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Abstract— We show that linear complexity capacity-
approaching information embedding codes exist for information
embedding problems. Specifically, we introduce the double-
erasure information embedding channel model, and show that
in at least some parameter regimes one can achieve rates
arbitrarily close to capacity using suitably defined codes on
graphs. Furthermore, we show that both encoding and decoding
can be implemented with linear complexity by exploiting belief
propagation techniques.

I. INTRODUCTION

The information embedding problem of channel coding with
transmitter side information arises in a number of applica-
tions including coding for a memory with defects, broadcast
channels, inter-symbol interference channels, multi-antenna
channels, and digital watermarking; see, e.g., [11], [12]. There
is a growing interest in understanding the complexity required
to approach capacity on such channels, and how to design
codes with such complexity.

Low density codes on graphs are compelling candidates for
the information embedding problem, which has both channel
and source coding aspects. Indeed, low density parity check
(LDPC) and low density generator matrix (LDGM) codes have
particularly attractive characteristics for channel coding [4]
and source coding [2], respectively. This paper develops such
a class of codes.

In closely related work, such codes have been used to
approach capacity of the noiseless broadcast channel [13],
[14], but some difficulties remain. For example, [13] requires
logarithmic (as opposed to constant) density in the block
length while [14] uses an O(n?) algorithm. Furthermore, it is
unclear how those approaches fare in the presence of channel
noise.

In this work, we consider what may be the simplest infor-
mation embedding channel model whose source and channel
coding aspects are both nontrivial. For this channel, which we
refer to as the “double-erasure” channel, we construct a class
of capacity-approaching linear complexity codes.

II. CHANNEL MODEL

Consider a general information embedding problem. A
channel state vector s consisting of n symbols from the
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alphabet 8 is selected according to the probability law p(s).
The encoder takes as input s as well as a k-bit message
m, and produces a channel input vector x consisting of n
symbols from the alphabet X. The channel takes x as input and
produces a channel output vector y consisting of n symbols
from the alphabet Y according to the probabilistic channel
law p(y|x,s). Finally, the decoder receives y — which we
sometimes denote as y(x,s) to indicate the dependence on
the channel input and state — and attempts to determine the
message m. The goal is to construct systems operating at rates
near capacity with low complexity encoders and decoders,
with the probability of decoding error vanishing as n — oo.

Our “double-erasure” information embedding channel of
interest is a variant of the “memory with defects” channel
model [11]. Specifically,

X={0,1}, 8=Y={0,1,x%}, (1)
the state s is independent and identically distributed (i.i.d.)
with
1—e5)/2, s=0o0rs=1
ps(s) = {( )/ @
S5 s =%,
and the channel law is i.i.d. with
eCa y =*

Pyis,x (W|s,r) = 1—e, y=xands=x (3)

1—e., y=sands#x*

Hence, the channel consists of two parts. The input = and s
combine to produce
T §=x%
v = “)
S 8%,

which is erased (i.e., replaced with *) with probability e. to
produce y.

III. CAPACITY

The capacity of the double-erasure channel defined in
Section II is as follows.

Claim 1: The capacity of the double-erasure channel is

C=es—e.+(1—es) Hz(q) — (1 —eq)Hp(g(l —e5)), (5a)
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where ¢ satisfies

1—¢q 1—q(1—e)

q :< q(1 —es) )(HC)

and Hg(-) denotes the binary entropy function.
Proof: To verify (5) it suffices to apply the Gel’fand-
Pinsker [7] expression for information embedding capacity

I(U;Y) - I(U;S).

(5b)

max

p(uls),p(z|u,s)

A particular choice of X and U yields (5). Specifically, let
the alphabet for U be U = {0,1}, let p(u = 0|s = %)
1/2, and let p(u = 0|s = 0) = p(u = 1]s = 1) = 1 — 2q.
Finally, let X = U, the resulting marginal distribution for X
is symmetric. Optimizing over the choice of ¢ then gives (5).

To verify that these choices of X and U give capacity, it
suffices to verify the optimality conditions in [6]. |

In the sequel we develop coding schemes that can approach
rate R~ = es — e.. When e < e5, C' =~ R™, so our coding
schemes come close to capacity in this regime.

IV. CODING SCHEME

A coding scheme consists of a sequence of encoding
functions! E,, : 8" x {0,1}* + X" and decoding functions
D, :Y* i {0,1}* forn=1,2,....

Definition 1: A coding scheme is admissible for the double-
erasure information embedding channel if i) F,(s,m); =s;
whenever s; # x for all messages m (cf. (4)); and ii) for
a message m drawn at random, and any € > 0, there are
infinitely many n such that Pr[D,,(y (E, (s, m),s)) # m] < e.
The rate of an admissible coding scheme is defined as R =
limsup(k/n).

