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Abstract

A discrete memoryless generalized multiple access channel (GMAC) with confiden-

tial messages is studied, where two users attempt to transmit common information

to a destination and each user also has private (confidential) information intended for

the destination. This channel generalizes the multiple access channel (MAC) in that

the two users also receive channel outputs, and hence may obtain the confidential in-

formation sent by each other from channel outputs they receive. However, each user

views the other user as a wire-tapper, and wishes to keep its confidential informa-

tion as secret as possible from the other user. The level of secrecy of the confidential

information is measured by the equivocation rate, i.e., the entropy rate of the confiden-

tial information conditioned on channel outputs at the wire-tapper. The performance

measure of interest for the GMAC with confidential messages is the rate-equivocation

tuple that includes the common rate, two private rates and two equivocation rates

as components. The set that includes all these achievable rate-equivocation tuples is

referred to as the capacity-equivocation region. For the GMAC with one confidential

message set, where only one user (user 1) has private (confidential) information for the

destination, inner and outer bounds on the capacity-equivocation region are derived.

These bounds match partially, and hence the capacity-equivocation region is partially

characterized. Furthermore, the outer bound provides a tight converse to the secrecy

capacity region, which is the set of all achievable rates with user 2 being perfectly igno-

rant of confidential messages of user 1, thus establishing the secrecy capacity region. A

class of degraded GMACs with one confidential message set is further studied, and the

capacity-equivocation region and the secrecy capacity region are established. These

capacity results are further explored via two example degraded channels: the binary

GMAC and the Gaussian GMAC. For both channels, the capacity-equivocation regions

are obtained. In particular, the capacity-equivocation region of the degraded Gaus-

sian GMAC is shown to apply to non-physically-degraded Gaussian channels as well.

For the GMAC with two confidential message sets, where both users have confidential

messages for the destination, an inner bound on the capacity-equivocation region is

obtained. The secrecy rate region is derived, where each user’s confidential informa-

tion is perfectly hidden from the other user. It is demonstrated that for the case of

two confidential message sets there is a trade-off between the two equivocation rates
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corresponding to the two confidential message sets, and this trade-off can be achieved

by using codebooks that achieve different boundary points of the corresponding MAC.

1 Introduction

Two important issues in communications are reliability and security. The reliability quan-

tifies the maximum achievable rate (capacity) with small probability of error, and has been

studied intensively since Shannon theory was established [1]. Security is an important issue

when the transmitted information is confidential and needs to be kept as secret as possible

from wire-tappers or eavesdroppers. The level of secrecy of confidential information at a

wire-tapper can be measured by the equivocation rate, i.e., the entropy rate of confidential

messages conditioned on channel outputs at the wire-tapper. If both reliability and security

are considered, the performance measure of interest is the rate-equivocation tuple that in-

cludes both the communication rates and the equivocation rates (achieved at wire-tappers)

as components. We refer to the set that consists of all achievable rate-equivocation tuples

as the capacity-equivocation region.

Communication of confidential messages has been studied in the literature for some classes

of channels. The wire-tap channel was introduced by Wyner in [2], where a sender wishes

to transmit information to a legitimate receiver and to keep a wire-tapper as ignorant of

this information as possible. The channel from the sender to the legitimate receiver and the

wire-tapper was assumed to be a degraded broadcast channel. The trade-off between the

communication rate to the legitimate receiver and the level of ignorance at the wire-tapper

was developed. Furthermore, the secrecy capacity was established, at which the information

source can be reliably reconstructed at the legitimate receiver with the wire-tapper being

perfectly ignorant of the information source.

The broadcast channel with confidential messages was studied in [3] as a generalization

of the wire-tap channel, where the sender also wishes to transmit common information to

both the legitimate receiver and the wire-tapper in addition to the private (confidential)

information to the legitimate receiver. Moreover, the broadcast channel from the sender

to the two receivers was assumed to be general and may not be degraded. The capacity-

equivocation region was established for this channel, and the secrecy capacity region was

given. The relay channel with confidential messages was studied in [4], where the relay node

acts as both a helper and a wire-tapper. Some other related studies on communication of

confidential messages can be found in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

In this paper, we consider a two-user generalized multiple access channel (GMAC) with

confidential messages, which generalizes the multiple access channel (MAC) [15, Sec. 14.3]

by allowing both users to receive noisy channel outputs. This channel model is motivated

by wireless communications, where transmitted signals are broadcast over open media and

can be received by all nodes within communication range. For this channel, we assume

that two users (users 1 and 2) have common information and each user has its private
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(confidential) information intended for a destination. Since two users also receive channel

outputs, they may extract each other’s confidential information from their received channel

outputs. However, each user treats the other user as a wire-tapper, and wishes to keep this

wire-tapper as ignorant of its confidential message as possible. The level of ignorance of one

user’s confidential message at the other user (wire-tapper) is measured by the equivocation

rate. Our goal is to study the capacity-equivocation region of the GMAC with confidential

messages.

We first study the GMAC with one confidential message set, where two users have common

information for the destination and only one user (user 1) has private (confidential) informa-

tion for the destination. This channel generalizes the MAC with degraded message sets [16]

with the further assumption that user 2 receives channel outputs and user 1 wants to keep

user 2 as ignorant of its confidential information as possible. This model is also a counter-

part of the broadcast channel with confidential messages studied in [3]. For the GMAC with

one confidential message set, we obtain inner and outer bounds on the capacity-equivocation

region. The two bounds match partially and determine the capacity-equivocation region par-

tially. Furthermore, the outer bound provides a tight converse to the secrecy capacity region,

which is the set of all achievable rates with user 2 being perfectly ignorant of confidential

messages of user 1, and we hence establish the secrecy capacity region.

We further study the degraded GMAC with one confidential message set, where outputs

at user 2 are degraded versions of outputs at the destination. This model generalizes the

wire-tap channel [2] to allow user 1 and user 2 (the wire-tapper) to send common infor-

mation to the destination. For the degraded GMAC with one confidential message set,

we show a tight converse and establish the capacity-equivocation region and the secrecy

capacity region. Moreover, we study these capacity results via two classes of degraded

channels: the binary GMAC and the Gaussian GMAC. For both channels, we characterize

the capacity-equivocation regions and secrecy capacity regions explicitly. In particular, for

the Gaussian GMAC, we show that the capacity-equivocation region also applies to non-

physically-degraded Gaussian channels.

We finally study the general case of the GMAC with two confidential message sets, where

both users have confidential messages for the destination in addition to common messages.

We obtain an achievable rate-equivocation region (inner bound on the capacity-equivocation

region). We demonstrate a trade-off between the two equivocation rates corresponding to the

two set of confidential messages sent by user 1 and user 2, and this trade-off can be achieved

by using codebooks that achieve different boundary points of the corresponding MAC. This

trade-off is a new feature that arises in the case with two confidential message sets. Based on

the rate-equivocation region, we derive the secrecy rate region, where confidential messages

of each user is perfectly secret from the other user.

In this paper, we adopt the following notation. We use upper case letters to indicate ran-

dom variables, and we use lower case letters to indicate deterministic variables or realizations

of the corresponding random variables. Exceptions will be clarified where they appear in
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the paper. We use xn to indicate the vector (x1, . . . , xn), and use xn
i to indicate the vector

(xi, . . . , xn). Throughout the paper, the logarithmic function is to the base 2.

The organization of this paper is as follows. In Section 2, we introduce the channel model of

the GMAC with confidential messages. In Section 3, we present our results for the GMAC

with one confidential message set. In Section 4, we present our results for the degraded

GMAC with one confidential message set and illustrate our results by a binary example

channel. In Section 5, we focus on the Gaussian GMAC with one confidential message set.

In Section 6, we present our results for the general case of the GMAC with two confidential

message sets, and illustrate the intuition behind the result. In the final section, we give

concluding remarks.

2 Channel Model

In this section, we first define the GMAC, and then define the performance measure of

interest for the GMAC with confidential messages.

Definition 1. A discrete memoryless GMAC consists of two finite channel input alphabets

X1 and X2, three finite channel output alphabets Y ,Y1 and Y2, and a transition probability

distribution p(y, y1, y2|x1, x2) (see Fig. 1), where x1 ∈ X1 and x2 ∈ X2 are channel inputs

from users 1 and 2, respectively, and y ∈ Y , y1 ∈ Y1 and y2 ∈ Y2 are channel outputs at the

destination, user 1 and user 2, respectively.

PSfrag replacements

GMAC

p(y, y1, y2|x1, x2)

Encoder1

Encoder2

DecoderW0

W1

W2

Ŵ0Ŵ1Ŵ2
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2

Y n

Xn
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2

Figure 1: Generalized multiple access channel

For generality, we assume that each user receives channel outputs that also depend on its

own inputs. This assumption is also practical since transmitted signals from one user may

cause interference at its own receiver. All results that we obtain apply to the case where

outputs at either user do not depend on its own inputs.
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Definition 2. A
(

2nR0, 2nR1, 2nR2 , n
)

code for the GMAC consists of the following:

• Three message sets: W0 = {1, 2, . . . , 2nR0}, W1 = {1, 2, . . . , 2nR1} andW2 = {1, 2, . . . , 2nR2}.
The common message W0 and private messages W1 and W2 are independent and uni-

formly distributed over the message sets W0,W1 and W2, respectively.

• Two (stochastic) encoders, one at user 1: W0 ×W1 → X n
1 , which maps each message

pair (w0, w1) ∈ W0 ×W1 to a codeword xn
1 ∈ X n

1 ; the other at user 2: W0 ×W2 → X n
2 ,

which maps each message pair (w0, w2) ∈ W0 ×W2 to a codeword xn
2 ∈ X n

2 ;

• One decoder at the destination: Yn → W0×W1 ×W2, which maps a received sequence

yn to a message tuple (w0, w1, w2) ∈ W0 ×W1 ×W2.

Note that in the GMAC although users 1 and 2 can receive channel outputs (see Fig. 1),

they are only passive listeners in that their encoding functions are not affected by these

received outputs. However, since outputs at each user contain the other user’s private (con-

fidential) information, each user may extract the other user’s private (confidential) informa-

tion from its outputs. We assume that each user treats the other user as a wire-tapper, and

wishes to keep the other user as ignorant of its private (confidential) messages as possible.

We hence define the following two equivocation rates:

at user 2:
1

n
H(W1|Y n

2 , X
n
2 ,W0,W2)

at user 1:
1

n
H(W2|Y n

1 , X
n
1 ,W0,W1)

(1)

which indicate the level of ignorance of the confidential message W1 at user 2 and the level

of ignorance of the confidential message W2 at user 1, respectively. Note that the larger the

equivocation rate, the higher the level of secrecy.

For the GMAC with confidential messages, a rate-equivocation tuple (R0, R1, R2, R1,e, R2,e)

is achievable if there exists a sequence of
(

2nR0, 2nR1, 2nR2, n
)

codes with the average error

probability P
(n)
e → 0 as n goes to infinity and with the equivocation rates R1,e and R2,e

satisfying

lim
n→∞

1

n
H(W1|Y n

2 , X
n
2 ,W0,W2) ≥ R1,e

lim
n→∞

1

n
H(W2|Y n

1 , X
n
1 ,W0,W1) ≥ R2,e.

(2)

Note that the rate-equivocation tuple (R0, R1, R2, R1,e, R2,e) includes both the reliable com-

munication rates and the equivocation rates, and it indicates the common and private rates

(R0, R1, R2) achieved at certain levels of communication secrecy (R1,e, R2,e) .

The capacity-equivocation region, denoted by C , is the closure of the set that consists

of all achievable rate-equivocation tuples (R0, R1, R2, R1,e, R2,e). Our goal is to study the

capacity-equivocation region of the GMAC with confidential messages.
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3 GMAC with One Confidential Message Set

In this section, we study the GMAC with one confidential message set, where user 2 has

only common messages and does not have confidential messages for the destination. This

model generalizes the MAC with degraded message sets studied in [16] to consider the private

messages sent from user 1 to be confidential, i.e., needing to be as secret as possible from

user 2. This model is also a counterpart of the broadcast channel with confidential messages

studied in [3].

