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Abstract

We consider the following problem of decentralized statistical inference: given i.i.d. samples from an

unknown distribution, estimate an arbitrary quantile subject to limits on the number of bits exchanged.

We analyze a standard fusion-based architecture, in which each ofm sensors transmits a single bit to the

fusion center, which in turn is permitted to send some numberk bits of feedback. Supposing that each of

m sensors receivesn observations, the optimal centralized protocol yields mean-squared error decaying

asO(1/[nm]). We develop and analyze the performance of various decentralized protocols in comparison

to this centralized gold-standard. First, we describe a decentralized protocol based onk = log(m) bits of

feedback that is strongly consistent, and achieves the sameasymptotic MSE as the centralized optimum.

Second, we describe and analyze a decentralized protocol based on only a single bit (k = 1) of feedback.

For step sizes independent ofm, it achieves an asymptotic MSE of orderO[1/(n
√
m)], whereas for step

sizes decaying as1/
√
m, it achieves the sameO(1/[nm]) decay in MSE as the centralized optimum.

Our theoretical results are complemented by simulations, illustrating the tradeoffs between these different

protocols.

Keywords: Decentralized inference; communication constraints; distributed estimation; non-parametric

estimation; quantiles; sensor networks; stochastic approximation.

I. INTRODUCTION

Whereas classical statistical inference is performed in a centralized manner, many modern scientific

problems and engineering systems are inherentlydecentralized: data are distributed, and cannot be aggre-

Portions of this work were presented at the International Symposium on Information Theory, Seattle, WA, July 2006.

November 19, 2018 DRAFT

http://arxiv.org/abs/0706.0720v1


2

gated due to various forms of communication constraints. Animportant example of such a decentralized

system is a sensor network [6]: a set of spatially-distributed sensors collect data about the environmental

state (e.g., temperature, humidity or light). Typically, these networks are based on ad hoc deployments,

in which the individual sensors are low-cost, and must operate under very severe power constraints (e.g.,

limited battery life). In statistical terms, such communication constraints imply that the individual sensors

cannot transmit the raw data; rather, they must compress or quantize the data—for instance, by reducing

a continuous-valued observation to a single bit—and can transmit only this compressed representation

back to the fusion center.

By now, there is a rich literature in both information theoryand statistical signal processing on problems

of decentralized statistical inference. A number of researchers, dating back to the seminal paper of Tenney

and Sandell [16], have studied the problem of hypothesis testing under communication-constraints; see

the survey papers [17], [18], [4], [19], [5] and references therein for overviews of this line of work. The

hypothesis-testing problem has also been studied in the information theory community, where the analysis

is asymptotic and Shannon-theoretic in nature [1], [11]. A parallel line of work deals with problem of

decentralized estimation. Work in signal processing typically formulates it as a quantizer design problem

and considers finite sample behavior [2], [8]; in contrast, the information-theoretic approach is asymptotic

in nature, based on rate-distortion theory [20], [10]. In much of the literature on decentralized statistical

inference, it is assumed that the underlying distributionsare known with a specified parametric form

(e.g., Gaussian). More recent work has addressed non-parametric and data-driven formulations of these

problems, in which the decision-maker is simply provided samples from the unknown distribution [14],

[13], [9]. For instance, Nguyen et al. [14] established statistical consistency for non-parametric approaches

to decentralized hypothesis testing based on reproducing kernel Hilbert spaces. Luo [13] analyzed a non-

parametric formulation of decentralized mean estimation,in which a fixed but unknown parameter is

corrupted by noise with bounded support but otherwise arbitrary distribution, and shown that decentralized

approaches can achieve error rates that are order-optimal with respect to the centralized optimum.

This paper addresses a different problem in decentralized non-parametric inference—namely, that of

estimating an arbitrary quantile of an unknown distribution. Since there exists no unbiased estimator based

on a single sample, we consider the performance of a network of m sensors, each of which collects a total

of n observations in a sequential manner. Our analysis treats the standard fusion-based architecture, in

which each of them sensors transmits information to the fusion center via a communication-constrained

channel. More concretely, at each observation round, each sensor is allowed to transmit a single bit to

the fusion center, which in turn is permitted to send some numberk bits of feedback. For a decentralized
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protocol withk = log(m) bits of feedback, we prove that the algorithm achieves the order-optimal rate

of the best centralized method (i.e., one with access to the full collection of raw data). We also consider

a protocol that permits only a single bit of feedback, and establish that it achieves the same rate. This

single-bit protocol is advantageous in that, with for a fixedtarget mean-squared error of the quantile

estimate, it yields longer sensor lifetimes than either thecentralized or full feedback protocols.

The remainder of the paper is organized as follows. We begin in Section II with background on

quantile estimation, and optimal rates in the centralized setting. We then describe two algorithms for

solving the corresponding decentralized version, based onlog(m) and1 bit of feedback respectively, and

provide an asymptotic characterization of their performance. These theoretical results are complemented

with empirical simulations. Section III contains the analysis of these two algorithms. In Section IV, we

consider various extensions, including the case of feedback bits ℓ varying between the two extremes, and

the effect of noise on the feedforward link. We conclude in Section V with a discussion.

II. PROBLEM SET-UP AND DECENTRALIZED ALGORITHMS

In this section, we begin with some background material on (centralized) quantile estimation, before

introducing our decentralized algorithms, and stating ourmain theoretical results.

A. Centralized Quantile Estimation

We begin with classical background on the problem of quantile estimation (see Serfling [15] for further

details). Given a real-valued random variableX, let F (x) := P[X ≤ x] be its cumulative distribution

function (CDF), which is non-decreasing and right-continuous. For any0 < α < 1, theαth-quantile ofX

is defined asF−1(α) = θ(α) := inf {x ∈ R | F (x) ≥ α}. Moreover, ifF is continuous atα, then we

haveα = F (θ(α)). As a particular example, forα = 0.5, the associated quantile is simply the median.

