. Now focusing on the second sum,
illustrated in Fig.[1, consisting of a ratB(G) LDGM top |et us condition on the event thdg||; = ¢. Then Lemmdll
code, and a rate?(H) lower LDPC code. Recall that thegyarantees thatG has i.i.d.Ber(d(:5;~)) elements, so that
overall rate of this compound construction is given®y,.m, = the vectorzG @ v has i.i.d. Ber(d(L; ;) * p) elements.

the lower LDPC code) is a special case of this construction

with R(H) = 1. However, a standard LDGM of this variety P[|zG @ v|1 > d(n) | [|z[1 = ¢] < 9=nD(plI3(5570)+p) |
is not a good channel code, due to the large number of lo
weight codewords. Essentially, the following proof shotvatt
using a non-trivial LDPC lower code (witiR(H) < 1) can
eliminate these troublesome low-weight codewords.

If the codewordc is transmitted, then the receiver observes |
y = c®v wherev is aBer(p) random vector. Our goal isto _ Z Q{HRcomﬂLm[Am(%)—R(H)} —nD(pll8(%v)%p) |
bound the probability that maximum likelihood (ML) decodin =0
fails where the probability is taken over the randomness in m
both the channel noise and the code construction. To simplif="» on{ R(G)Am (75) =D (plId(5ve)+p) }
the analysis, we focus on the following sub-optimal (nonyML  ¢=0

decoding procedure: _ i 9 { R(G) [ Am ()~ AGE)+AGE)] =D (plI5(5 ) 5p) }
Definition 2 (Decoding Rule:). With thresholdd(n) : = (p + =0

n~1/3)n, decode to codeword; <= |c; Dy|: < d(n),
and no other codeword is withid(n) of y.

e can then upper bound the second error t¢im (9) via

9nReom Z]P)[th — ﬁ] 2an(PH5(§§’Yt)*P)
=0

<y 9 { R(G)|Am (£)—A(L)| T +R(G)A(L)—D(pl16(L 7)) }
=0

(The extra factor of,~'/3 in the thresholdi(n) is of theoreti- _ _ _
cal convenience.) Due to the linearity of the code conswact Where we have replace.., = R(G) with R(H) in the third

we may assume without loss of generality that the all zerfi@€ @nd used the notatio| " to denotemax(0, z). Finally,
codeword0” was transmittedif., ¢ = 0"). In this case, We notice that by the definition of the asymptotic weight
the channel output is simply = v and so our decoding enumerator,A(v), the |A,,(v) — A(v)[* term converges to
procedure will fail if and only if either ()|v|, > d(n), ZET0 un_|f0r_mI)? for v e [0,1] Ieavmg only the error exponent
or (ii) there exists some codeword “middle layer codeword®), Which is negative by assumption. 0

z € {0,1}™ satisfying the parity check equatibilz = 0and |Lemma 3. For any p € (0,1) and total rate Reoy :=
corresponding to a codewoed = z G suchthatjz Gev|, <  R(G)R(H) < 1— H, (p), it is possible to choose the code

d(n). Using the following two lemmas, we establish that thigarametersy,, . and~, such that(@) is satisfied.
procedure has arbitrarily small probability of error, when

ML decoding (which is at least as good) also has arbitrariF%/rQOf- For brevity, letF'(v) = R(G)A(v) — D (pl|6(v; 1) * p)-
small error probability. [t is well-known that a regular LDPC code with rate

N _ _ R(H) = 2> < 1 has linear minimum distance; in particular,
Lemma 2. The probability of decoding error vanishes asympnere exists a threshold = v*(,,,7.) such thatA(v) < 0

totically provided that for all v € [0, *]. Hence, forv € (0,v*], we haveF(v) < 0.
R(G)A(v) — D (p|[d(v;v) *p) < 0 forall ve (0,3] (7) Turning now to the intervalv*, 3], consider the function
where A(v) := lim,, 4o An(v) is the asymptotic log- G(v) : = ReomHy (v) — D (p[[d(v; 1)) -

domain weight numerator qf the_ LDPC code, Wimn_(v) Since A(v) < R(H)H, (v), we haveF(v) < G(v), so that it
being the average log-domain weight enumerator defined A% ffices to upper bound. Observe tha€(L) = Reom — (1 —
. 2 - com

An(v) = 1 log E card {Z ‘ |z, = vm}. 8) H, (_p)) < 0. Therefore, it suffices to show thlat, by gppropriate
m choice of+;, we can ensure thaf(v) < G(5). Noting that

To be more precise, for the channel decoding step of the Wgwer G is infinitely differentiable and taking derivatives (désai
problem, the middle layer codeword must sati#ly z = 0 andHzz = m
wherem is the output of the Wyner-Ziv encoder. For the channel degpd ~ 2The definition of A(v) implies pointwise convergence dfA, (v) —
step of the Gelfand-Pinsker problem, the middle layer cadéwnust only A(v)|T for v € [0,1]. But since the domain is compact, pointwise
satisfy H; z = 0, sincem is unknown until decoding is complete. convergence implies uniform convergence.
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Fig. 2. Plots of different terms in error exponeifl (7). The combimedve must remain negative for all in order for the error
probability to vanish asymptotically. (a) A LDGM: = 4 construction without any LDPC lower code: here the weighineerator
A is given by H (w), and it dominates the Kullback-Leibler term for low. (b) The samey: = 4 LDGM combined with a
(Yv,7ve) = (3,6) LDPC lower code: here the LDPC weight enumerator is domihéte all w by the KL error exponent.

omitted), it can be shown tha’ (1) = 0 andG”(1) < 0. suitable candidates for practical message-passing scheme
Hence, a second order Taylor series expansion yields tldtich remains to be investigated in future work.

G(v) < G(3) forall v € (u, 3] for somep < 1. It remains
to boundG on the intervallv*, u]. On this interval, we have

G(v) € ReomHy (1) — D (p||6(v*; 7). By examining[lL), we [1] Rf J. Barron, Bt;ia:jnd_Chen,dand G. W é/}/ornel_l.h T_hde c_iu]:’sllit){vmg
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see that choosing; sufficiently large will ensure that on the some applications.IEEE Trans. Info. Theory49(5):1159-1180, May
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