In the following, we first provide inner and outer bounds on the capacity-equivocation

region. We then present the secrecy capacity region, which includes all rates at which

perfect secrecy can be achieved for private (confidential) messages sent by user 1. We finally

give a proof of the outer bound on the capacity-equivocation region.

3.1 Main Results

For the GMAC with one confidential message set, the rate R2 = 0, and the equivocation rate

R2,e is not of interest. Hence channel outputs at user 1 do not play roles in the analysis. For

notational convenience, we use Re to indicate R1,e in this case. Now the rate-equivocation

tuple becomes (R0, R1, Re); i.e., it contains three components. We use C I to denote the

capacity-equivocation region of the GMAC in this situation.

The following two theorems provide inner and outer bounds on the capacity-equivocation

region.

Theorem 1. The following convexified region is an inner bound on the capacity-equivocation

region for the GMAC with one confidential message set:

R
I = Convex

⋃

p(q, x2)p(u|q)p(x1|u)
p(y, y2|x1, x2)







































(R0, R1, Re) :
R0 ≥ 0, R1 ≥ 0,
R1 ≤ I(U ; Y |X2, Q),
R0 +R1 ≤ I(U,X2, Q; Y ),
0 ≤ Re ≤ R1,
Re ≤ [I(U ; Y |X2, Q)− I(U ; Y2|X2, Q)]+,
Re ≤ [I(U,X2, Q; Y )− R0 − I(U ; Y2|X2, Q)]+







































.

(3)

where the function [x]+ = x if x ≥ 0 and [x]+ = 0 if x < 0. The auxiliary random variables Q

and U are bounded in cardinality by |Q| ≤ |X1|·|X2|+3 and |U| ≤ |X1|2 ·|X2|2+4|X1|·|X2|+3,

respectively.

The proof of Theorem 1 follows from the achievable rate-equivocation region for the GMAC

with two confidential message sets given in Theorem 7 in Section 6. This can be seen by

setting R2 = 0, R2,e = 0, and V := X2, and combining (75) with (80).
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Remark 1. The last bound in (3) indicates that there is a trade-off between the common

rate and the secrecy level of confidential messages. As common rate R0 increases, the secrecy

level of confidential messages may get lower.

Remark 2. The rate-equivocation region (3) reduces to the capacity region of the MAC with

degraded message sets given in [16] by setting U = X1 and Re = 0.

Theorem 2. The following region is an outer bound on the capacity-equivocation region of

the GMAC with one confidential message set:

R
I
=

⋃

p(q, x2)p(u|q)p(x1|u)
p(v|q)p(y, y2|x1, x2)







































(R0, R1, Re) :
R0 ≥ 0, R1 ≥ 0,
R1 ≤ I(U ; Y |X2, V ),
R0 +R1 ≤ I(U,X2, Q; Y ),
0 ≤ Re ≤ R1,
Re ≤ I(U ; Y |X2, Q)− I(U ; Y2|X2, Q),
R0 +Re ≤ I(U,X2, Q; Y )− I(U ; Y2|X2, Q)







































. (4)

The proof of Theorem 2 is relegated to Section 3.3. In the following, we focus on the

properties that the inner and outer bounds imply.

Remark 3. The last four bounds in the outer bound (4) match the last four bounds in the

inner bound (3), and hence these four common bounds partially determine the boundary of

the capacity-equivocation region.

We now study the case where perfect secrecy is achieved, i.e., user 2 does not get any

information about confidential messages that user 1 sends to the destination. This happens

if Re = R1.

Definition 3. The secrecy capacity region CI
s is the region that includes all achievable rate

pairs (R0, R1) such that Re = R1, i.e.,

CI
s = {(R0, R1) : (R0, R1, R1) ∈ C

I}. (5)

Definition 4. For a given rate R0, the secrecy capacity is the maximum achievable rate R1

with confidential messages perfectly hidden from user 2, i.e.,

CI
s (R0) = max

(R0,R1)∈CI
s

R1. (6)

Although the outer bound given in Theorem 2 provides only a partial converse to the

capacity-equivocation region, it is sufficiently tight to serve as the converse to the secrecy

capacity region and secrecy capacity (as a function of the common rate R0).
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Theorem 3. For the GMAC with one confidential message set, the following region is the

secrecy capacity region :

CI
s =

⋃

p(q, x2)p(u|q)p(x1|u)
p(y, y2|x1, x2)







(R0, R1) :
R1 ≤ I(U ; Y |X2, Q)− I(U ; Y2|X2, Q),
R0 +R1 ≤ I(U,X2, Q; Y )− I(U ; Y2|X2, Q)







. (7)

The secrecy capacity for a given rate R0 is given by

CI
s (R0) = maxmin{I(U ; Y |X2, Q)− I(U ; Y2|X2, Q),

I(U,X2, Q; Y )− I(U ; Y2|X2, Q)− R0}
(8)

where the maximum is taken over all joint distributions p(q, x2)p(u|q)p(x1|u)p(y, y2|x1, x2).

In both (7) and (8), the auxiliary random variables Q and U are bounded in cardinality by

|Q| ≤ |X1| · |X2|+ 3 and |U| ≤ |X1|2 · |X2|2 + 4|X1| · |X2|+ 3, respectively.

Proof. The achievability of CI
s follows from the inner bound on the capacity-equivocation

region given in Theorem 1, and the converse follows from the last two bounds in the outer

bound given in Theorem 2. The secrecy capacity CI
s (R0) then easily follows from the secrecy

capacity region CI
s .

Remark 4. If we let R0 = 0 and X2 := φ, the GMAC with one confidential message set

reduces to the case of a broadcast channel with confidential messages studied in [3] with the

common rate being zero. For this channel, the secrecy capacity in (8) reduces to

CI
s = max[I(U ; Y )− I(U ; Y2)] (9)

where the max is taken over all joint distribution p(u, x1)p(y, y2|x1). This is the same as the

secrecy capacity given in Corollary 2 in [3].

3.2 An Example

In this section, we consider an example of a discrete memoryless GMAC with one confidential

message set. We obtain the capacity-equivocation region and the secrecy capacity region for

this channel.

Consider a binary channel with all channel inputs and outputs having alphabets {0, 1}.
The MAC from two users to the destination is a binary multiplier channel, and the channel

from user 1 to user 2 is a bias channel. The channel input-output relationship (see Fig. 2)

satisfies

Y = X1 ·X2, Y2 =

{

1, if X1 ≤ X2;

0, if X1 > X2.
(10)
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X1 X2 Y Y2

0 0 0 1
0 1 0 1
1 0 0 0
1 1 1 1

PSfrag replacements
X1 X2 Y Y2

0 0

0 1

1 0

1 1

0
0

1

1

Figure 2: An example GMAC

PSfrag replacements

R0

R1

1

1

Figure 3: Capacity region of binary multiplier MAC

The capacity-equivocation region of the example channel given in (10) is:

{(R0, R1, Re) : R0 +R1 ≤ 1, Re = R1}. (11)

The capacity-equivocation region implies that the secrecy capacity region of this channel is:

{(R0, R1) : R0 +R1 ≤ 1}. (12)

It is shown in [17] that the region {(R0, R1) : R0 + R1 ≤ 1} (see Fig. 3) is the capacity

region of the binary multiplier MAC. We now show that perfect secrecy can be achieved for

the two corner points of this region. It is trivial that perfect secrecy can be achieved for the

corner point (R0 = 1, R1 = 0), i.e., Re = 0 is achievable at this point. For the other corner

point (R0 = 0, R1 = 1), perfect secrecy is achieved by sending (x1 = 0, x2 = 1) for W1 = 0

and (x1 = 1, x2 = 1) for W1 = 1. When either of these two codewords is transmitted, user 2

9



always gets output Y2 = 1, and hence cannot determine whether W1 = 0 or W1 = 1 is sent.

Therefore, perfect secrecy is achieved. By time-sharing between these two corner points,

perfect secrecy can be achieved for the entire region, which is the best rate-equivocation

region that can be achieved. Hence we obtain the capacity-equivocation region (11).

Remark 5. The example channel given in (10) is a nondegraded channel. We hence obtain

the capacity-equivocation region for a nondegraded channel.

3.3 Proof of Theorem 2

In this section, we give a proof of the outer bound on the capacity-equivocation region in

Theorem 2. The proof applies the techniques in the proofs of the converse of the capacity-

equivocation region of the broadcast channel with confidential messages in [3] and the con-

verse of the capacity region of the MAC [15, Chapter 14].

We consider a sequence of
(

2nR0 , 2nR1, n
)

codes for a GMAC with one confidential message

set with P
(n)
e → 0. Then the probability distribution on W0 ×W1 ×X n

1 × X n
2 × Yn × Yn

2 is

given by

p(w0, w1, x
n
1 , x

n
2 , y

n, yn2 )

= p(w0)p(w1)p(x
n
1 |w0, w1)p(x

n
2 |w0)

n
∏

i=1

p(yi, y2,i|x1,i, x2,i).
(13)

By Fano’s Inequality, we have

H(W0,W1|Y n) ≤ n(R0 +R1)P
(n)
e + 1 := nδn (14)

where δn → 0 if P
(n)
e → 0.

We first give a lemma that is useful in the following proof.

Lemma 1. [3, Lemma 7]

n
∑

i=1

I(Zi; Y
i−1|Zn

i+1, T ) =
n
∑

i=1

I(Yi;Z
n
i+1|Y i−1, T ).

We define the following auxiliary random variables.

Qi := (Y i−1, Y n
2,i+1, X

n
2 ,W0), Ui := (W1, Qi), Vi := (Y i−1, Xn

2 ,W0) (15)

Note that these auxiliary random variables satisfy the following Markov chain conditions:

X2,i → Qi → Ui → X1,i,

Vi → Qi → (Ui, X1,i, X2,i)

(Vi, Qi, Ui) → (X1,i, X2,i) → (Yi, Y2,i)

(16)
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We first consider

nR1,e ≤ H(W1|Y n
2 , X

n
2 ,W0)

= H(W1|Xn
2 ,W0)− I(W1; Y

n
2 |Xn

2 ,W0)

= I(W1; Y
n|Xn

2 ,W0)− I(W1; Y
n
2 |Xn

2 ,W0) +H(W1|Y n, Xn
2 ,W0)

(a)

≤
n
∑

i=1

I(W1; Yi|Y i−1, Xn
2 ,W0)− I(W1; Y2,i|Y n

2,i+1, X
n
2 ,W0) + nδn

=
n
∑

i=1

I(W1, Y
n
2,i+1; Yi|Y i−1, Xn

2 ,W0)− I(Y n
2,i+1; Yi|Y i−1, Xn

2 ,W0,W1)

− I(W1, Y
i−1; Y2,i|Y n

2,i+1, X
n
2 ,W0) + I(Y i−1; Y2,i|Y n

2,i+1, X
n
2 ,W0,W1) + nδn

(b)
=

n
∑

i=1

I(W1, Y
n
2,i+1; Yi|Y i−1, Xn

2 ,W0)− I(W1, Y
i−1; Y2,i|Y n

2,i+1, X
n
2 ,W0) + nδn

=
n
∑

i=1

I(Y n
2,i+1; Yi|Y i−1, Xn

2 ,W0) + I(W1; Yi|Y i−1, Y n
2,i+1, X

n
2 ,W0)

− I(Y i−1; Y2,i|Y n
2,i+1, X

n
2 ,W0)− I(W1; Y2,i|Y i−1, Y n

2,i+1, X
n
2 ,W0) + nδn

(c)
=

n
∑

i=1

I(W1; Yi|Y i−1, Y n
2,i+1, X

n
2 ,W0)− I(W1; Y2,i|Y i−1, Y n

2,i+1, X
n
2 ,W0) + nδn

(d)
=

n
∑

i=1

I(Ui; Yi|X2,i, Qi)− I(Ui; Y2,i|X2,i, Qi) + nδn

(17)

In the preceding equation, (a) follows from the chain rule and Fano’s inequality (14), (b) and

(c) follows from Lemma 1, and (d) follows from the definition for Qi and Ui in (15).