Now suppose that for a fixed levelα∗ ∈ (0, 1), we wish to estimate the quantileθ∗ = θ(α∗). Rather than

impose a particular parameterized form onF , we work in a non-parametric setting, in which we assume

only that the distribution functionF is differentiable, so thatX has the density functionpX(x) = F ′(x)

(w.r.t Lebesgue measure), and moreover thatpX(x) > 0 for all x ∈ R. In this setting, a standard estimator

for θ∗ is thesample quantileξN (α∗) := F−1
N (α∗) whereFN denotes the empirical distribution function

based on i.i.d. samples(X1, . . . ,XN ). Under the conditions given above, it can be shown [15] that

ξN (α∗) is strongly consistent forθ∗ (i.e., ξN
a.s.→ θ∗), and moreover that asymptotic normality holds

√
N(ξN − θ∗)

d→ N
(
0,

α∗(1− α∗)

p2X(θ∗)

)
, (1)
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PSfrag replacements

X ∼ F (·)

m

Fusion center

Fig. 1. Sensor network for quantile estimation withm sensors. Each sensor is permitted to transmit a1-bit
message to the fusion center; in turn, the fusion center is permitted to broadcastk bits of feedback.

so that the asymptotic MSE decreases asO(1/N), whereN is the total number of samples. Although

this 1/N rate is optimal, the precise form of the asymptotic variance(1) need not be in general; see

Zielinski [21] for in-depth discussion of the optimal asymptotic variances that can be obtained with

variants of this basic estimator under different conditions.

B. Distributed Quantile Estimation

We consider the standard network architecture illustratedin Figure 1. There arem sensors, each of

which has a dedicated two-way link to a fusion center. We assume that each sensori ∈ {1, . . . ,m} collects

independent samplesX(i) of the random variableX ∈ R with distribution functionF (θ) := P[X ≤ θ].

We consider a sequential version of the quantile estimationproblem, in which sensori receives measure-

mentsXn(i) at time stepsn = 0, 1, 2, . . ., and the fusion center forms an estimateθn of the quantile. The

key condition—giving rise to the decentralized nature of the problem—is that communication between

each sensor and the central processor is constrained, so that the sensor cannot simply relay its measurement

X(i) to the central location, but rather must perform local computation, and then transmit a summary

statistic to the fusion center. More concretely, we impose the following restrictions on the protocol. First,

at each time stepn = 0, 1, 2, . . ., each sensori = 1, . . . ,m can transmit a single bitYn(i) to the fusion

center. Second, the fusion center can broadcastk bits back to the sensor nodes at each time step. We

analyze two distinct protocols, depending on whetherk = log(m) or k = 1.

C. Protocol specification

For each protocol, all sensors are initialized with some fixed θ0. The algorithms are specified in terms

of a constantK > 0 and step sizesǫn > 0 that satisfy the conditions
∞∑

n=0

ǫn = ∞ and
∞∑

n=0

ǫ2n < ∞. (2)
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The first condition ensures infinite travel (i.e., that the sequenceθn can reachθ∗ from any starting

condition), whereas the second condition (which implies that ǫn → 0) is required for variance reduction.

A standard choice satisfying these conditions—and the one that we assume herein—isǫn = 1/n. With this

set-up, thelog(m)-bit scheme consists of the steps given in Table I. Although the most straightforward

Algorithm: Decentralized quantile estimation with log(m)-bit feedback

GivenK > 0 and variable step sizesǫn > 0:

(a) Local decision:each sensor computes the binary decision

Yn+1(i) ≡ Yn+1(i; θn) := I(Xn+1(i) ≤ θn), (3)

and transmits it to the fusion center.

(b) Parameter update:the fusion center updates its current estimateθn+1 of the quantile parameter as follows:

θn+1 = θn + ǫnK

„

α
∗ −

Pm

i=1
Yn+1(i)

m

«

(4)

(c) Feedback:the fusion broadcasts them received bits{Yn+1(1), . . . , Yn+1(m)} back to the sensors. Each sensor can

then compute the updated parameterθn+1.

TABLE I: Description of thelog(m)-bf algorithm.

feedback protocol is to broadcast back them received bits{Yn+1(1), . . . , Yn+1(m)}, as described in step

(c), in fact it suffices to transmit only thelog(m) bits required to perfectly describe the binomial random

variable
∑m

i=1 Yn+1(i) in order to updateθn. In either case, after the feedback step, each sensor knows

the value of the sum
∑m

i=1 Yn+1(i), which (in conjunction with knowledge ofm, α∗ andǫn) allow it to

compute the updated parameterθn+1. Finally, knowledge ofθn+1 allows each sensor to then compute

the local decision (3) in the following round.

The 1-bit feedback scheme detailed in Table II is similar, except that it requires broadcasting only a

single bit (Zn+1), and involves an extra step size parameterKm, which is specified in the statement of

Theorem 2. After the feedback step of the 1-bf algorithm, each sensor has knowledge of the aggregate

decisionZn+1, which (in conjunction withǫn and the constantβ) allow it to compute the updated

parameterθn+1. Knowledge of this parameter suffices to compute the local decision (5).

D. Convergence results

We now state our main results on the convergence behavior of these two distributed protocols. In all

cases, we assume the step size choiceǫn = 1/n. Given fixedα∗ ∈ (0, 1), we useθ∗ to denote the

November 19, 2018 DRAFT
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Algorithm: Decentralized quantile estimation with 1-bit feedback

GivenKm > 0 (possibly depending on number of sensorsm) and variable step sizesǫn > 0:

(a) Local decision:each sensor computes the binary decision

Yn+1(i) = I(Xn+1(i) ≤ θn) (5)

and transmits it to the fusion center.

(b) Aggregate decision and parameter update:The fusion center computes the aggregate decision

Zn+1 = I

„

Pm

i=1
Yn+1(i)

m
≤ α

∗

«

, (6)

and uses it update the parameter according to

θn+1 = θn + ǫnKm (Zn+1 − β) (7)

where the constantβ is chosen as

β =

⌊mα∗⌋
X

i=0

 

m

i

!