Our encoder, illustrated in Fig. 1, is formed by combining
an (n + 71, k) LDGM code €, and an (72, k) LDPC code C5.2
A k-bit message m is encoded into an n-bit channel input x
as a function of the n-bit channel state s as follows:

1) Encode m using G, obtaining w = G - m, where Go
is the generator matrix for Cs.

Use a modified version of belief propagation (BP) [2],
[8], [9] to find a codeword of C; denoted (S, W) such that
(8, W) matches (s, w) in as many non-* positions as pos-
sible. For example, this can be implemented by directly
applying the ERASURE-QUANTIZE algorithm of [2].
If ERASURE-QUANTIZE fails, randomly assign values
to all of the so-called unreserved variables [2], thereby
incurring some small number of errors. Then, solve for
the reserved variables as if ERASURE-QUANTIZE did
not fail.

The channel input is the n-bit vector x where z; = s;
if s; # %, and x; = §; if s; = *.

2)

3)

'We use the notation A® to denote the b-fold Cartesian product of a set
with itself and c; to denote the ith component of a vector c.

2By LDGM and LDPC codes, we mean codes with a graphical representa-
tion having O(r) edges, where r denote the block length. In particular, this
definition allows codes that have unbounded maximum degree, as long as the
average degree is bounded by a constant independent of 7.
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Fig. 1. Encoder structure. The message consists of k bits, which are encoded
by code C2 to produce 7 outputs labeled w. After concatenating w onto the
n-bit channel state s, the encoder finds a codeword of the main code Gy that
matches (s, w) in as many non-* positions as possible.

Final Dec¢oder Output

J Compute W

using information bits

Input y

ignore
erased

information bits

Fig. 2. Decoder Structure. The arrows indicate the flow of information
through the decoder from the channel output y to the final decoder output.

To understand the encoding algorithm, it helps to contrast
the ideal case where there exists a codeword of C; that exactly
matches (s,w) in all non-+ positions with what actually
happens. Usually, there will be at least a few positions of
(s, w) that cannot be exactly matched by a codeword of Cj.
The encoding algorithm accounts for this in step 3 by changing
the positions of s that do not match the non-* positions of s.
The decoder will need to correct these errors in addition to
the erasures in the channel output.

Fig. 2 illustrates the decoder for our codes. Decoding a
received n-bit channel output y proceeds as follows:

1) Form the subgraph of C; obtained by ignoring the erased
positions of the received signal y and the last 7 positions
of 81.

Use BP on this subgraph as if the vector s was corrupted
by a binary symmetric channel (BSC) to estimate the
information bits of G;. Then, use the information bits to
compute an estimate W of w.

3) Decode G5 to recover the message m from w.

2)

3

We first discuss the required properties of Cj.

Definition 2: A C; code ensemble is good if for some
choice of e, €, ds, dc it is (eg, €c, Js, Oc)-good. The latter is
a family of €; codes, with a probability distribution over
the family, mapping k information bits to n + n code bits,
where members C; of the ensemble have the following two
properties:

1) Erasure Quantization: Let t € §71" be arbitrary. If the

number of * symbols in t exceeds n + 1 — k(1 — €5),

3In practice, one would probably want to use a code Co that would allow
BP decoding.
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then with high probability, there exists a codeword ¢ €
Cy such that |[{i : ¢; # t; and t; € {0,1} and ¢ < n}| <
dsnand [{i:c; #t; and t; € {0,1} and i > n —1}| <
dsm. y
2) Erasure Correction: Let C; denote a punctured version
of €y that keeps only the first n code bits of every
codeword, and let ¢ € C; correspond to aNCOdGWOI’d
¢ € C;. Form t by changing < n — k(1 + €)
positions of ¢ to * symbols. With high probability,
we can compute a reconstruction w = f(t) such that
{i:c; #w;and i >n —1}| < e
One class of codes C; that can meet the conditions of
Definition 2 is an LT code [10], to which we restrict our
attention for the remainder of the paper. Following the notation
from [1], a (k,Q(z)) LT code is one with k information
bits and output degree distribution given by the generator
polynomial* Q(z). For our construction, we use, as in [1], a
modified version of the ideal soliton distribution. Specifically,
our distribution has generator polynomial

D—-1

2 2P
Z i(i—1) + 3) :

=2

1
Qup(z) = 1 (MZ +

where we have made the parameters p and D explicit. We
truncate this LT code so that only n + 7 outputs are produced.