We also can write

nR0 + nR1,e

≤ H(W0) +H(W1|Y n
2 , X

n
2 ,W0)

≤ I(W0; Y
n) +H(W1|Y n

2 , X
n
2 ,W0) + nδn

=

n
∑

i=1

I(W0; Yi|Y i−1) +H(W1|Y n
2 , X

n
2 ,W0) + nδn

(a)

≤
n
∑

i=1

I(Y i−1, Y n
2,i+1, X

n
2 ,W0; Yi) +H(W1|Y n

2 , X
n
2 ,W0) + nδn

(b)

≤
n
∑

i=1

I(Qi, X2,i; Yi) + I(Ui; Yi|X2,i, Qi)− I(Ui; Y2,i|X2,i, Qi) + nδn

=
n
∑

i=1

I(X2,i, Qi, Ui; Yi)− I(Ui; Y2,i|X2,i, Qi) + nδn

(18)

In the preceding equation, (a) follows from the chain rule and nonnegativity of mutual

information, and (b) follows from the definition for Qi in (15) and the bound (17).

11



We further have

nR1 = H(W1) ≤ I(W1; Y
n) + nδn ≤ I(W1; Y

n|W0) + nδn

= H(W1|W0)−H(W1|Y n,W0) + nδn
(a)

≤ H(W1|W0, X
n
2 )−H(W1|Y n,W0, X

n
2 ) + nδn

= I(W1; Y
n|W0, X

n
2 ) + nδn

=
n
∑

i=1

I(W1; Yi|Y i−1,W0, X
n
2 ) + nδn

≤
n
∑

i=1

I(Y i−1, Y n
2,i+1, X

n
2 ,W0,W1; Yi|Y i−1, Xn

2 ,W0) + nδn

=
n
∑

i=1

I(Ui; Yi|X2,i, Vi) + nδn

(19)

where (a) follows from the fact that W1 is independent of (W0, X
n
2 ) and conditioning does

not increase entropy.

Finally, we have

nR0 + nR1 = H(W0,W1) ≤ I(W0,W1; Y
n) + nδn

=

n
∑

i=1

I(W0,W1; Yi|Y i−1) + nδn

(a)

≤
n
∑

i=1

I(Y i−1, Y n
2,i+1, X

n
2 ,W0,W1; Yi) + nδn

=

n
∑

i=1

I(Ui, Qi, X2,i; Yi) + nδn

(20)

where (a) follows from the chain rule and nonnegativity of mutual information. Theorem 2

then follows from standard single letter characterization (see e.g. [15]).

4 Degraded GMAC with One Confidential Message

Set

In this section, we study the degraded GMAC with one confidential message set, where

the output at user 2 is a degraded version of the output at the destination. This channel

generalizes the wire-tap channel studied in [2] to allow user 1 and user 2 (wire-tapper)

to jointly send common information to the destination. In the following, we first present

the main results that characterize the capacity-equivocation region and the secrecy capacity

region of the degraded channel, and provide the proof for the main results. We then illustrate

our results via a binary example GMAC.
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4.1 Main Results

We first define two classes of degraded GMACs with one confidential message set in the

following.

Definition 5. The GMAC with one confidential message set is physically degraded if the

transition probability distribution satisfies

p(y, y2|x1, x2) = p(y|x1, x2)p(y2|y, x2), (21)

i.e., y2 is independent of x1 conditioned on y and x2.

Definition 6. The GMAC with one confidential message set is stochastically degraded if its

conditional marginal distribution is the same as that of a physically degraded GMAC, i.e.,

there exists a distribution p(y2|y, x2) such that

p(y2|x1, x2) =
∑

y

p(y|x1, x2)p(y2|y, x2). (22)

We note the following useful lemma.

Lemma 2. The capacity-equivocation region of GMACs with confidential messages depends

only on the marginal channel transition probability distributions p(y|x1, x2), p(y1|x1, x2), and

p(y2|x1, x2).

Proof. It is clear that the decoding probability of error at the destination depends only on

the probability distribution p(y|x1, x2), and so is the achievable rates (R0, R1, R2). Moreover,

the equivocation rates R1,e and R2,e depend only on the probability distributions p(y1|x1, x2)

and p(y2|x1, x2), respectively.

Based on Lemma 2, we have the following capacity-equivocation region for both physically

and stochastically degraded GMACs with confidential messages.

Theorem 4. For the degraded GMAC with one confidential message set, the capacity-

equivocation region is given by

C
I
d =

⋃

p(q, x2)p(x1|q)
p(y|x1, x2)p(y2|y, x2)







































(R0, R1, Re) :
R0 ≥ 0, R1 ≥ 0,
R1 ≤ I(X1; Y |X2, Q),
R0 +R1 ≤ I(X1, X2; Y ),
0 ≤ Re ≤ R1,
Re ≤ I(X1; Y |X2, Q)− I(X1; Y2|X2, Q),
R0 +Re ≤ I(X1, X2; Y )− I(X1; Y2|X2, Q)







































. (23)

where Q is bounded in cardinality by |Q| ≤ |X1| · |X2|+ 1.
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The achievability is obtained by applying Theorem 1 and setting U = X1 in (3). The proof

of the converse is provided in the next subsection.

Remark 6. The region C
I
d can be shown to be convex (similar to the proof of Lemma 5 in

[3]), and hence does not need further convexification.

The following results on the secrecy capacity region and secrecy capacity (as a function of

R0) follow from Theorem 4.

Corollary 1. For the degraded GMAC with one confidential message set, the secrecy capacity

region is given by

Cs =
⋃

p(q, x2)p(x1|q)
p(y|x1, x2)p(y2|y, x2)







(R0, R1) :
R1 ≤ I(X1; Y |X2, Q)− I(X1; Y2|X2, Q),
R0 +R1 ≤ I(X1, X2; Y )− I(X1; Y2|X2, Q)







. (24)

The secrecy capacity as a function of R0 is given by

Cs(R0) = maxmin{I(X1; Y |X2, Q)− I(X1; Y2|X2, Q),

I(X1, X2; Y )− I(X1; Y2|X2, Q)− R0}
(25)

where the maximum is taken over all joint distributions p(q, x2)p(x1|q)p(y|x1, x2)p(y2|y, x2).

In both (24) and (25), Q is bounded in cardinality by |Q| ≤ |X1| · |X2|+ 1.

Remark 7. If R0 = 0 and X2 := φ, the degraded GMAC with one confidential message set

reduces to the wire-tap channel studied in [2]. For this channel, the secrecy capacity in (24)

reduces to

Cs = max[I(X1; Y )− I(X1; Y2)] (26)

where the max is taken over all joint distribution p(x1)p(y|x1)p(y2|y). This is consistent with
the secrecy capacity given in [2] with a different form, because the problem in [2] is formulated

as a source-channel problem. The secrecy capacity in (26) is also consistent with the secrecy

capacity of the less noisy channel given in [3, Theorem 3], because degraded channels belong

to the class of less noisy channels [18].

4.2 Proof of the Converse for Theorem 4

For the general discrete memoryless GMAC with one confidential message set, we give a

proof of the outer bound on the capacity-equivocation region in Section 3.3. This outer

bound provides only a partial converse. In this section, we apply the degradedness condition

and prove a tight converse to the capacity-equivocation region for the degraded GMAC with

one confidential message set.
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Our proof applies the techniques in the converse proofs for the wire-tap channel in [2] and

for the MAC in [15, Chapter 14].

We consider a sequence of
(

2nR0, 2nR1, n
)

codes for the GMAC with one confidential mes-

sage set with P
(n)
e → 0. Then the probability distribution on W0×W1×X n

1 ×X n
2 ×Yn×Yn

2

is given by

p(w0, w1, x
n
1 , x

n
2 , y

n, yn2 )

= p(w0)p(w1)p(x
n
1 |w0, w1)p(x

n
2 |w0)

n
∏

i=1

p(yi, y2,i|x1,i, x2,i)

= p(w0)p(w1)p(x
n
1 |w0, w1)p(x

n
2 |w0)

n
∏

i=1

p(yi|x1,i, x2,i)p(y2,i|yi, x2,i).

(27)

By Fano’s inequality, we have

H(W0,W1|Y n) ≤ n(R0 +R1)P
(n)
e + 1 := nδn (28)

where δn → 0 if P
(n)
e → 0.

we define the following auxiliary random variable:

Qi := (Y i−1, Xn
2 ,W0). (29)

Note that X2,i → Qi → X1,i and Qi → (X1,i, X2,i) → (Yi, Y2,i) form Markov chains.

We first consider

nR1,e = H(W1|Y n
2 , X

n
2 ,W0)

= H(W1|Y n
2 , X

n
2 ,W0)−H(W1|Y n

2 , X
n
2 ,W0, Y

n) +H(W1|Y n
2 , X

n
2 ,W0, Y

n)

(a)

≤ I(W1; Y
n|Y n

2 , X
n
2 ,W0) + nδn

≤ I(W1, X
n
1 ; Y

n|Y n
2 , X

n
2 ,W0) + nδn

= I(Xn
1 ; Y

n|Y n
2 , X

n
2 ,W0) + I(W1; Y

n|Y n
2 , X

n
1 , X

n
2 ,W0) + nδn

(b)
= I(Xn

1 ; Y
n|Y n

2 , X
n
2 ,W0) + nδn

= H(Xn
1 |Y n

2 , X
n
2 ,W0)−H(Xn

1 |Y n, Y n
2 , X

n
2 ,W0) + nδn

(c)
= H(Xn

1 |Y n
2 , X

n
2 ,W0)−H(Xn

1 |Y n, Xn
2 ,W0) + nδn

= I(Xn
1 ; Y

n|Xn
2 ,W0)− I(Xn

1 ; Y
n
2 |Xn

2 ,W0) + nδn

where (a) follows from Fano’s inequality, (b) follows from the fact that Y n is independent

of W0,W1 given Y n
2 , X

n
1 , X

n
2 , and (c) follows from the degradedness condition, i.e., Y n

2 is

independent of Xn
1 ,W0 given Y n, Xn

2 .
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We proceed to bound nR1,e and obtain

nR1,e ≤
n
∑

i=1

I(Xn
1 ; Yi|Y i−1, Xn

2 ,W0)− I(Xn
1 ; Y2,i|Y i−1

2 , Xn
2 ,W0) + nδn

=

n
∑

i=1

H(Yi|Y i−1, Xn
2 ,W0)−H(Yi|Y i−1, Xn

1 , X
n
2 ,W0)

−H(Y2,i|Y i−1
2 , Xn

2 ,W0)−H(Y2,i|Y i−1
2 , Xn

1 , X
n
2 ,W0) + nδn

(d)

≤
n
∑

i=1

H(Yi|Y i−1, Xn
2 ,W0)−H(Yi|Y i−1, X1,i, X

n
2 ,W0)

−H(Y2,i|Y i−1, Y i−1
2 , Xn

2 ,W0) +H(Y2,i|Y i−1, X1,i, X
n
2 ,W0) + nδn

(e)
=

n
∑

i=1

H(Yi|Y i−1, Xn
2 ,W0)−H(Yi|Y i−1, X1,i, X

n
2 ,W0)

−H(Y2,i|Y i−1, Xn
2 ,W0) +H(Y2,i|Y i−1, X1,i, X

n
2 ,W0) + nδn

(f)
=

n
∑

i=1

H(Yi|Qi, X2,i)−H(Yi|Qi, X2,i, X1,i)

−H(Y2,i|Qi, X2,i) +H(Y2,i|Qi, X2,i, X1,i) + nδn

=

n
∑

i=1

I(X1,i; Yi|Qi, X2,i)− I(X1,i; Y2,i|Qi, X2,i) + nδn

(30)

In the preceding equation, the second term of (d) follows from the fact that Yi is independent

of everything else given X1,i and X2,i; the third term of (d) follows from the fact that

conditioning does not increase entropy, and the fourth term of (d) follows from the fact that

Y2,i is independent of everything else given X1,i and X2,i. In (e), the third term follows from

the degraded condition, i.e., Y i−1
2 is independent of everything else given Y i−1, X i−1

2 . The

step (f) follows from the definition of Qi given in (29).

nR0 + nR1,e = H(W0) + nR1,e

(a)

≤ I(W0; Y
n) + nR1,e + nδn

=

n
∑

i=1

I(W0; Yi|Y i−1) + nR1,e + nδn

(b)

≤
n
∑

i=1

I(Y i−1, Xn
2 ,W0; Yi) + nR1,e + nδn

(c)

≤
n
∑

i=1

I(X2,i, Qi; Yi) + I(X1,i; Yi|Qi, X2,i)− I(X1,i; Y2,i|Qi, X2,i) + nδn

(d)
=

n
∑

i=1

I(X1,i, X2,i; Yi)− I(X1,i; Y2,i|Qi, X2,i) + nδn

(31)

where (a) follows from Fano’s inequality, (b) follows from the chain rule and nonnegativity
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of mutual information, (c) follows from the inequality (30), and (d) used the Markov chain

condition Qi → (X1,i, X2,i) → (Yi, Y2,i).