(α∗)i (1− α
∗)

m−i
. (8)

(c) Feedback:The fusion center broadcasts the aggregate decisionZn+1 back to the sensor nodes (one bit of feedback).

Each sensor can then compute the updated parameterθn+1.

TABLE II: Description of the1-bf algorithm.

α∗-level quantile (i.e., such thatP(X ≤ θ∗) = α∗); note that our assumption of a strictly positive density

guarantees thatθ∗ is unique.

Theorem 1 (m-bit feedback):For anyα∗ ∈ (0, 1), consider a random sequence{θn} generated by the

m-bit feedback protocol. Then

(a) For all initial conditionsθ0, the sequenceθn converges almost surely to theα∗-quantileθ∗.

(b) Moreover, if the constantK is chosen to satisfypX(θ∗)K > 1
2 , then

√
n (θn − θ∗)

d→ N
(
0,

K2 α∗ (1− α∗)[
2KpX(θ∗)− 1

] 1

m

)
, (9)

so that the asymptotic MSE isO( 1
mn

).

Remarks:After n steps of this decentralized protocol, a total ofN = nm observations have been made,

so that our discussion in Section II-A dictates (see equation (1)) that the optimal asymptotic MSE is

O( 1
nm

). Interestingly, then, thelog(m)-bit feedback decentralized protocol is order-optimal with respect

to the centralized gold standard.
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Before stating the analogous result for the 1-bit feedback protocol, we begin by introducing some

useful notation. First, we define for any fixedθ ∈ R the random variable

Ȳ (θ) :=
1

m

m∑

i=1

Y (i; θ) =
1

m

m∑

i=1

I(X(i) ≤ θ).

Note that for each fixedθ, the distribution ofȲ (θ) is binomial with parametersm and F (θ). It is

convenient to define the function

Gm(r, y) :=

⌊my⌋∑

i=0

(
m

i

)
ri (1− r)m−i, (10)

with domain(r, y) ∈ [0, 1] × [0, 1]. With this notation, we have

P(Ȳ (θ) ≤ y) = Gm(F (θ), y).

Again, we fix an arbitraryα∗ ∈ (0, 1) and letθ∗ be the associatedα∗-quantile satisfyingP(X ≤ θ∗) = α∗.

Theorem 2 (1-bit feedback):Given a random sequence{θn} generated by the1-bit feedback protocol,

we have

(a) For any initial condition, the sequenceθn
a.s.−→ θ∗.

(b) Suppose that the step sizeKm is chosen such thatKm >

√
2πα∗(1−α∗)

2pX(θ∗)
√
m

, or equivalently such that

γm(θ∗) := Km

∣∣∣
∂Gm

∂r
(r;α∗)

∣∣
r=α∗

∣∣∣ pX(θ∗) >
1

2
, (11)

then
√
n (θn − θ∗)

d→ N
(
0,

K2
mGm(α∗, θ∗)

[
1−Gm(α∗, θ∗)

]

2γm(θ∗)− 1

)
(12)

(c) If we choose aconstant step sizeKm = K, then asn → ∞, the asymptotic variance behaves as
[

K2
√

2πα∗(1− α∗)

8KpX(θ∗)
√
m− 4

√
2πα∗(1− α∗)

]
, (13)

so that the asymptotic MSE isO
(

1
n
√
m

)
.

(d) If we choose adecaying step sizeKm = K√
m

, then

1

m

[
K2
√

2πα∗(1− α∗)

8KpX(θ∗)− 4
√

2πα∗(1− α∗)

]
, (14)

so that the asymptotic MSE isO
(

1
nm

)
.

November 19, 2018 DRAFT
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E. Comparative Analysis

It is interesting to compare the performance of each proposed decentralized algorithm to the centralized

performance. Considering first thelog(m)-bf scheme, suppose that we setK = 1/pX(θ∗). Using the

formula (9) from Theorem 1, we obtain that the asymptotic variance of them-bf scheme with this choice

of K is given byα∗ (1−α∗)
p2
X(θ∗)

1
mn

, thus matching the asymptotics of the centralized quantileestimator (1). In

fact, it can be shown that the choiceK = 1/pX(θ∗) is optimal in the sense of minimizing the asymptotic

variance for our scheme, whenK is constrained by the stability criterion in Theorem 1. In practice,

however, the valuepX(θ∗) is typically not known, so that it may not be possible to implement exactly

this scheme. An interesting question is whether an adaptivescheme could be used to estimatepX(θ∗)

(and hence the optimalK simultaneously), thereby achieving this optimal asymptotic variance. We leave

this question open as an interesting direction for future work.

Turning now to the algorithm1-bf, if we make the substitution̄K = K/
√

2πα∗(1− α∗) in equa-

tion (14), then we obtain the asymptotic variance

π

2

K̄2 α∗ (1− α∗)[
2K̄pX(θ∗)− 1

] 1

m
. (15)

Since the stability criterion is the same as that form-bf, the optimal choice isK̄ = 1/pX(θ∗). Conse-

quently, while the(1/[mn]) rate is the same as both the centralized and decentralizedm-bf protocols,

the pre-factor for the1-bf algorithm is π
2 ≈ 1.57 times larger than the optimizedm-bf scheme. However,

despite this loss in the pre-factor, the1-bf protocol has substantial advantages over them-bf; in particular,

the network lifetime scales asO(m) compared toO(m/ log(m)) for the log(m)-bf scheme.

F. Simulation example

We now provide some simulation results in order to illustrate the two decentralized protocols, and the

agreement between theory and practice. In particular, we consider the quantile estimation problem when

the underlying distribution (which, of course, is unknown to the algorithm) is uniform on[0, 1]. In this

case, we havepX(x) = 1 uniformly for all x ∈ [0, 1], so that taking the constantK = 1 ensures that the

stability conditions in both Theorem 1 and 2 are satisfied. Wesimulate the behavior of both algorithms

for α∗ = 0.3 over a range of choices for the network sizem. Figure 2(a) illustrates several sample paths

of m-bit feedback protocol, showing the convergence to the correct θ∗.