For G5, we require only that the code 1) be of high-rate,
2) have efficient (linear complexity) encoding and decoding
algorithms, and 3) be a good error-correction code. With
respect to the latter, we require that the code be capable
of correcting a fixed fraction r of errors regardless of the
locations of these errors in the received signal. However, we do
not require that the code be capacity achieving. As an example,
one class of codes C; that meets these requirements is that due
to Spielman [5].

The parameters of the LT code can be chosen to make
it suitable for our application. In particular, let ¢, > 0 be
arbitrary, and let e, = (2In(1/e;))~"/%. In turn, set the
€, code parameters according to p = €5/2 + (e5/2)? and
D = [1/p], where p = ¢./(4(1 + €.)). Furthermore, let d; =
10/€, (1) < 10/In(1/ec), and let 6. = 2(k/n)pSY, H(1).
Then we have the following:

Lemma 1: The ensemble of (k,Q, p(z)) LT codes trun-
cated to length n + 7 is an (e, €c, ds, d¢ )-good code for €.

Finally, this C; code, when combined with a suitably
parameterized Cy code, yields an admissible coding scheme
for our channel in the sense of Definition 1. Specifically, we
have the following as our main result.

Theorem 1: Suppose C; is chosen as in Lemma 1, and C»
is capable of correcting a fraction » = d5 + J. of errors. Then
for the double-erasure information embedding channel with

k—n  k

€s Z 1- —€s;,

n

4R‘ecall that the probability of a degree ¢ node is specified by the coefficient
of z* in a generator polynomial ©(z). Thus the expected degree is given in
terms of this polynomial by Q/(1).

and -
e <1—E<1+6 +&)
= n U n(1/e) )’

our construction produces an admissible coding scheme with
rate lim sup k/n.
It follows immediately that our coding scheme is able to
achieve rates close to e; — e.. Specifically, we have:

Corollary 1: For a double-erasure information embedding
channel with parameters e and e., we can choose k, k,n,n to
obtain an admissible coding scheme with rate arbitrarily close
to es — ec.

V. PROOFS

In this section, we prove Lemma 1 and Theorem 1.

A. Proof of Lemma 1

To prove Lemma 1, we verify the erasure quantization and
erasure correction properties separately.

The erasure quantization property is so named because it
essentially requires the code ensemble to be good for the
binary quantization problem [2]. To prove that this is true for
LT codes, we need the following lemma from [2].

Lemma 2: A linear block code € can recover from a
particular erasure sequence (under ML decoding) if and only
if the dual code CL can quantize the dual sequence, i.e., the
sequence where all the erased symbols have been turned into
unerased symbols and vice versa. Also, if C can recover from
an erasure sequence using BP decoding, then €1 can quantize
the dual sequence using a dualized form of BP.

In Lemma 2, “recover” includes the case where BP decoding
can only determine some of the information bits. For a
particular erasure sequence, suppose BP decoding can recover
! information bits. Then, the dualized form of BP applied to
@1 and the dual sequence can quantize the dual sequence such
that at least [ unerased positions are matched.

Now we prove that (k,€Q, p(z)) LT codes satisfy the
erasure quantization property.

Lemma 3: A truncated (k,€Q, p(z))) LT code with param-
eters as specified in Section IV matches, with high probability,
a fraction 1 —d; of any subset of k(1 —es)+ 1 unerased output
symbols.

Proof: From Lemma 2, it follows that to prove Lemma 3
we only need to show that the dual of a truncated (k, 2, p (%))
LT code is good on the BEC. More precisely, we must show
that if all the inputs to the dual code are erased, we can recover
all but a d fraction of the erased symbols.

The analysis of the dual code is similar to the proof
of [1, Lemma 4]. Let w(z) and ¢(z) be the generat-
ing functions for the edge degree distributions with re-
spect to the variable and check nodes of the dual LT
code. > From [1], w(z) = @, 5(2)/, p(1), and £(z) =

5The dual code can be obtained by replacing all check nodes with variable
nodes and vice versa. This follows because the graphical representation of
C1 given in figure 1 shows the generator matrix for C;. The graphical
representation of the dual should use the generator matrix of C; as the parity
check matrix, and this can be achieved by swapping the variable nodes with
the check nodes.
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(1=, H(1)(1 = 2)n(1 — ec))n(1=ee)1=¢) Using the density
evolution method, to prove Lemma 3 we must show that
w(1—€(1—2)) < z,VYz € [ds, 1]; our argument differs from that
of [1] only in that [1] proves (1 —w(1—2)) < 2,Vz € [ds, 1],
i.e., our argument proves that we can interchange w and ¢ and
preserve the inequality.