The next two inequalities follow the converse proof for the MAC in [15]. For completeness,

we include those steps here.

nR1

(a)

≤ I(W1; Y
n|W0, X

n
2 ) + nδn

≤ I(Xn
1 ,W1; Y

n|W0, X
n
2 ) + nδn

= I(Xn
1 ; Y

n|W0, X
n
2 ) + I(W1; Y

n|W0, X
n
2 , X

n
1 ) + nδn

(b)

≤ I(Xn
1 ; Y

n|W0, X
n
2 ) + nδn

=
n
∑

i=1

I(Xn
1 ; Yi|Y i−1,W0, X

n
2 ) + nδn

=
n
∑

i=1

H(Yi|Y i−1, Xn
2 ,W0)−H(Yi|Y i−1, Xn

2 ,W0, X
n
1 ) + nδn

≤
n
∑

i=1

H(Yi|Y i−1, Xn
2 ,W0)−H(Yi|Y i−1, Xn

2 ,W0, X1,i) + nδn

=
n
∑

i=1

H(Yi|X2,i, Qi)−H(Yi|X2,i, Qi, X1,i) + nδn

=

n
∑

i=1

I(X1,i; Yi|X2,i, Qi) + nδn

(32)

where (a) follows from the partial step in (19), and (b) follows from the Markov chain

condition (W0,W1) → (X1,i, X2,i) → Yi.

nR0 + nR1 ≤ I(W0,W1; Y
n) + nδn

=

n
∑

i=1

I(W0,W1; Yi|Y i−1) + nδn

≤
n
∑

i=1

H(Yi|Y i−1)−H(Yi|Y i−1,W0,W1, X2,i, X1,i) + nδn

≤
n
∑

i=1

H(Yi)−H(Yi|X2,i, X1,i) + nδn

=

n
∑

i=1

I(X1,i, X2,i; Yi) + nδn.

(33)

The converse for Theorem 4 then follows by standard single letter characterization (see

e.g. [15]).

17



4.3 A Binary GMAC with One Confidential Message Set

In this section, we study a binary GMAC with one confidential message set, which is a

degraded channel. We first follow [19] to introduce notation and useful lemmas for binary

channels. We then introduce the binary GMAC model we study and present the capacity-

equivocation region for this channel.

We first define the following operation:

a ∗ b := a(1− b) + (1− a)b for 0 ≤ a, b ≤ 1. (34)

We then define the entropy function

h(a) :=

{

−a log a− (1− a) log(1− a), if 0 < a < 1;

0, if a = 0 or 1.
(35)

The function h(a) is one-to-one for 0 ≤ a ≤ 1/2. The inverse of the entropy function is

limited to h−1(c) ∈ [0, 1/2].

Lemma 3. [19] The function f(u) = h(ρ ∗ h−1(u)), 0 ≤ u ≤ 1 (where ρ ∈ (0, 1/2] is a fixed

parameter) is strictly convex in u.

The following useful lemma is a binary version of the entropy power inequality.

Lemma 4. [19] Consider two binary random vectors Xn and Y n. Let H(Xn) ≥ nv. Let

Yi = Xi ⊕ Zi for i = 1, . . . , n (36)

where Zn is a binary random vector with i.i.d. components and Zi has distribution Pr(Zi =

1) = p0 where 0 < p0 ≤ 1/2. The vectors Xn and Y n can be viewed as inputs and outputs of

a binary symmetric channel (BSC) with crossover probability p0. Then,

H(Y n) ≥ nh(p0 ∗ h−1(v)) (37)

with equality if and only if Xn has independent components, and H(Xi) = v for i =

1, 2, . . . , n.

We now introduce the binary GMAC model of interest. We assume all channel inputs

and outputs have the binary alphabet set {0, 1}. We assume that the channel is discrete

memoryless and the input-output relationship at each time instant satisfies

Yi = X1,i ·X2,i, Y2,i = Yi ⊕ Z2,i for i = 1, . . . , n (38)

where Zn
2 is a binary random vector with i.i.d. components and Z2,i has distribution Pr(Z2,i =

1) = p where 0 < p ≤ 1/2. We illustrate the channel input-output relationship in Fig. 4.

Note that the MAC channel from (X1, X2) to Y is a binary multiplier channel. It is clear
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Figure 4: A degraded binary example GMAC

that this GMAC channel is degraded, and the channel outputs Y and Y2 can be viewed as

the input and output of a discrete memoryless BSC with crossover probability p.

We have the following theorem on the capacity-equivocation region of the binary example

GMAC with one confidential message set.

Theorem 5. For the binary GMAC with one confidential message set given in (38), the

capacity-equivocation region is given by

C
B =

⋃

0≤α≤ 1

2







































(R0, R1, Re) :
R0 ≥ 0, R1 ≥ 0,
R1 ≤ h(α),
R0 +R1 ≤ 1,
0 ≤ Re ≤ R1,
Re ≤ h(α) + h(p)− h(p ∗ α),
R0 +Re ≤ 1 + h(p)− h(p ∗ α)







































. (39)

Corollary 2. The secrecy capacity region of the binary GMAC with one confidential message

given in (38) is

CB
s =

⋃

0≤α≤ 1

2















(R0, R1) :
R0 ≥ 0, R1 ≥ 1,
R1 ≤ h(α) + h(p)− h(p ∗ α),
R0 +R1 ≤ 1 + h(p)− h(p ∗ α)















. (40)

The secrecy capacity as a function of R0 is given by

CB
s (R0) = h(α∗) + h(p)− h(p ∗ α∗) (41)

where α∗ is determined by the following equation

R0 = 1− h(α∗). (42)

Remark 8. The BSC crossover probability parameter p determines how noisy the channel

from user 1 to user 2 is compared to the channel from user 1 to the destination. When p = 0,

user 2 has the same channel from user 1 as the destination, and hence no secrecy can be

achieved. As p increases, user 2 has a noisier channel from user 1 than the destination, and

hence higher secrecy can be achieved. As p = 1
2
, user 2 is totally confused by confidential

messages sent by user 1, and perfect secrecy is achieved.
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Figure 5: Secrecy capacity regions of the binary GMAC with one confidential message set

Fig. 5 plots the secrecy capacity as a function of R0 for four values of p. These lines of

CB
s (R0) also serves as boundaries of the secrecy capacity regions for the binary channel we

study with the vertical axis being viewed as R1. It is clear from Fig. 5 that as p increases, the

secrecy capacity region enlarges, because user 2 is further confused by confidential messages

sent by user 1.

Remark 9. From the achievability proof of Theorem 5 (given in Section 4.4), it can be seen

that the optimal scheme to achieve the secrecy capacity region uses superposition encoding.

To achieve the secrecy capacity corresponding to different values of R0, different values of

the superposition parameter α needs to be chosen to generate the codebook. However, if the

secrecy constraint is not considered, the capacity region of the binary multiplier MAC can be

achieved by a time sharing scheme and superposition encoding is not necessary.

Fig. 6 plots the secrecy capacity as a function of R0 (indicated by the solid line) and

compares it with the secrecy rate achieved by the time sharing scheme (indicated by the

dashed line). The figure demonstrates that the time sharing scheme is strictly suboptimal

to provide the secrecy capacity region. As we commented in Remark 9, although the time

sharing scheme is optimal to achieve the capacity region of the binary multiplier MAC, it

is not optimal to achieve the secrecy capacity region of the binary GMAC, as secrecy is

considered as a performance criterion.
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Figure 6: Comparison of secrecy capacity region and secrecy rate region achieved by time
sharing scheme for the binary example GMAC with one confidential message set

4.4 Proof of Theorem 5

Proof of the Achievability. We apply Theorem 4 to prove that the capacity-equivocation

region (39) is achievable. Let Q and X ′ be two binary random variables with alphabet

{0, 1}, and assume that Q is independent of X ′. We choose the following joint distribution:

Pr{Q = 0} =
1

2
; Pr{X ′ = 1} = α, 0 ≤ α ≤ 1

2
;

Pr{X2 = 1} = 1; X1 = Q⊕X ′.
(43)

We now compute the mutual information terms in the achievable region given in Theorem

4 based on the preceding joint distribution.

R1 ≤ I(X1; Y |X2, Q) = H(Y |X2, Q)

= Pr{Q = 0}H(Y |X2 = 1, Q = 0) + Pr{Q = 1}H(Y |X2 = 1, Q = 1)

= h(α)

R0 +R1 ≤ I(X1, X2; Y ) = H(Y ) = 1
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Re ≤ I(X1; Y |X2, Q)− I(X1; Y2|X2, Q)

= h(α)− (H(Y2|X2, Q)−H(Y2|X1, X2))

= h(α)−
[

Pr{Q = 0}H(Y2|X2 = 1, Q = 0) + Pr{Q = 1}H(Y2|X2 = 1, Q = 1)

− Pr{X1 = 0}H(Y2|X2 = 1, X1 = 0)− Pr{X1 = 1}H(Y2|X2 = 1, X1 = 1)
]

= h(α)− [h(α ∗ p)− h(p)]

= h(α) + h(p)− h(α ∗ p)
R0 +R1 ≤ I(X1, X2; Y )− I(X1; Y2|X2, Q) = 1− [h(α ∗ p)− h(p)]

= 1 + h(p)− h(α ∗ p)

Proof of the Converse. We apply the converse bounds obtained in Section 4.2, and further

derive these bounds for the example binary GMAC.

From the first step in (32), we obtain

nR1 ≤ I(Xn
1 ; Y

n|Xn
2 ,W0) + nδn = H(Y n|Xn

2 ,W0) + nδn (44)

where we have used the deterministic property of the GMAC, which impliesH(Y n|Xn
1 , X

n
2 ,W0) =

0.

Since {Yi, 1 ≤ i ≤ n} are binary random variables, H(Yi) ≤ 1 for 1 ≤ i ≤ n. Hence

0 ≤ H(Y n|Xn
2 ,W0) ≤

n
∑

i=1

H(Yi) ≤ n. (45)

It is clear that there exists a parameter α ∈ [0, 1/2] such that

H(Y n|Xn
2 ,W0) = nh(α). (46)

Substituting the preceding equation into (44), we obtain

nR1 ≤ nh(α) + nδn. (47)

From (33), we obtain

nR0 + nR1 ≤ I(W0,W1; Y
n) + nδn ≤ H(Y n) + nδn

≤ n + nδn.
(48)

From (30), we obtain

nR1,e ≤ I(Xn
1 ; Y

n|Xn
2 ,W0)− I(Xn

1 ; Y
n
2 |Xn

2 ,W0) + nδn

= H(Y n|Xn
2 ,W0)−H(Y n

2 |Xn
2 ,W0) +H(Y n

2 |Xn
1 , X

n
2 ,W0) + nδn

(a)
= nh(α)−H(Y n

2 |Xn
2 ,W0) +H(Y n

2 |Y n, Xn
1 , X

n
2 ,W0) + nδn

(b)
= nh(α)−H(Y n

2 |Xn
2 ,W0) +H(Y n

2 |Y n) + nδn

= nh(α)−H(Y n
2 |Xn

2 ,W0) + nh(p) + nδn

(49)
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In the preceding bound, the first term in (a) follows from (46), the third term in (a) follows

from the fact that Y n is a deterministic function of (Xn
1 , X

n
2 ), and the third term in (b)

follows from the fact that Y n
2 is conditionally independent of everything else given Yn.

Since Zn
2 in (38) is independent of W0, X

n
2 and Y n, we apply Lemma 4 to bound the term

H(Y n
2 |Xn

2 ,W0).