For comparison to our theory, we measure the empirical variance by averaging the errorên =
√
n(θn − θ∗)

overL = 20 runs. The normalization by
√
n is used to isolate the effect of increasingm, the number of

nodes in the network. We estimate the variance by running algorithm for n = 2000 steps, and computing

November 19, 2018 DRAFT



9

10
0

10
1

10
2

10
3

−0.2

0

0.2

0.4

0.6

0.8

1

Number of Iterations (N)

θ 
P

ar
am

et
er

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M (number of sensors)

M
ea

n 
S

qu
ar

ed
 E

rr
or 1−bf

M−bf

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

M (Number of Sensors)

M
ea

n 
S

qu
ar

ed
 E

rr
or

M−bf 

1−bf 

(a) (b) (c)

Fig. 2. Convergence ofθn to θ∗ with m = 11 nodes, and quantile levelα∗ = 0.3. (b) Log-log plots of the
variance againstm for both algorithms (log(m)-bf and1-bf) with constant step sizes, and comparison to
the theoretically-predicted rate (solid straight lines).(c) Log-log plots oflog(m)-bf with constant step size
versus1-bf algorithm with decaying step size.

the empirical variance of̂en for time stepsn = 1800 through ton = 2000. Figure 2(b) shows these

empirically computed variances, and a comparison to the theoretical predictions of Theorems 1 and 2

for constant step size; note the excellent agreement between theory and practice. Panel (c) shows the

comparison between thelog(m)-bf algorithm, and the1-bf algorithm with decaying1/
√
m step size.

Here the asymptotic MSE of both algorithms decays like1/m for logm up to roughly500; after this

point, our fixed choice ofn is insufficient to reveal the asymptotic behavior.

III. A NALYSIS

In this section, we turn to the proofs of Theorem 1 and 2, whichexploit results from the stochastic

approximation literature [12], [3]. In particular, both types of parameter updates (4) and (7) can be written

in the general form

θn+1 = θn + ǫnH(θn, Yn+1), (16)

whereYn+1 = (Yn+1(1), . . . Yn+1(m)). Note that the step size choiceǫn = 1/n satisfies the conditions

in equation (2). Moreover, the sequence(θn, Yn+1) is Markov, sinceθn and Yn+1 depend on the past

only via θn−1 andYn. We begin by stating some known results from stochastic approximation, applicable

to such Markov sequences, that will be used in our analysis.

For each fixedθ ∈ R, let µθ( · ) denote the distribution ofY conditioned onθ. A key quantity in the

analysis of stochastic approximation algorithms is the averaged function

h(θ) :=

∫
H(θ, y)µθ(dy) = E [H(θ, Y ) | θ] . (17)

November 19, 2018 DRAFT
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We assume (as is true for our cases) that this expectation exists. Now the differential equation method

dictates that under suitable conditions, the asymptotic behavior of the update (16) is determined essentially

by the behavior of the ODEdθ
dt

= h(θ(t)).

Almost sure convergence: Suppose that the followingattractiveness condition

h(θ) [θ − θ∗] < 0 for all θ 6= θ∗ (18)

is satisfied. If, in addition, the varianceR(θ) := Var[H(θ;Y ) | θ] is bounded, then we are are guaranteed

that θn
a.s.→ θ∗ (see§5.1 in Benveniste et al. [3]).

Asymptotic normality: In our updates, the random variablesYn take the formYn = g(Xn, θn) where

theXn are i.i.d. random variables. Suppose that the following stability condition is satisfied:

γ(θ∗) := −dh

dθ
(θ∗) >

1

2
. (19)

Then we have

√
n (θn − θ∗)

d→ N
(
0,

R(θ∗)
2γ(θ∗)− 1)

)
(20)

See§3.1.2 in Benveniste et al. [3] for further details.

A. Proof of Theorem 1

(a) The m-bit feedback algorithm is a special case of the general update (16), with ǫn = 1
n

and

H(θn, Yn+1) = K
[
α∗ − 1

m

∑m
i=1 Yn+1(i; θn)

]
. Computing the averaged function (17), we have

h(θ) = KE

[
α∗ − 1

m

m∑

i=1

Yn+1(i) | θn
]

= K (α∗ − F (θn)) ,

whereF (θn) = P(X ≤ θn). We then observe thatθ∗ satisfies the attractiveness condition (18), since

[θ − θ∗]h(θn) = K [θ − θ∗] [α∗ − F (θn)] < 0

for all θ 6= θ∗, by the monotonicity of the cumulative distribution function. Finally, we compute the

conditional variance ofH as follows:

R(θn) = K2Var

[
α∗ −

∑m
i=1 Yn+1(i)

m
| θn
]

=
K2

m
F (θn) [1− F (θn)] ≤ K2

4m
, (21)

using the fact thatH is a sum ofm Bernoulli variables that are conditionally i.i.d. (givenθn). Thus, we

can conclude thatθn → θ∗ almost surely.

November 19, 2018 DRAFT
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(b) Note thatγ(θ∗) = −dh
dθ
(θ∗) = KpX(θ∗) > 1

2 , so that the stability condition (19) holds. Applying the

asymptotic normality result (20) with the varianceR(θ∗) = K2

m
α∗(1−α∗) (computed from equation (21))

yields the claim.

�

B. Proof of Theorem 2

This argument involves additional analysis, due to the aggregate decision (6) taken by the fusion

center. Since the decisionZn+1 is a Bernoulli random variable; we begin by computing its parameter.

Each transmitted bitYn+1(i) is Ber(F (θn)), where we recall the notationF (θ) := P(X ≤ θ). Using the

definition (10), we have the equivalences

P(Zn+1 = 1) = Gm(F (θn), α
∗) (22a)

β = Gm(α∗, α∗) = Gm(F (θ∗), α∗). (22b)

We start with the following result:

Lemma 1:For fixed x ∈ [0, 1], the functionf(r) := Gm(r, x) is non-negative, differentiable and

monotonically decreasing.