Now w(l — £(1 — 2)) < =z reduces to €, (1 — £(1 —
z)) < U, p(1)z. Using the formula for 2, () given in
[1], some algebra shows that €, (1 —£(1—2)) <, p(1)z
for sufficiently small e.. In particular, it suffices to choose
ec < (In(1/e)) + O(1)) Ve, [

Lemma 3 shows that (k,Q, p(z)) LT codes satisfy the
erasure quantization property because the LT code generates
every output bit i.i.d. Thus, the unmatched positions are
uniformly distributed throughout the n + 7 output positions,
and we can consider the first n positions separately from the
last n positions. (In fact, since all the erasures are in the first n
positions, the fraction that are incorrect in the first n positions
is upper bounded by ds(1 — ey)).

The erasure correction property follows from the following
lemma, given in [1, Lemma 4].

Lemma 4: With a truncated (k,Q, p(2))) LT code with
parameters as specified in Section IV one can, with high
probability, recover all but a fraction p of the k inputs from
any subset of k(1 + €./2) + 1 output symbols.

Proof of Lemma 1: Lemma 3 proves the erasure quan-
tization property. To complete the proof of Lemma 1, we
need to turn the bound on the number of unrecovered inputs
given in Lemma 4 into a bound on the number of unrecovered
outputs in the last 7 positions. With high probability at most
2kp variable nodes of C; are unrecovered (we need the 2 for
Lemma 6 to come later). These unrecovered variable nodes
induce at most 2]5/)9;. p (1) unrecovered check nodes in the
last 7 positions of C; with high probability. This is because
the number of unrecovered check nodes in the last n positions
is upper bounded by ). deg(i), where deg(:) is the degree
of node 7 in the subgraph induced by the last n check nodes
of €1, and the sum ranges over all the variables nodes that
are in error. Because the check nodes choose their neighbors
independently at random, this sum is tightly concentrated
around its expected value, which is €, p(1)7p. Thus, with
high probability we do not see more than 2/2:;)(2;% p(1) unre-
covered check nodes in the last 7 positions.® Note that this
analysis would hold even if we made errors in the variable
nodes instead of just not recovering certain nodes. This is
important when we prove Lemma 6 to come. [ ]

B. Proof of Theorem 1

We prove, in order, that our construction satisfies both the
encoding and decoding properties of an admissible coding
scheme.

The former is established by the following Lemma.

Lemma 5: For the choices of C;, G5, state, and channel
distributions given in Theorem 1, our construction satisfies

SWe assume k > 7.

the encoding property of Definition 1.

Proof: The encoding algorithm given in Section IV
guarantees that we satisfy the encoding property, since step
3 of the algorithm ensures that the encoding matches s at all
non-x positions. However, we can make a stronger statement
than this. Lemma 1 guarantees that a large fraction of the state
positions are matched after step 2 on the encoding algorithm.
Thus, step 3 only changes a small (ds) fraction of unmatched
positions to get the final encoding. This will be important when
we analyze the decoder. ]

In the sequel, we refer to the encoding computed after step
2 as the preliminary encoding.

Now we prove that our construction satisfies the decoding
property. Specifically, we have the following result, whose
proof requires us to show that our code can correct the
erasures made by the channel, and the errors introduced by
the preliminary encoding.

Lemma 6: For the choices of Gy, Gy, state, and channel
distributions given in Theorem 1, our construction satisfies
the decoding properties of Definition 1.

To prove Lemma 6, we first need the following Lemma,
which implies that a truncated version of C; can be decoded
reliably over BSC(Js).

Lemma 7: For the choice of parameters given in Theo-
rem 1, assume that the first n bits of a codeword of C; are
sent over BSC(ds), and then over the erasure channel specified
in Theorem 1. Then, BP can be used to recover the level 1
variable nodes with high probability, in the sense that at most
a fraction p of the nodes are not recovered correctly.

In order to prove Lemma 7, we will make use of the
following result from [3, Thm. 4.2] relates the performance
of a code on the BEC to its performance on any binary input-
symmetric channel (BISC). The Bhattacharya parameter of
a BISC is defined as A\ = E[e~1/?], where L is the log-
likelihood ratio of the input given the channel output.

Lemma 8: Let A(C) be the Bhattacharya parameter of an
arbitrary BISC €. If BP can decode an ensemble of codes
over BEC(A(C)), then BP can also decode reliably over C.

We remark that the proof of Lemma 8 given in [3] actually
proves the stronger statement that if the fraction of unrecov-
ered inputs over BEC(A(C)) < 0, then the fraction of inputs
which are recovered incorrectly over € is also less than §.