H(Y n
2 |Xn

2 ,W0) = EH(Y n
2 |Xn

2 = xn
2 ,W0 = w0)

(a)

≥ E

[

nh

(

p ∗ h−1

(

H(Y n|Xn
2 = xn

2 ,W0 = w0)

n

))]

(b)

≥ nh

(

p ∗ h−1

(

E
H(Y n|Xn

2 = xn
2 ,W0 = w0)

n

))

= nh

(

p ∗ h−1

(

H(Y n|Xn
2 ,W0)

n

))

(c)
= nh

(

p ∗ h−1

(

nh(α)

n

))

= nh(p ∗ α)

(50)

where (a) follows from Lemma 4, (b) follows from Lemma 3 and Jensen’s inequality, and (c)

follows from (46).

Substituting (50) into (49), we obtain

nR1,e ≤ nh(α) + nh(p)− nh(p ∗ α) + nδn (51)

From (31), we obtain

nR0 + nR1,e ≤ I(W0; Y
n) + nR1,e

(a)

≤ I(W0; Y
n) + I(Xn

1 ; Y
n|Xn

2 ,W0)− I(Xn
1 ; Y

n
2 |Xn

2 ,W0) + nδn
(b)

≤ I(W0, X
n
2 ; Y

n) + I(Xn
1 ; Y

n|Xn
2 ,W0)− I(Xn

1 ; Y
n
2 |Xn

2 ,W0) + nδn

= I(W0, X
n
1 , X

n
2 ; Y

n)− I(Xn
1 ; Y

n
2 |Xn

2 ,W0) + nδn

= H(Y n)− I(Xn
1 ; Y

n
2 |Xn

2 ,W0) + nδn
(c)

≤ n + nh(p)− nh(p ∗ α) + nδn

(52)

where (a) follows from (30), (b) follows from the chain rule and nonnegativity of mutual

information, and (c) follows from partial results in deriving R1,e.

5 Gaussian GMAC with One Confidential Message Set

In this section, we study the Gaussian GMAC with one confidential message set, where the

channel outputs at the destination and user 2 are corrupted by additive Gaussian noise terms.
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We assume that the channel is discrete and memoryless, and that the channel input-output

relationship at each time instant is given by

Yi = X1,i +X2,i + Zi

Y2,i = X1,i +X2,i + Z2,i

(53)

where Zn and Zn
2 are independent zero mean Gaussian random vectors with i.i.d. compo-

nents. We assume that Zi and Z2,i have variances N and N2, respectively, where N < N2.

The channel input sequences Xn
1 and Xn

2 are subject to the average power constraints P1

and P2, respectively, i.e.,

1

n

n
∑

i=1

X2
1,i ≤ P1, and

1

n

n
∑

i=1

X2
2,i ≤ P2. (54)

The following theorem states the capacity-equivocation region for the Gaussian GMAC

with one confidential message set.

Theorem 6. For the Gaussian GMAC with one confidential message set given in (53), the

capacity-equivocation region is given by

C
G =

⋃

0≤α≤1







































































(R0, R1, Re) :
R0 ≥ 0, R1 ≥ 0,

R1 ≤
1

2
log

(

1 +
αP1

N

)

,

R0 +R1 ≤
1

2
log

(

1 +
P1 + P2 + 2

√
ᾱP1P2

N

)

,

0 ≤ Re ≤ R1,

Re ≤
1

2
log

(

1 +
αP1

N

)

− 1

2
log

(

1 +
αP1

N2

)

,

R0 +Re ≤
1

2
log

(

1 +
P1 + P2 + 2

√
ᾱP1P2

N

)

− 1

2
log

(

1 +
αP1

N2

)







































































. (55)

where ᾱ = 1− α indicating the correlation between the inputs from users 1 and 2.

Corollary 3. The secrecy capacity region of the Gaussian GMAC with one confidential

message set given in (53) is

CG
s =

⋃

0≤α≤1































(R0, R1) :
R0 ≥ 0, R1 ≥ 0,

R1 ≤
1

2
log

(

1 +
αP1

N

)

− 1

2
log

(

1 +
αP1

N2

)

,

R0 +R1 ≤
1

2
log

(

1 +
P1 + P2 + 2

√
ᾱP1P2

N

)

− 1

2
log

(

1 +
αP1

N2

)































. (56)

The secrecy capacity as a function of R0 is

CG
s (R0) =















1

2
log

(

1 +
P1

N

)

− 1

2
log

(

1 +
P1

N2

)

, if R0 ≤
1

2
log

P1 + P2 +N

P1 +N
1

2
log

(

1 +
α∗P1

N

)

− 1

2
log

(

1 +
α∗P1

N2

)

if R0 >
1

2
log

P1 + P2 +N

P1 +N

(57)
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Figure 7: Secrecy capacity regions of Gaussian GMACs with one confidential message set
and capacity region of corresponding Gaussian MAC

where α∗ is determined by the following equation

R0 =
1

2
log

P1 + P2 + 2
√

(1− α∗)P1P2 +N

α∗P1 +N
. (58)

Fig. 7 plots the secrecy capacity CG
s (R0) of Gaussian GMACs with one confidential message

set for three user 1-to-user 2 SNR values. The lines of CG
s (R0) also serve as boundaries of the

secrecy capacity regions if we view the vertical axis as R1. It can be seen that as user 1-to-

user 2 SNR decreases, which implies that the noise level at user 2 increases, user 2 gets more

confused by confidential messages sent by user 1. Thus the secrecy capacity region enlarges.

As this SNR approaches zero, the secrecy capacity region approaches the entire capacity

region of the Gaussian MAC, which means that perfect secrecy is achieved for almost all

points in the capacity region of the MAC.

5.1 Proof of Theorem 6

To show Theorem 6, we first note that the Gaussian GMAC defined in (53) is not physically

degraded according to Definition 5. However, it is stochastically degraded according to
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Definition 6, because the marginal distribution p(y2|x1, x2) is the same as that of the following

physically degraded Gaussian GMAC:

Yi = X1,i +X2,i + Zi

Y2,i = X1,i +X2,i + Zi + Z ′
i

(59)

where Zn is the same as in (53). The random vector Z ′n is independent of Zn, and has

i.i.d. components with each component having the distribution N (0, N2−N). According to

Lemma 2, it is sufficient to prove Theorem 6 for the physically degraded Gaussian GMAC

defined in (59).

Proof of the Achievability. The achievability follows by computing the mutual information

terms in Theorem 4 with the following joint distribution:

Q = φ, X2 ∼ N (0, P2)

X ′
1 ∼ N (0, αP1), and X ′

1 is independent of X2

X1 =

√

ᾱP1

P2
X2 +X ′

1

(60)

Proof of the Converse. We apply the converse proof for the general degraded GMAC in

Section 4.2, and further derive these bounds for the degraded Gaussian GMAC.

From (32), we obtain

nR1 ≤
n
∑

i=1

I(X1,i; Yi|X2,i, Qi) + nδn

=
n
∑

i=1

h(Yi|X2,i, Qi)− h(Yi|X1,i, X2,i, Qi) + nδn

=

n
∑

i=1

h(Yi|X2,i, Qi)− h(Zi|X1,i, X2,i, Qi) + nδn

=
n
∑

i=1

h(Yi|X2,i, Qi)−
1

2
log 2πeN + nδn

(61)

For the first term in the preceding inequality, we have

n
∑

i=1

h(Yi|X2,i, Qi) =

n
∑

i=1

h(X1,i +X2,i + Zi|X2,i, Qi) =

n
∑

i=1

h(X1,i + Zi|X2,i, Qi)

≤
n
∑

i=1

h(X1,i + Zi) ≤
n
∑

i=1

1

2
log 2πe(EX2

1,i +N)

(a)

≤ n

2
log 2πe

(

1

n

n
∑

i=1

EX2
1,i +N

)

≤ n

2
log 2πe(P1 +N)

(62)

26



where (a) follows from Jensen’s inequality.

On the other hand,

n
∑

i=1

h(Yi|X2,i, Qi) ≥
n
∑

i=1

h(X1,i +X2,i + Zi|X1,i, X2,i, Qi) =
n

2
log 2πeN . (63)

Combining (62) and (63), we establish that there exists some α ∈ [0, 1] such that

n
∑

i=1

h(Yi|X2,i, Qi) =
n

2
log 2πe(αP1 +N) . (64)

We hence obtain the bound for R1

nR1 ≤
n

2
log 2πe(αP1 +N)− 1

2
log 2πeN + nδn

=
n

2
log

(

1 +
αP1

N

)

+ nδn .
(65)

For the term
∑n

i=1 h(Yi|X2,i, Qi), we also derive the following bound:

n
∑

i=1

h(Yi|X2,i, Qi)

=

n
∑

i=1

h(X1,i + Zi|X2,i, Qi)

≤
n
∑

i=1

EX2,i,Qi

1

2
log 2πeVar(X1,i + Zi|X2,i, Qi)

(a)

≤
n
∑

i=1

1

2
log 2πeEX2,i,Qi

Var(X1,i + Zi|X2,i, Qi)

=
n
∑

i=1

1

2
log 2πe

(

EX2,i,Qi
Var(X1,i|X2,i, Qi) +N

)

=

n
∑

i=1

1

2
log 2πe

(

E(X2
1,i)− EX2,i,Qi

E2(X1,i|X2,i, Qi) +N
)

(b)

≤ n

2
log 2πe

(

1

n

n
∑

i=1

E(X2
1,i)−

1

n
EX2,i,Qi

E2(X1,i|X2,i, Qi) +N

)

≤ n

2
log 2πe

(

P1 −
1

n
EX2,i,Qi

E2(X1,i|X2,i, Qi) +N

)

(66)

where (a) and (b) follows from Jensen’s inequality.
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Using (64), we have

αP1 +N ≤ P1 −
1

n
EX2,i,Qi

E2(X1,i|X2,i, Qi) +N

=⇒ 1

n
EX2,i,Qi

E2(X1,i|X2,i, Qi) ≤ ᾱP1

(67)

From (33), we obtain

nR0 + nR1 ≤
n
∑

i=1

I(X1,i, X2,i; Yi) + nδn

=

n
∑

i=1

H(Yi)− I(Yi|X1,i, X2,i) + nδn

=
n
∑

i=1

H(Yi)−
n

2
log 2πeN + nδn

(68)

For the first term in the preceding inequality, we obtain

n
∑

i=1

h(Yi) =
n
∑

i=1

h(Xi +X1,i + Zi)

≤
n
∑

i=1

1

2
log 2πe

(

E(X1,i +X2,i)
2 +N

)

(a)

≤ n

2
log 2πe

(

1

n

n
∑

i=1

E(X1,i +X2,i)
2 +N

)

≤ n

2
log 2πe

(

1

n

n
∑

i=1

EX2
1,i +

1

n

n
∑

i=1

EX2
2,i +

1

n

n
∑

i=1

2E(X1,iX2,i) +N

)

≤ n

2
log 2πe

(

P1 + P2 +
1

n

n
∑

i=1

2E(X1,iX2,i) +N

)

≤ n

2
log 2πe

(

P1 + P2 +
1

n

n
∑

i=1

2EX2,i,Qi

(

X2,iE(X1,i|X2,i, Qi)
)

+N

)

(b)

≤ n

2
log 2πe

(

P1 + P2 +
2

n

n
∑

i=1

√

EX2,i,Qi
X2

2,i · EX2,i,Qi
E2(X1,i|X2,i, Qi) +N

)

(c)

≤ n

2
log 2πe

(

P1 + P2

+ 2

√

√

√

√

(

1

n

n
∑

i=1

EX2,i,Qi
X2

2,i

)

·
(

1

n

n
∑

i=1

EX2,i,Qi
E2(X1,i|X2,i, Qi)

)

+N

)

(d)

≤ n

2
log 2πe

(

P1 + P2 + 2
√

ᾱP1P2 +N
)

(69)
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In the preceding bound, (a) follows from Jensen’s inequality, (b) and (c) follows from Cauchy-

Schwarz inequality, and (d) follows from (67).