Proof: Non-negativity and differentiability are immediate. To establish monotonicity, note thatf(r) =

P(
∑m

i=1 Yi ≤ xm), where theYi are i.i.d.Ber(r) variates. Consider a secondBer(r′) sequenceY ′
i with

r′ > r. Then the sum
∑m

i=1 Y
′
i stochastically dominates

∑m
i=1 Yi, so thatf(r) < f(r′) as required.

�

To establish almost sure convergence, we use a similar approach as in the previous theorem. Using

the equivalences (22), we compute the functionh as follows

h(θ) = KmE [Zn+1 − β | θ]

= Km [Gm(F (θ), α∗)−Gm(F (θ∗), α∗)] .

Next we establish the attractiveness condition (18). In particular, for anyθ such thatF (θ) 6= F (θ∗), we

calculate thath(θ) [θ − θ∗] is given by

Km

{
Gm(F (θn), α

∗)−Gm(F (θ∗), α∗)
}

[θn − θ∗] < 0,

where the inequality follows from the fact thatGm(r, x) is monotonically decreasing inr for each fixed

x ∈ [0, 1] (using Lemma 1), and that the functionF is monotonically increasing. Finally, computing the

varianceR(θ) := Var [H(θ, Y ) | θ], we have

R(θ) = K2
mGm(F (θ), α∗) [1−Gm(F (θ), α∗)] ≤ K2

m

4

November 19, 2018 DRAFT
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since (conditioned onθ), the decisionZn+1 is Bernoulli with parameterGm(F (θ);α∗). Thus, we can

conclude thatθn → θ∗ almost surely.

(b) To show asymptotic normality, we need to verify the stability condition. By chain rule, we have

h
dθ
(θ∗) = Km

∂Gm

∂r
(r, α∗)

∣∣∣
r=F (θ)

pX(θ). From Lemma 1, we have∂Gm

∂r
(F (θ), α∗) < 0, so that the stability

condition holds as long asγm(θ∗) > 1
2 (whereγm is defined in the statement). Thus, asymptotic normality

holds.

In order to compute the asymptotic variance, we need to investigate the behavior ofR(θ∗) andγ(θ∗) as

m → +∞. First examiningR(θ∗), the central limit theorem guarantees thatGm(F (θ∗), y) → Φ
(√

m y−α∗

α∗(1−α∗)

)
.

Consequently, we have

R(θ∗) = K2
mGm(F (θ∗), α∗) [1−Gm(F (θ∗), α∗)] → K2

m

4
.

We now turn to the behavior ofγ(θ∗). We first prove a lemma to characterize the asymptotic behavior

of Gm(r, α∗):

Lemma 2: (a) The partial derivative ofGm(r, x) with respect tor is given by:

∂Gm(r, x)

∂r
=

E[XI(X ≤ xm)]− E[X]E[I(X ≤ xm)]

r(1− r)
, (23)

whereX is binomial with parameters(m,x), and meanE[X] = xm.

(b) Moreover, asm → +∞, we have

∂Gm(r, α∗)
∂r

∣∣
r=F (θ∗)

→ −
√

m

2πα∗(1− α∗)
.

Proof: (a) Computing the partial derivative, we have

∂Gm(r, x)

∂r
=

⌊mα∗⌋∑

i=0

(
m

i

)[
iri−1(1− r)m−i − (m− i)ri(1− r)m−i−1

]

=
1

r(1− r)

⌊mx⌋∑

i=0


 m

i


 (i−mr)ri(1− r)m−i

=
1

r(1− r)




⌊mx⌋∑

i=0


 m

i


 ri(1− r)m−i −mr

⌊mx⌋∑

i=0


 m

i


 ri(1− r)m−i




=
1

r(1− r)
(E[XI(X ≤ mx)]− E[X]E[I(X ≤ mx)]) ,

as claimed.

(b) We derive this limiting behavior by applying classical asymptotics to the form of∂Gm(r,α∗)
∂r

given in
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part (a). DefiningZm = X−α∗m√
m

, the central limit theorem yields that:

Zm
d→ Z ∼ N(0, a) (24)

a : = α∗ (1− α∗)

Moreover, in this binomial case, we actually haveE[|Zm|] → E[|Z|] =
√

2a
π

.

First, sinceE[X] = α∗m andE[I(X ≤ α∗m)] → 1
2 by the CLT, we have

E[X] E[I(X ≤ α∗m)] → α∗m
2

. (25)

Let us now re-write the first term in the representation (23) of ∂Gm(r,α∗)
∂r

as

E[XI(X ≤ α∗m)] = α∗mE[I(X ≤ α∗m)] +
√
mE[Zm I(Zm ≤ 0)]

→ α∗m
2

−√
m

√
a

2π
(26)

sinceE[I(X ≤ α∗m)] → 1/2 and

E[Zm I(Zm ≤ 0)] → E[ZI(Z ≤ 0)] =
1

2
E[|Z|] =

√
a

2π
.

Putting together the limits (25) and (26), we conclude that∂Gm(r,α∗)
∂r

∣∣
r=α∗

converges to

1

α∗(1− α∗)

[{
α∗m
2

−√
m

√
α∗ (1− α∗)

2π

}
− α∗m

2

]
= −

√
m

2πα∗(1− α∗)
,

as claimed. �

Returning now to the proof of the theorem, we use Lemma 2 and put the pieces together to obtain

that R(θ∗)

2Km

˛

˛

˛

∂Gm(r,θ∗)

∂r

∣∣
r=α∗

˛

˛

˛

pX(θ∗)−1
converges to

K2
m/4

2Km

√
mpX(θ∗)√

2πα∗(1−α∗)
− 1

=
1

m

[
K2
√

2πα∗(1− α∗)

8KpX(θ∗)− 4
√

2πα∗(1− α∗)

]
,

with K >

√
2πα∗(1−α∗)

2pX(θ∗) for stability, thus completing the proof of the theorem.