Proof of Lemma 7: We prove that the subgraph of C;
formed by only considering the positions that were not erased
by the erasure channel is good for BSC(Js). Let € > 0 be a
parameter we determine later. Say we receive k(1 + €) bits,
but a §, fraction of these bits are incorrect. From Lemma 4,
we know that~this subcode of G; can recover from erasures
provided that k(14€./2) unerased outputs are available. Thus,
we can tolerate an erasure probability of € = (€ —€.)/(1+¢€).

"Density evolution typically looks at the values passed along edges of the
graph. To turn this into a bound on inputs, it suffices to pretend that each
variable nodes has an “extra” edge leaving which is not attached to any other
nodes. The value of this edge is updated using the same density evolution
equations, and the value on this edge determines the value of the associated
variable.
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Applying Lemma 8, it follows that if Js satisfies A(ds) =

24/65(1 — d5) < €, then we can correct a d fraction of errors.

This inequality is satisfied if we choose € = €,+160/In(1/¢,).

|

It remains to confirm that C; can correct enough of the

errors from the preliminary encoding that C can correct those
that remain.

Proof of Lemma 6: We first define a new channel C.,
which models the positions whose bits we need to change
after the preliminary encoding in order to satisfy the encoding
property. Let I' be the number of unmatched positions after
the preliminary encoding, so that C. introduces I" errors to
form the final encoding. Because the LT code generates each
output symmetrically, and because the state distribution (2)
is symmetric, it follows that given I' = ~, the ~ positions
flipped by C. are equally likely to be any + positions.
Thus, conditioned on the number of errors, C. has the same
distribution as a BSC.

Lemma 1 guarantees that I' < §sn with high probability. Let
7 be the expected value of I' (our proof of Lemma 3 shows
7 < dg, but we can calculate 7 to any desired accuracy using
density evolution). Then, a standard martingale argument [4]
shows that there exists a constant 3 such that for any ¢ > 0,

Pr[T — 7] > ¢ < e P, 6)

Let D(:||-) denote the Kullback-Leibler distance between
two Bernoulli random variables. For any particular value -y
and sufficiently large n, we know that the probability P, .
that a realization BSC() of the BSC makes, for some € > 0,
a fraction <y + € errors in n transmissions is lower bounded by

e—nD(v+ellv)
P Y€ > T (7)
2mn
and a similar statement is true for v — e.

We say that BP decoding of (a truncated version) of C; fails
if the fraction of level 1 variable nodes that are not recovered
correctly is greater than 2p. Using martingale arguments, one
can show that Lemma 7 implies

Pr[BP decoding fails for BSC(5,)] < e~ (8)

for a suitable constant o > 0. Choosing € such that ¢ =
D(¥ £ €|[7) — ap? < 0, then combining (6), (7), (8), and the
fact that conditioned on the number of errors, the distribution
of a BSC and €, is the same, we obtain

Pr[BP decoding fails for C.] < e™7"v2mn + e B,

Thus, the probability that BP decoding of C; fails is exponen-
tially small even when the errors are introduced by C..
To complete the proof, we need to correct the small fraction

8In deriving equation 6, it is important that the encoder uses the algorithm
specified in Section IV. Specifically, the unreserved variables need to be as-
signed randomly. This allows us to conclude that about half of the unreserved
checks are not satisfied. Then, we can multiply the density evolution value
for the number of unreserved checks by .5 to get 7, and the concentration
result in equation 6 follows easily.

of check nodes which are not recovered properly after decod-
ing C;. There are two sources of error for the last 72 check
nodes: errors caused because our definition of failure allows
for a 2p fraction of errors in the variable nodes, and errors
caused because during encoding we may not be able to match
a &g fraction of the check nodes. In total, with high probability
the two sources of error induce at most a fraction d5 + d. of
errors in the last n check nodes, which can be corrected given
the choice of Cs. [ |

VI. CONCLUDING REMARKS

We have described a coding scheme for the double-erasure
information embedding channel with linear-time encoding and
decoding algorithms. The key ingredient in the construction is
a code that is good for both BEQ and the BEC. In our construc-
tion, because €. is so small compared to €, the complexity of
encoding and decoding scales with (1/¢5) Inln(1/es)). Thus,
our choice of Q,, p(z) allows us to prove the asymptotic result,
but the dependence on €; makes it difficult to get close to
es — e.. We believe that by using techniques similar to those
employed in [1] we can find choices for Q(z) with a lower
value of (1), which still perform well for BEQ and BEC.
This is the subject of future work.
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