Hence,

nR0 + nR1 ≤
n

2
log 2πe

(

P1 + P2 + 2
√

ᾱP1P2 +N
)

− n

2
log 2πeN + nδn

=
n

2
log

(

1 +
P1 + P2 + 2

√
ᾱP1P2

N

)

+ nδn

(70)

From (30), we obtain

nR1,e ≤
n
∑

i=1

I(X1,i; Yi|X2,i, Qi)− I(X1,i; Y2,i|X2,i, Qi) + nδn

=
n

2
log

(

1 +
αP1

N

)

−
n
∑

i=1

h(Y2,i|X2,i, Qi) +
n

2
log 2πeN2 + nδn

(71)

To bound the term
∑n

i=1 h(Y2,i|X2,i, Qi) in (71), we first derive the following bound. Since

Z ′
i is independent of Yi given X2,i and Qi, by entropy power inequality, we obtain

22h(Yi+Z′

i
|X2,i=x2,i,Qi=qi) ≥ 22h(Yi|X2,i=x2,i,Qi=qi) + 22h(Z

′

i
|X2,i=x2,i,Qi=qi)

= 22h(Yi|X2,i=x2,i,Qi=qi) + 2πe(N2 −N)

We then obtain

h(Yi + Z ′
i|X2,i = x2,i, Qi = qi) ≥

1

2
log
(

22h(Yi|X2,i=x2,i,Qi=qi) + 2πe(N2 −N)
)

Taking the expectation on both sides of the preceding equation, we obtain

Eh(Yi + Z ′
i|X2,i = x2,i, Qi = qi) ≥

1

2
E log

(

22h(Yi|X2,i=x2,i,Qi=qi) + 2πe(N2 −N)
)

(a)

≥ 1

2
log
(

22Eh(Yi|X2,i=x2,i,Qi=qi) + 2πe(N2 −N)
)

=
1

2
log
(

22h(Yi|X2,i,Qi) + 2πe(N2 −N)
)

where (a) follows from Jensen’s inequality and the fact that log(2x+ c) is a convex function.

Summing over the index i, the preceding inequality becomes

n
∑

i=1

h(Yi + Z ′
i|X2,i, Qi) ≥

1

2

n
∑

i=1

log
(

22h(Yi|X2,i,Qi) + 2πe(N2 −N)
)

(a)

≥ n

2
log
(

22
1

n

∑n
i=1

h(Yi|X2,i,Qi) + 2πe(N2 −N)
)

(b)
=

n

2
log (2πe(αP1 +N) + 2πe(N2 −N))

=
n

2
log (2πe(αP1 +N2))
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where (a) follows from Jensen’s inequality, and (b) follows from (67).

Applying the preceding bound to the term
∑n

i=1 h(Y2,i|X2,i, Qi), we obtain

n
∑

i=1

h(Y2,i|X2,i, Qi) =
n
∑

i=1

h(Yi + Z ′
i|X2,i, Qi) ≥

n

2
log (2πe(αP1 +N2)) (72)

Substituting the preceding bound into (71), we obtain

nR1,e ≤
n

2
log

(

1 +
αP1

N

)

− n

2
log (2πe(αP1 +N2)) +

n

2
log 2πeN2 + nδn

≤ n

2
log

(

1 +
αP1

N

)

− n

2
log

(

1 +
αP1

N2

)

+ nδn

(73)

From (31), we obtain

nR0 + nR1,e

≤
n
∑

i=1

I(X1,i, X2,i; Yi)− I(X1,i; Y2,i|X2,i, Qi) + nδn

≤ n

2
log

(

1 +
P1 + P2 + 2

√
ᾱP1P2

N

)

−
n
∑

i=1

h(Y2,i|X2,i, Qi) +
n

2
log 2πeN2 + nδn

≤ n

2
log

(

1 +
P1 + P2 + 2

√
ᾱP1P2

N

)

− n

2
log (2πe(αP1 +N2)) +

n

2
log 2πeN2 + nδn

≤ n

2
log

(

1 +
P1 + P2 + 2

√
ᾱP1P2

N

)

− n

2
log(1 +

αP1

N2
) + nδn,

(74)

which completes the proof.

6 GMAC with Two Confidential Message Sets

In this section, we consider the general case of the GMAC with (two) confidential mes-

sages, where the two users have common messages and each user has private (confidential)

messages intended for the destination. Each user wants to keep the other user as ignorant

of its confidential messages as possible. For this case, the rate-equivocation tuple has five

components and takes the form (R0, R1, R2, R1,e, R2,e), where R1,e and R2,e are equivocation

rates indicating the secrecy levels of confidential messages sent by user 1 and confidential

messages sent by user 2, respectively.

In the following, we first provide our main results on the achievable rate-equivocation

region and secrecy rate region. It can be seen that the rate-equivocation region has a more

complicated form compared to that of the case with a single confidential message set, and
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carries a new feature of the trade-off between the secrecy levels that can be achieved for

the two confidential message sets. We then give an intuitive interpretation of the rate-

equivocation region, following which we provide a rigorous proof of the rate-equivocation

region. Finally, we give an equivalence proof of two regions, which simplifies the rate-

equivocation region to an explicit form.

6.1 Main Results

The following theorem provides an inner bound on the capacity-equivocation region for the

GMAC with two confidential message sets.

Theorem 7. The following convexified region of nonnegative rate-equivocation tuples is

achievable for the GMAC with two confidential message sets:

R
II = Convex

⋃

p(q)p(u|q)p(x1|u)
p(v|q)p(x2|v)
p(y, y1, y2|x1, x2)


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(R0, R1, R2, R1,e, R2,e) :
R0 ≥ 0, R1 ≥ 0, R2 ≥ 0,
R1 ≤ I(U ; Y |V,Q),
R2 ≤ I(V ; Y |U,Q),
R1 +R2 ≤ I(U, V ; Y |Q),
R0 +R1 +R2 ≤ I(U, V,Q; Y ),
(R1,e, R2,e) ∈ Se(R0, R1, R2)
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where

Se(R0, R1, R2) =
⋃

(R′
1, R

′
2) :

(R0, R
′
1, R

′
2) ∈ Cp

MAC ,
R1 ≤ R′

1, R2 ≤ R′
2


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(R0, R1,e, R2,e) :
0 ≤ R1,e ≤ R1

R1,e ≤ [R′
1 − I(U ; Y2|X2, V, Q)]+

0 ≤ R2,e ≤ R2

R2,e ≤ [R′
2 − I(V ; Y1|X1, U,Q)]+


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where Cp
MAC is defined as

Cp
MAC =


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(R0, R1, R2) :
R0 ≥ 0, R1 ≥ 0, R2 ≥ 0,
R1 ≤ I(U ; Y |V,Q),
R2 ≤ I(V ; Y |U,Q),
R1 +R2 ≤ I(U, V ; Y |Q),
R0 +R1 +R2 ≤ I(U, V,Q; Y )


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. (77)

An intuitive interpretation of the rate-equivocation region in Theorem 7 is given in the

next subsection. The proof will be provided in Section 6.3.

Note that the region Se(R0, R1, R2) contains the secrecy rate pairs (R1,e, R2,e) that can be

achieved for the given rate tuple (R0, R1, R2). It can be seen that Se(R0, R1, R2) in (76) is
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characterized by a union of a set of (R′
1, R

′
2), which is not an explicit form. It is thus desirable

to change Se(R0, R1, R2) to an explicit form that is characterized through inequality bounds

only.

Theorem 8. The set Se(R0, R1, R2) in (76) can be expressed in the following explicit form:

Se(R0, R1, R2) = L1(R0, R1, R2) ∪ L2(R0, R1, R2) ∪ L3(R0, R1, R2) (78)

where

L1(R0, R1, R2)

=
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(R1,e, R2,e) :
0 ≤ R1,e ≤ R1

0 ≤ R2,e ≤ R2

R1,e ≤ [I(U ; Y |V,Q)− I(U ; Y2|X2, V, Q)]+,
R1,e ≤ [I(U, V ; Y |Q)− R2 − I(U ; Y2|X2, V, Q)]+,
R1,e ≤ [I(U, V,Q; Y )−R0 − R2 − I(U ; Y2|X2, V, Q)]+
R2,e ≤ [I(V ; Y |U,Q)− I(V ; Y1|X1, U,Q)]+,
R2,e ≤ [I(U, V ; Y |Q)− R1 − I(V ; Y1|X1, U,Q)]+,
R2,e ≤ [I(U, V,Q; Y )−R0 − R1 − I(V ; Y1|X1, U,Q)]+
R1,e +R2,e ≤ [I(U, V ; Y |Q)− I(U ; Y2|X2, V, Q)− I(V ; Y1|X1, U,Q)]+,
R1,e +R2,e ≤ [I(U, V,Q; Y )− R0 − I(U ; Y2|X2, V, Q)− I(V ; Y1|X1, U,Q)]+
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L2(R0, R1, R2) =


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(R1,e, R2,e) :
0 ≤ R1,e ≤ R1

R1,e ≤ [I(U ; Y |V,Q)− I(U ; Y2|X2, V, Q)]+,
R1,e ≤ [I(U, V ; Y |Q)−R2 − I(U ; Y2|X2, V, Q)]+,
R1,e ≤ [I(U, V,Q; Y )− R0 −R2 − I(U ; Y2|X2, V, Q)]+
R2,e = 0
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and

L3(R0, R1, R2) =
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(R1,e, R2,e) :
R1,e = 0,
0 ≤ R2,e ≤ R2

R2,e ≤ [I(V ; Y |U,Q)− I(V ; Y1|X1, U,Q)]+,
R2,e ≤ [I(U, V ; Y |Q)−R1 − I(V ; Y1|X1, U,Q)]+,
R2,e ≤ [I(U, V,Q; Y )−R0 − R1 − I(V ; Y1|X1, U,Q)]+
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The proof of Theorem 8 is given in Section 6.4.

Remark 10. The region (75) reduces to the capacity region of the MAC [15] by removing

the secrecy constraints (R1,e = 0, R2,e = 0) and setting U = X1 and V = X2.

Remark 11. The last two bounds in (79) indicate that there is a trade-off between the two

equivocation rates R1,e and R2,e, i.e., the secrecy levels achieved for the two confidential
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message sets W1 and W2. It will be clear in Section 6.2 that this trade-off can be achieved by

using codebooks that achieve different boundary points of the MAC. It will be further clear in

Section 6.3 that this trade-off corresponds to a trade-off between the sizes of the two codebooks

used by the two users.

Remark 12. The sets L2(R0, R1, R2) and L3(R0, R1, R2) characterize the equivocation rates

when only user 1 or user 2 achieves nonzero equivocation rates.

We now study the case where confidential messages of each user are perfectly hidden from

the other user. This happens when R1,e = R1 and R2,e = R2. The rate region that contains

all these rate tuples is called the secrecy capacity region and is given by

CII
s = {(R0, R1, R2) : (R0, R1, R2, R1, R2) ∈ C

II}. (82)

The following inner bound on the secrecy capacity region CII
s follows from Theorem 7 and

Theorem 8.

Corollary 4. A secrecy rate region (inner bound on secrecy capacity region) for the GMAC

with two confidential message sets is given by:

RII
s = Convex

⋃

p(q)p(u|q)p(x1|u)
p(v|q)p(x2|v)p(y, y1, y2|x1, x2)

{

Rs,1 ∪Rs,2 ∪Rs,3

}

(83)

where
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R0 ≥ 0, R1 ≥ 0, R2 ≥ 0,
R1 ≤ I(U ; Y |V,Q)− I(U ; Y2|V,X2, Q),
R2 ≤ I(V ; Y |U,Q)− I(V ; Y1|U,X1, Q),
R1 +R2 ≤ I(U, V ; Y |Q)− I(U ; Y2|V,X2, Q)− I(V ; Y1|U,X1, Q),
R0 +R1 +R2 ≤ I(U, V,Q; Y )− I(U ; Y2|V,X2, Q)− I(V ; Y1|U,X1, Q)
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Rs,2 =
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(R0, R1, R2) :
R0 ≥ 0, R1 ≥ 0, R2 = 0,
R1 ≤ I(U ; Y |V,Q)− I(U ; Y2|V,X2, Q),
R0 +R1 ≤ I(U, V,Q; Y )− I(U ; Y2|V,X2, Q)
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Rs,3 =
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(R0, R1, R2) :
R0 ≥ 0, R2 ≥ 0, R1 = 0,
R2 ≤ I(V ; Y |U,Q)− I(V ; Y1|U,X1, Q),
R0 +R2 ≤ I(U, V,Q; Y )− I(V ; Y1|U,X1, Q)
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For the GMAC with two confidential message sets, it is desirable that both users achieve

positive secrecy rates. We have the following sufficient condition for this case to happen.
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Corollary 5. A sufficient condition for both users to have positive secrecy rates is that

I(U ; Y |V,Q) > I(U ; Y2|X2, V, Q) (87)

for some joint distribution p(q)p(u|q)p(x1|u)p(v|q)p(x2|v)p(y, y1, y2|x1, x2), and

I(V ; Y |U,Q) > I(V ; Y1|X1, U,Q) (88)

for some joint distribution p(q)p(u|q)p(x1|u)p(v|q)p(x2|v)p(y, y1, y2|x1, x2).