�

IV. SOME EXTENSIONS

In this section, we consider some extensions of the algorithms and analysis from the preceding sections,

including variations in the number of feedback bits, and theeffects of noise.
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A. Different levels of feedback

We first consider the generalization of the preceding analysis to the case when the fusion center some

number of bits between1 andm. The basic idea is to apply a quantizer with2ℓ levels, corresponding

to log2(2ℓ) bits, on the update of the stochastic gradient algorithm. Note that the extremesℓ = 1 and

ℓ = 2m−1 correspond to the previously studied protocols. Given2ℓ levels, we partition the real line as

−∞ = s−ℓ < s−ℓ+1 < . . . < sℓ−1 < sℓ = +∞, (27)

where the remaining breakpoints{sk} are to be specified. With this partition fixed, we define a quanti-

zation functionQℓ

Qℓ(X) := rk if X ∈ (sk, sk+1] for k = −ℓ, . . . , ℓ− 1, (28)

where the2ℓ quantized values(r−ℓ, . . . , rℓ−1) are to be chosen. In the setting of the algorithm to be

proposed, the quantizer is applied to binomial random variablesX with parameters(m, r). Recall the

function Gm(r, x), as defined in equation (10), corresponding to the probability P[X ≤ mx]. Let us

define a new functionGm,ℓ, corresponding to the expected value of the quantizer when applied to such

a binomial variate, as follows

Gm,ℓ(r, x) :=
ℓ−1∑

k=−ℓ

rk {Gm(r, x − sk)−Gm(r, x − sk+1)} . (29)

With these definitions, the generallog2(2ℓ) feedback algorithm takes the form shown in Table III.

In order to understand the choice of the offset parameterβ defined in equation (33), we compute the

expected value of the quantizer function, whenθn = θ∗, as follows

E

[
Qℓ

[
α∗ −

∑m
i=1 Yn+1(i)

m

]
| θn = θ∗

]
=

ℓ−1∑

k=−ℓ

rkP

[
(α∗ − sk+1) <

Ȳ (θ∗)
m

≤ (α∗ − sk)

]

=

ℓ−1∑

k=−ℓ

rk [Gm(F (θ∗), α∗ − sk)−Gm(F (θ∗), α∗ − sk+1)]

= Gm,ℓ(F (θ∗), α∗).

The following result, analogous to Theorem 2, characterizes the behavior of this general protocol:

Theorem 3 (General feedback scheme):Given a random sequence{θn} generated by the generallog2(2ℓ)-

bit feedback protocol, there exist choices of partition{sk} and quantization levels{rk} such that:

(a) For any initial condition, the sequenceθn
a.s.−→ θ∗.

November 19, 2018 DRAFT



15

Algorithm: Decentralized quantile estimation with log2(2ℓ)-bits feedback

GivenKm > 0 (possibly depending on number of sensorsm) and variable step sizesǫn > 0:

(a) Local decision:each sensor computes the binary decision

Yn+1(i) = I(Xn+1(i) ≤ θn) (30)

and transmits it to the fusion center.

(b) Aggregate decision and parameter update:The fusion center computes the quantized aggregate decision variable

Zn+1 = Qℓ

»

α
∗ −

Pm

i=1
Yn+1(i)

m

–

, (31)

and uses it update the parameter according to

θn+1 = θn + ǫnKm (Zn+1 − β) (32)

where the constantβ is chosen as

β : = Gm,ℓ(F (θ∗), α∗). (33)

(c) Feedback:The fusion center broadcasts the aggregate quantized decision Zn+1 back to the sensor nodes, using its

log2(2ℓ) bits of feedback. The sensor nodes can then compute the updated parameterθn+1.

TABLE III: Description of the general algorithm, withlog
2
(2ℓ) bits of feedback.

(b) There exists a choice ofdecaying step size(i.e., Km ≍ 1√
m

) such that the asymptotic variance of

the protocol is given byκ(α
∗,Qℓ)
mn

, where the constant has the form

κ(α∗,Qℓ) := 2π

∑ℓ−1
k=−ℓ r

2
k∆Gm(sk, sk+1)− β2

(∑ℓ−1
k=−ℓ rk∆m(sk, sk+1)

)2 , (34)

with

∆Gm(sk, sk+1) = Gm(F (θ∗), α∗ − sk)−Gm(F (θ∗), α∗ − sk+1), and (35a)

∆m(sk, sk+1) = exp

(
− ms2k
2α∗(1− α∗)

)
− exp

(
− ms2k+1

2α∗(1− α∗)

)
. (35b)

We provide a formal proof of Theorem 3 in the Appendix. Figure3(a) illustrates how the constant factor

κ, as defined in equation (34) decreases as the number of levelsℓ in an uniform quantizer is increased.

In order to provide comparison with results from the previous section, let us see how the two extreme

cases (1 bit andm feedback) can be obtained as special case. For the1-bit case, the quantizer hasℓ = 1

levels with breakpointss−1 = −∞, s0 = 0, s1 = +∞, and quantizer outputsr−1 = 0 and r1 = 1. By
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making the appropriate substitutions, we obtain:

κ(α∗,Q1) = 2π
∆Gm(s0, s1)− β2

∆m(s0, s1)
, β2 = Gm,ℓ(F (θ∗), α∗)2,

∆Gm(s0, s1) = Gm,ℓ(F (θ∗), α∗) and ∆m(s0, s1)) = 1.

By applying the central limit theorem, we conclude that

∆Gm(s0, s1)− β2 = Gm,ℓ(F (θ∗), α∗)(1−Gm,ℓ(F (θ∗), α∗)) → 1/4,

as established earlier. Thusκ(α∗,Q1) → π/2 asm → ∞, recovering the result of Theorem 2. Similarly,

the results form-bf can be recovered by setting the parameters

rk−ℓ = α∗ − m− k

m
, for k = 0, ...,m, and

si = ri. (36)
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Fig. 3. (a) Plots of the asymptotic varianceκ(α∗,Qℓ) defined in equation (34) versus the number of levels
ℓ in a uniform quantizer, corresponding tolog

2
(2ℓ) bits of feedback, for a sensor network withm = 4000

nodes. The plots show the asymptotic variance rescaled by the centralized gold standard, so that it starts at
π/2 for ℓ = 2, and decreases towards1 asℓ is increased towardsm/2. (b) Plots of the asymptotic variances
Vm(ǫ) andV1(ǫ) defined in equation (39) as the feedforward noise parameterǫ is increased from0 towards
1

2
.