Note that the joint distributions that satisfy the two conditions (87) and (88) are not

necessarily the same.

Proof. From (85), it is clear that if (87) is satisfied, user 1 achieves positive secrecy rate (for

R0 = 0). Similarly, from (86), user 2 achieves positive rate if (88) is satisfied. Therefore,

time-sharing between these two operating points guarantees positive secrecy rates for both

users.

In Fig. 8, we plot the secrecy rate region for the GMAC with two confidential message

sets for a given distribution p(q)p(u|q)p(x1|u)p(v|q)p(x2|v)p(y, y1, y2|x1, x2). For the given

joint distribution, we assume that both conditions in Corollary 5 are satisfied, i.e., both

users have nonzero secrecy rates. Moreover, we assume that the bounds on the sum rate

R1 + R2 in (84) is positive, i.e., the region Rs,1 is nonempty. The geometric structure of

the secrecy rate region (shaded area) falls into one of the four cases depending on how the

mutual information terms compare with each other. In Fig. 8 we also plot the capacity of the

corresponding MAC without secrecy constraints (setting Y1 = φ and Y2 = φ in the GMAC)

with the outer solid line as the boundary. It is clear from the figure that the secrecy rate

region is inside the capacity region of the corresponding MAC. Hence to achieve perfectly

secure communication for confidential messages, the users need to transmit their confidential

messages at smaller rates than reliable communication rates. It is also clear from Fig. 8 that

the secrecy rate region given by Rs,1 ∪ Rs,2 ∪ Rs,3 is not convex in general and needs to be

convexfied. These cases of secrecy regions will be further discussed in the next section and

intuition behind the achievability of the corner points will be given.

6.2 Interpretation of R
II in Theorem 7

In this subsection, we explain the intuition behind the achievable rate-equivocation region

R
II given in Theorem 7. A rigorous proof is relegated to the next subsection.

We focus on the following region R̃ given in Theorem 7. The region R
II given in (75)

follows from R̃ by prefixing two discrete memoryless channels with inputs U and V and

34



PSfrag replacements

A

B

A′

B′

R2

R1

Case 1: I(V ;Y |Q) > I(V ;Y1|X1, U,Q) and I(U ;Y |Q) > I(U ;Y2|X2, V,Q)

PSfrag replacements
A

B C

A′

B′

R2

R1

PSfrag replacements
A

B C

A′

B′

R2

R1

(a) before convexification (b) after convexification

Case 2: I(V ;Y |Q) ≤ I(V ;Y1|X1, U,Q) and I(U ;Y |Q) > I(U ;Y2|X2, V,Q)

PSfrag replacements

A

B

C
A′

B′

R2

R1

PSfrag replacements

A

B

C
A′

B′

R2

R1

(a): before convexification (b): after convexification

Case 3: I(V ;Y |Q) > I(V ;Y1|X1, U,Q) and I(U ;Y |Q) ≤ I(U ;Y2|X2, V,Q)

PSfrag replacementsA

B

C

D

A′

B′

R2

R1

PSfrag replacementsA

B

C

D

A′

B′

R2

R1

(a): before convexification (b): after convexification

Case 4: I(V ;Y |Q) ≤ I(V ;Y1|X1, U,Q) and I(U ;Y |Q) ≤ I(U ;Y2|X2, V,Q)

Figure 8: Secrecy rate region for the GMAC with two confidential message sets for a given
joint distribution

35



transition probabilities p(x1|u) and p(x2|v) to the given GMAC (similar to [3, Lemma 4]).

R̃ =
⋃

p(q)p(x1|q)p(x2|q)
p(y, y1, y2|x1, x2)


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R1 +R2 ≤ I(X1, X2; Y |Q),
R0 +R1 +R2 ≤ I(X1, X2; Y ),

(R1,e, R2,e) ∈ S̃e(R0, R1, R2)
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. (89)

where

S̃e(R0, R1, R2) =
⋃

(R′

1
,R′

2
)∈A(R0 ,R1,R2)























(R1,e, R2,e) :
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1 − I(X1; Y2|X2, Q)]+
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where

A(R0, R1, R2) := {(R′
1, R

′
2) : (R0, R

′
1, R

′
2) ∈ C̃p

MAC , R1 ≤ R′
1, R2 ≤ R′

2}, (91)

and

C̃p
MAC =
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(R0, R1, R2) :
R1 ≤ I(X1; Y |X2, Q),
R2 ≤ I(X2; Y |X1, Q),
R1 +R2 ≤ I(X1, X2; Y |Q),
R0 +R1 +R2 ≤ I(X1, X2; Y )
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It is easy to see that the first four bounds in R̃ in (89) are the bounds that define the

capacity region of the MAC [15]. Hence these bounds also need to be satisfied for the GMAC

with two confidential message sets. To understand the bounds on (R1,e, R2,e), we plot Fig. 9

for illustration. In Fig. 9, the solid line indicates the boundary of the region C̃p
MAC for a

given common rate R0.

For a given rate tuple (R0, R1, R2) that satisfies the first four bounds in (89), which also

means that (R0, R1, R2) ∈ C̃p
MAC , we plot the region A(R0, R1, R2) of (R

′
1, R

′
2) in Fig. 9 as

the shaded area. It is clear that the rate tuple (R0, R1, R2) can be achieved by applying the

codebook that achieves any rate tuples (R0, R
′
1, R

′
2) ∈ A(R0, R1, R2) and throwing away the

redundant bits R′
1 −R1 and R′

2 −R2. However, it is a waste of channel resources to achieve

a rate tuple with lower rate components by applying a codebook that achieves a rate tuple

with higher rate components.

The situation becomes different for channels with confidential message sets, where one user

(say user 1) wants to keep its confidential information secret from the other user (user 2).

Now to achieve a rate R1, user 1 may transmit at a higher rate R′
1 so that the codebook

contains a larger number of codewords than the number of messages that user 1 wants to
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convey to the destination. The redundant codewords are used to confuse user 2 about real

messages that user 1 transmits to the destination. Since user 2 can decode at the rate of

the capacity of the channel from user 1 to user 2, which is I(X1; Y2|X2, Q), intuitively user

1 can keep information with the rate R′
1 − I(X1; Y2|X2, Q) secret from user 2. Similarly,

user 2 can keep information with the rate R′
2 − I(X2; Y1|X1, Q) secret from user 1. Hence

the equivocation rates R1,e = R′
1 − I(X1; Y2|X2, Q) and R2,e = R′

2 − I(X2; Y1|X1, Q) can be

achieved by the codebook achieving (R0, R
′
1, R

′
2) for the MAC. We hence conclude that all

equivocation rate pair (R1,e, R2,e) in S̃e(R0, R1, R2) given in (90) are achievable.

Note that there is no loss of generality to consider only the rate tuples (R0, R
′
1, R

′
2) ∈

A(R0, R1, R2) that are on the sum rate boundary of the region C̃p
MAC , i.e., the points on

the line between the point A and point B in Fig. 9. This is because any point inside

A(R0, R1, R2) corresponds to a point on the line from A to B that achieves larger R1,e and

R2,e. To operate at different points between A and B, user 1 and user 2 use different sizes of

codebooks, and achieve different equivocation rate pairs (R1,e, R2,e). As the operating point

moves from A to B, the equivocation rate R1,e increases and R2,e decreases, thus achieving

a trade-off between the security levels for the two confidential message sets sent by user 1

and user 2 as commented in Remark 11.

Based on the preceding interpretation, we next give intuition for the secrecy rate region

given in Corollary 4. In particular, we focus on the secrecy rate region of case 1 in Fig. 8.

We plot this case in more detail in Fig. 10.

We first consider case 1, where both of the following two conditions are satisfied:

I(V ; Y |Q) > I(V ; Y1|X1, U,Q) (93)
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and

I(U ; Y |Q) > I(U ; Y2|X2, V, Q) (94)

so that the secrecy rate region is a pentagon. All rate tuples in the secrecy rate region can

be achieved with confidential messages of the two users being perfectly secret from each

other. However, to achieve perfect secrecy for rate tuples in the shaded area, the two users

may need to use codebooks achieving rate tuples outside the shaded area with larger rate

components. In this way, the size of the codebook used by each user is larger than the actual

number of confidential messages that need to be delivered, and the redundant codewords in

the codebook are used to confuse the other user. For example, consider the corner point A

of the secrecy rate region in Fig. 10. The rates of the two confidential message sets are:

RA,1 = I(U ; Y |Q)− I(U ; Y2|V,X2, Q) (95)

RA,2 = I(V ; Y |U,Q)− I(V ; Y1|U,X1, Q) (96)

To achieve the point A with perfect secrecy, the actual codebook being used needs to operate

at the point A′ which is on the boundary of the capacity region of the MAC. The rates

corresponding to A′ are:

RA′,1 = I(U ; Y |Q) (97)

RA′,2 = I(V ; Y |U,Q) (98)

38



If we compare the rate tuples corresponding to the points A and A′, it is easy to see that the

secrecy rates decrease from the actual rates of the codebook by the capacities of the channels

between the two users, i.e., I(U ; Y2|V,X2, Q) and I(V ; Y1|U,X1, Q). In fact, every point on

the boundary of the secrecy rate region of case 1 in Fig. 10 is achieved by the codebook that

operates at a corresponding point on the boundary of the capacity region of the MAC.

6.3 Proof of the Achievability of RII in Theorem 7

In this section, we show that the rate-equivocation region R
II given in Theorem 7 is achiev-

able. We first show that the region R̃ given in (89) is achievable. Then RII in Theorem

7 is achievable follows by prefixing two discrete memoryless channels as reasoned at the

beginning of the preceding section.

We present the proof in four steps. In Step 1, we prove existence of a certain codebook

based on a random coding technique, which is different from the nonrandom code construc-

tion used in [3]. Our random coding proof is also different from the proof in [2] in that the

codeword ensemble contains only typical sequences, which makes equivocation computation

convenient. In Step 2, we define our encoding scheme. In Step 3, we compute the two equiv-

ocation rates. The technique follows [3, Sec. IV]. In Step 4, we consider other cases where

the encoding scheme is slightly different from the case considered in the preceding steps.

Step 1: Existence of Certain Codebook

We consider the following joint distribution

PQX1X2Y Y1Y2
= p(q)p(x1|q)p(x2|q)p(y, y1, y2|x1, x2)

We use T n
ǫ (PQX1X2Y Y1Y2

) to indicate the strong typical set defined by the distribution PQX1X2Y Y1Y2
.

Consider a given rate triple (R0, R1, R2) ∈ C̃p
MAC , where C̃p

MAC is given in (92). We wish

to find a codebook that achieves (R0, R1, R2) with small probability of error, and achieves

certain equivocation rates R1,e and R2,e. We consider (R′
1, R

′
2) that satisfy the following

conditions:

(R0, R
′
1, R

′
2) ∈ C̃p

MAC , R1 ≤ R′
1, R2 ≤ R′

2 (99)

and

R′
1 − I(X1; Y2|X2, Q) > 0, R′

2 − I(X2; Y1|X1, Q) > 0 (100)

The cases where R′
1 − I(X1; Y2|X2, Q) ≤ 0 or R′

2 − I(X2; Y1|X1, Q) ≤ 0 will be considered in

Step 4.