B. Extensions to noisy links

We now briefly consider the effect of communication noise on our algorithms. There are two types of

noise to consider: (a)feedforward, meaning noise in the link from sensor node to fusion center,and (b)
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feedback, meaning noise in the feedback link from fusion center to thesensor nodes. Here we show that

feedforward noise can be handled in a relatively straightforward way in our algorithmic framework. On the

other hand, feedback noise requires a different analysis, as the different sensors may loose synchronicity

in their updating procedure. Although a thorough analysis of such asynchronicity is an interesting topic

for future research, we note that assuming noiseless feedback is not unreasonable, since the fusion center

typically has greater transmission power.

Focusing then on the case of feedforward noise, let us assumethat the link between each sensor and

the fusion center acts as a binary symmetric channel (BSC) with probability ǫ ∈ [0, 12). More precisely,

if a bit x ∈ {0, 1} is transmitted, then the received bity has the (conditional) distribution

P(y | x) =





1− ǫ if x = y

ǫ if x 6= y.

(37)

With this bit-flipping noise, the updates (both equation (4)and (7)) need to be modified so as to correct

for the bias introduced by the channel noise. Ifα∗ denotes the desired quantile, then in the presence of

BSC(ǫ) noise, both algorithms should be run with the modified parameter

α̃(ǫ) := (1− 2ǫ)α∗ + ǫ. (38)

Note thatα̃(ǫ) ranges betweenα∗ (for the noiseless caseǫ = 0), to a quantity arbitrarily close to12 , as

the channel approaches the extreme of pure noise (ǫ = 1
2 ). The following lemma shows that for allǫ < 1

2 ,

this adjustment (38) suffices to correct the algorithm. Moreover, it specifies how the resulting asymptotic

variance depends on the noise parameter:

Proposition 1: Suppose that each of them feedforward links from sensor to fusion center are modeled

as i.i.d. BSC channels with probabilityǫ ∈ [0, 12). Then them-bf or 1-bf algorithms, with the adjusted

α̃(ǫ), are strongly consistent in computing theα∗-quantile. Moreover, with appropriate step size choices,

their asymptotic MSEs scale as1/(mn) with respective pre-factors given by

Vm(ǫ) :=
K2 α̃(ǫ) (1 − α̃(ǫ))[

2K(1 − 2ǫ)pX(θ∗)− 1
] (39a)

V1(ǫ) :=

[
K2
√

2πα̃(ǫ)(1 − α̃(ǫ))

8K(1− 2ǫ)pX(θ∗)− 4
√

2πα̃(ǫ)(1 − α̃(ǫ))

]
. (39b)

In both cases, the asymptotic MSE is minimal forǫ = 0.

Proof: If sensor nodei transmits a bitYn+1(i) at roundn+1, then the fusion center receives the random

variable

Ỹn+1(i) = Yn+1(i)⊕Wn+1,
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whereWn+1 is Bernoulli with parameterǫ, and⊕ denotes addition modulo two. SinceWn+1 is inde-

pendent of the transmitted bit (which is Bernoulli with parameterF (θn)), the received valuẽYn+1(i) is

also Bernoulli, with parameter

ǫ ∗ F (θn) = ǫ (1− F (θn)) + (1− ǫ)F (θn) = ǫ+ (1− 2ǫ)F (θn). (40)

Consequently, if we set̃α(ǫ) according to equation (38), both algorithms will have theirunique fixed point

whenF (θ) = α∗, so will compute theα∗-quantile ofX. The claimed form of the asymptotic variances

follows from by performing calculations analogous to the proofs of Theorems 1 and 2. In particular, the

partial derivative with respect toθ now has a multiplicative factor(1 − 2ǫ), arising from equation (40)

and the chain rule. To establish that the asymptotic variance is minimized atǫ = 0, it suffices to note

that the derivative of the MSE with respect toǫ is positive, so that it is an increasing function ofǫ.

�

Of course, both the algorithms will fail, as would be expected, if ǫ = 1/2 corresponding to pure

noise. However, as summarized in Proposition 1, as long asǫ < 1
2 , feedforward noise does not affect the

asymptotic rate itself, but rather only the pre-factor in front of the1/(mn) rate. Figure 3(b) shows how

the asymptotic variancesVm(ǫ) andV1(ǫ) behave asǫ is increased towardsǫ = 1
2 .

V. D ISCUSSION

In this paper, we have proposed and analyzed different approaches to the problem of decentralized

quantile estimation under communication constraints. Ouranalysis focused on the fusion-centric archi-

tecture, in which a set ofm sensor nodes each collect an observation at each time step. After n rounds

of this process, the centralized oracle would be able to estimate an arbitrary quantile with mean-squared

error of the orderO(1/(mn)). In the decentralized formulation considered here, each sensor node is

allowed to transmit only a single bit of information to the fusion center. We then considered a range of

decentralized algorithms, indexed by the number of feedback bits that the fusion center is allowed to

transmit back to the sensor nodes. In the simplest case, we showed that anlogm-bit feedback algorithm

achieves the same asymptotic varianceO(1/(mn)) as the centralized estimator. More interestingly, we

also showed that that a1-bit feedback scheme, with suitably designed step sizes, can also achieve the

same asymptotic variance as the centralized oracle. We alsoshowed that using intermediate amounts of

feedback (between1 andm bits) does not alter the scaling behavior, but improves the constant. Finally,

we showed how our algorithm can be adapted to the case of noisein the feedforward links from sensor

nodes to fusion center, and the resulting effect on the asymptotic variance.
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Our analysis in the current paper has focused only on the fusion center architecture illustrated in

Figure 1. A natural generalization is to consider a more general communication network, specified by an

undirected graph on the sensor nodes. One possible formulation is to allow only pairs of sensor nodes

connected by an edge in this communication graph to exchangea bit of information at each round. In

this framework, the problem considered in this paper effectively corresponds to the complete graph, in

which every node communicates with every other node at each round. This more general formulation

raises interesting questions as to the effect of graph topology on the achievable rates and asymptotic

variances.
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APPENDIX

Proof of Theorem 3:

We proceed in an analogous manner to the proof of Theorem 1:

Lemma 3:For fixedx ∈ [0, 1], the functionGm,ℓ(r, x) is non-negative, differentiable and monotoni-

cally decreasing.

Proof: First notice that by definition:

Gm,ℓ(r, x) = E

[
Qℓ

[
x− X

m

] ]
, (41)

where X is a Bin(r,m) random variable. Note that ifX ′ ∼ Bin(r′,m), with r′ > r, then cer-

tainly P (X ′ ≤ n) ≤ P (X ≤ n)—meaning thatX ′ stochastically dominatesX. For any constantx,

P
(
x− X′

m
≤ s
)
≥ P

(
x− X

m
≤ s
)
. Furthermore, by the quantizer is, by definition, a monotonically non-

decreasing function. Consequently, a standard result on stochastic domination [7,§4.12] implies that

Gm,ℓ(r, x) ≥ Gm,ℓ(r
′, x). Differentiability follows from the definition of the function.

�

The finiteness of the variance of the quantization step is clear by construction; more specifically, a

crude upper bound isr2ℓ . Thus, analogous to the previous theorems, Lemma 3 is used toestablish almost

sure convergence.
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Now, some straightforward algebra using the results of Lemma 2 shows that the partial derivative
∂Gm,ℓ(r,x)

∂r
is

1

r(1− r)

ℓ−1∑

k=−ℓ

rk

{
E

[
X I

(
x− sk+1 ≤

X

m
≤ x− sk

)]
− E[X] P

[
x− sk+1 ≤

X

m
≤ x− sk

]}
, (42)

This will be used next. To compute the asymptotic variance, we again exploit asymptotic normality

(see equation (24)) as before:

E[XI(m(α∗ − sk+1) ≤ X ≤ m(α∗ − sk))] = E

[
XI

(
−√

msk+1 ≤
X − α∗m√

m
≤ −√

msk

)]

=
√
mE

[
(Z + α∗√m)I

(
−√

msk+1 ≤ Z ≤ −√
msk

)]

=
√
mE

[
ZI
(
−√

msk+1 ≤ Z ≤ −√
msk

)]
+ S

→ −√
m

∫ √
msk+1

√
msk

z
exp

(
−z2

2a

)

√
2πa

dz + S

S : = E[X]P (m(x− sk+1) ≤ X ≤ m(x− sk))

Now make the definition, which corresponds to solving the integral above:

∆m(sk, sk+1) =

(
exp

(
− ms2k
2α∗(1− α∗)

)
− exp

(
− ms2k+1

2α∗(1− α∗)

))

Thus, plugging into Equation 42, noticing thatS cancels:

∂Gm,ℓ(r, α
∗)

∂r

∣∣
r=F (θ∗)

→ −
√

m

2πα∗(1− α∗)

ℓ−1∑

k=−ℓ

rk∆m(sk, sk+1)

A side note is that if one choosess0 = 0, we are guaranteed that at least one∆m(sk, sk+1) does

not go to zero in a fixed quantizer (i.e. a quantizer where the levelssk do not depend onm). But the

correction factor expression, and as a matter of fact, the optimum quantization of Gaussian, suggests that

the levelssk scale as1/
√
m. In this case, the factor is a constant, independent ofm.

We now need to computeR(θ∗) for the quantized updated. It is also straightforward to seethat this

quantity is given by:

R(θ∗) = K2
m

ℓ−1∑

k=−ℓ

r2k(Gm(F (θ∗), α∗ − sk)−Gm(F (θ∗), α∗ − sk+1))− β2

Putting everything together we obtain the asymptotic variance estimate for the more general quantizer

converges to:
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R(θ∗)

2Km

∣∣∣∂Gm,ℓ(r,θ∗)
∂r

∣∣
r=α∗

∣∣∣ pX(θ∗)− 1
→

K2
m

∑ℓ−1
k=−ℓ r

2
k(Gm(F (θ∗), α∗ − sk)−Gm(F (θ∗), α∗ − sk+1))− β2

2Km

√
m

Pℓ−1
k=−ℓ

rk∆m(sk,sk+1)pX(θ∗)√
2πα∗(1−α∗)

− 1

Set a gainK =
Km

√
m

Pℓ−1
k=−ℓ

rk∆m(sk,sk+1)√
2πα∗(1−α∗)

and we have the final expression for the variance:

2π

∑ℓ−1
k=−ℓ r

2
k∆Gm(sk, sk+1)− β2

(∑ℓ−1
k=−ℓ rk∆m(sk, sk+1)

)2
[
K2α∗(1− α∗)
2KpX(θ∗)− 1

1

m

]

Where∆Gm(sk, sk+1) = Gm(α∗, α∗ − sk)−Gm(α∗, α∗ − sk+1). The constantκ(α∗,Qℓ) defines the

performance of the algorithm for different quantization choices:

κ(α∗,Qℓ) = 2π

∑ℓ−1
k=−ℓ r

2
k∆Gm(sk, sk+1)− β2

(∑ℓ−1
k=−ℓ rk∆m(sk, sk+1)

)2

The rate with respect tom is the same, independent of quantization. It is clear from previous analysis

that if the best quantizers are chosen1 ≤ κ(α∗,Qℓ) ≤ 2π
4 . Obviouslyκ(α∗,Qℓ) over the class of optimal

quantizers is a decreasing function ofℓ.
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