The following lemma states existence of a certain codebook, which will be used for encoding

in Step 2.
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Lemma 5. For a given rate triple (R0, R1, R2) ∈ C̃p
MAC, there exists the following codebook:

C =







qni , i = 1, . . . , 2nR0;
xn
1,iab, i = 1, . . . , 2nR0; a = 1, . . . , A; b = 1, . . . , B;

xn
2,ist, i = 1, . . . , 2nR0; s = 1, . . . , S; t = 1, . . . , T ;







(101)

where all codewords are strongly typical, i.e., qni ∈ T n
ǫ (PQ), x

n
1,iab ∈ T n

ǫ (PX1|Q|qni ), xn
2,ist ∈

T n
ǫ (PX2|Q|qni ) for all i, a, b, s, t. The number of codewords are defined as follows:

1

n
logA = R′

1 − I(X1; Y2|X2, Q),

1

n
logB = I(X1; Y2|X2, Q),

1

n
log S = R′

2 − I(X2; Y1|X1, Q),

1

n
log T = I(X2; Y1|X1, Q).

(102)

We define the following probabilities of error when the codewords xn
1,iab and xn

2,ist are trans-

mitted by user 1 and user 2, respectively:

λiabst =Error probability for the destination to decode xn
1,iab and xn

2,ist;

λ1,b|iast =Error probability for user 2 to decode xn
1,iab given i, a, s, t;

λ2,t|iabs =Error probability for user 1 to decode xn
2,ist given i, a, b, s.

(103)

Let piabst be the probability that codewords xn
1,iab and xn

2,ist are transmitted by user 1 and

user 2, respectively. We further define the following average probabilities of error:

λ =
∑

iabst

piabstλiabst;

λ1 =
∑

iabst

piabstλ1,b|iast;

λ2 =
∑

iabst

piabstλ2,t|iabs.

(104)

For sufficiently large n, the codebook described in (101) satisfies

λ < ǫ, λ1 < ǫ, and λ2 < ǫ, (105)

for any arbitrary 0 < ǫ < 1.

In Fig. 11, we plot an example codebook that is described in the preceding lemma. We

can interpret each row in the codebook as a subcodebook. If each of the two users randomly

chooses one codeword from its codebook and sends it over the channel, the destination

can decode these pair of codewords with small average error probability, because λ < ǫ.
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Figure 11: Codebook for users 1 and 2

However, each user as a receiver can only decode the codeword sent by the other user with

small average probability of error if it knows to which row the transmitted codeword belongs.

This is because λ1 < ǫ and λ2 < ǫ. Therefore, while the destination decodes reliably over

the entire codebook, the two users decode reliably only within rows of the codebook.

Proof. We prove the lemma using a random coding technique. We define the following sum

of error probabilities:

pe = λ+ λ1 + λ2 =
∑

iabst

piabst(λiabst + λ1,b|iast + λ2,t|iabs). (106)

We show that the average of pe over a random codebook ensemble is small for sufficiently

large codeword length n. Then, there must exist at least one codebook such that pe is small

for sufficiently large n.
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For a given distribution p(q)p(x1|q)p(x2|q), we construct random codebooks by the follow-

ing generating steps.

1. Generate 2nR0 codewords qn, each uniformly drawn from the set T n
ǫ (PQ). Index qni ,

i = 1, . . . , 2nR0.

2. For each qni , generate 2
nR′

1 codewords xn
1 , each uniformly drawn from the set T n

ǫ (PX1|Q|qni ).
Index xn

1,iab, a = 1, . . . , A; b = 1, . . . , B.

3. For each qni , generate 2
nR′

2 codewords xn
2 , each uniformly drawn from the set T n

ǫ (PX2|Q|qni ).
Index xn

2,ist, s = 1, . . . , S; t = 1, . . . , T .

Suppose the codewords xn
1,iab and xn

2,ist are transmitted by user 1 and user 2, respectively,

we define the following decoding strategies at the destination, user 1 and user 2.

1. Destination declares that the indices of xn
1 and xn

2 are î, â, b̂, ŝ, t̂ if there is a unique

group of such indices such that
(

qn
î
, xn

1,̂iâb̂
, xn

2,̂iŝt̂
, yn
)

∈ T n
ǫ (PQX1X2Y ).

2. User 2, given i, a, s, t, declares that the index b of xn
1,iab is b̂ if there is a unique b̂ such

that
(

qni , x
n
1,iab̂

, xn
2,ist, y

n
2

)

∈ T n
ǫ (PQX1X2Y2

).

3. User 1, given i, a, b, s, declares that the index t of xn
2,ist is t̂ if there is a unique t̂ such

that
(

qni , x
n
1,iab, x

n
2,ist̂

, yn1

)

∈ T n
ǫ (PQX1X2Y1

).

We can compute EC[pe] by following the standard techniques as in [15, Chap. 14], where

EC indicates averaging over the random codebook ensemble. We can show that

EC[pe] < ǫ, (107)

for sufficiently large codeword length n, by using the fact that (R0, R
′
1, R

′
2) ∈ C̃p

MAC and the

sizes of indices b and t are B = 2nI(X1;Y2|X2,Q) and T = 2nI(X2;Y1|X1,Q), respectively.

Hence there exists one codebook such that for sufficiently large codebook size n,

pe = λ+ λ1 + λ2 < ǫ. (108)

This leads to the conclusion that for sufficiently large codebook size n

λ < ǫ, λ1 < ǫ, and λ2 < ǫ. (109)

Step 2: Encoding

Based on the codebook given in Lemma 5, we define an encoding strategy to achieve the

given rate tuple (R0, R1, R2) with certain equivocation rates (R1,e, R2,e). The equivocation

rates (R1,e, R2,e) will be computed in Step 3.
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We first assume that R1 > R′
1−I(X1; Y2|X2, Q) and R2 > R′

2−I(X2; Y1|X1, Q). The cases

where R1 ≤ R′
1− I(X1; Y2|X2, Q) or R2 ≤ R′

2− I(X2; Y1|X1, Q) will be considered in Step 4.

We denote common messages by W0 ∈ W = [1, 2nR0], and denote confidential messages

sent by the two users by W1 ∈ W1 = [1, 2nR1] and W2 ∈ W2 = [1, 2nR2], respectively. We

further define the following sets

A = [1, A], B = [1, B], S = [1, S], T = [1, T ] (110)

where A,B, S, T are defined in (102). We let

W1 = A×J (111)

where J = [1, J ] and 1
n
log J = R1 − [R′

1 − I(X1; Y2|X2, Q)], and

W2 = S × K (112)

where K = [1, K] and 1
n
logK = R2 − [R′

2 − I(X2; Y1|X1, Q)].

We define the following mappings:

g1 : B → J , partitioning B into J subsets with nearly equal size;

g2 : T → K, partitioning T into K subsets with nearly equal size,
(113)

where “early equal size” means

‖g−1
1 (j1)‖ ≤ 2‖g−1

1 (j2)‖ ∀ j1, j2 ∈ J (114)

and

‖g−1
2 (k1)‖ ≤ 2‖g−1

2 (k2)‖ ∀ k1, k2 ∈ K. (115)

The two encoders at users 1 and 2 are defined in the following:

f0 : W0 → {qni }, mapping w0 → i;
f1 : (W0,W1) → {xn

1,iab}, mapping w0 → i, and mapping w1 = (a, j) → (a, b),
where b is chosen uniformly from the set g−1

1 (j) ⊂ B;
f2 : (W0,W2) → {xn

2,ist}, mapping w0 → i, and mapping w2 = (s, k) → (s, t),
where t is chosen uniformly from the set g−1

2 (k) ⊂ T .

(116)

The idea of the above encoding strategy is as follows. From Step 1, it is clear that users

decode reliably within rows of the codebook and are not able to decode across different rows.

Hence each user tries to map its confidential messages across different rows of the codebook

to prevent the other user from decoding its messages.

Step 3: Equivocation Computation

Based on the codebook given in Lemma 5 in Step 1 and the encoding functions defined in

(116) in Step 2, we have the following joint probability distribution:

p(w0)p(w1)p(w2)f0(q
n|w0)f1(x

n
1 |w0, w1)f2(x

n
2 |w0, w2)p(y

n, yn1 , y
n
2 |xn

1 , x
n
2 ). (117)
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In (117), p(w0), p(w1) and p(w2) are uniform distributions, i.e., the messages are uniformly

chosen from the three message sets. The encoding function f0 is a deterministic one-to-one

mapping, and f1 and f2 are random mapping functions as defined in (116) in Step 2. For

the joint distribution given in (117), we note the following two Markov chain conditions:

W2 → (Xn
2 ,W0) → (W1, X

n
1 , Y

n
1 , Y

n
2 , Y

n); (118)

and

W1 → (Xn
1 ,W0) → (W2, X

n
2 , Y

n
1 , Y

n
2 , Y

n). (119)

We first compute the equivocation rate of W1 at user 2 in the following.

H(W1|Y n
2 , X

n
2 ,W0,W2)

(a)
= H(W1|Y n

2 , X
n
2 ,W0)

= H(W1, Y
n
2 |Xn

2 ,W0)−H(Y n
2 |Xn

2 ,W0)

= H(W1, Y
n
2 , X

n
1 |Xn

2 ,W0)−H(Xn
1 |W0,W1, Y

n
2 , X

n
2 )−H(Y n

2 |Xn
2 ,W0)

= H(W1, X
n
1 |Xn

2 ,W0) +H(Y n
2 |Xn

1 , X
n
2 ,W0,W1)−H(Xn

1 |W0,W1, Y
n
2 , X

n
2 )

−H(Y n
2 |Xn

2 ,W0)

(b)

≥ H(Xn
1 |W0) +H(Y n

2 |Xn
1 , X

n
2 )−H(Xn

1 |W0,W1, Y
n
2 , X

n
2 )−H(Y n

2 |Xn
2 ,W0)

(120)

In the preceding equation, (a) follows from the Markov condition given in (118). The first

term in (b) follows from the following

H(W1, X
n
1 |Xn

2 ,W0) = H(Xn
1 |Xn

2 ,W0) +H(W1|Xn
1 , X

n
2 ,W0)

≥ H(Xn
1 |Xn

2 ,W0) = H(Xn
1 |W0)

(121)

The second term in (b) follows from the fact that Y n
2 is independent of W0,W1 given Xn

1 , X
n
2 .

We now compute the four terms in (120) one by one. To compute the first term, we first

show the following useful lemma.

Lemma 6. ([3]) Consider a discrete random variableX with the mass points being x1, . . . , xm

and the probability mass function satisfying

Pr{X = xi}
Pr{X = xj}

≤ 2 · 2δ ∀ i, j ∈ [1, . . . , m]. (122)

Then,

H(X) ≥ logm− δ − 1 (123)

Proof. Let pi = Pr{X = xi} for i = 1, . . . , m. Let

pmax = max{p1, . . . , pm}, and pmin = min{p1, . . . , pm}. (124)

We have pmax

pmin
≤ 2 · 2δ by assumption. Hence

pmax ≤ 2 · 2δ
m

mpmin ≤ 2 · 2δ
m

(125)
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where we have used mpmin ≤ 1. We can then bound the entropy of X as follows.

H(X) =

m
∑

i=1

−pi log pi ≥
m
∑

i=1

−pi log pmax

= − log pmax ≥ − log
2 · 2δ
m

= logm− δ − 1

(126)

For the first term in (120), we note that for each W0 = i, Xn
1 has 2nR

′

1 possible values.

According to the encoding mapping function f1 defined in (116), we have

Pr{Xn
1 = xn

1}
Pr{Xn

1 = x̄n
1}

≤ 2 ∀ xn
1 , x̄

n
1 ∈ {xn

1,iab} (127)

By using Lemma 6, we obtain

1

n
H(Xn

1 |W0) ≥ R′
1 −

1

n
. (128)

For the second term in (120), we have

1

n
H(Y n

2 |Xn
1 , X

n
2 )

=
1

n

∑

xn
1
,xn

2

Pr{Xn
1 = xn

1 , X
n
2 = xn

2}H(Y n
2 |Xn

1 = xn
1 , X

n
2 = xn

2 )

≥ 1

n

∑

(xn
1
,xn

2
)∈Tn

ǫ [PX1X2
]

Pr{Xn
1 = xn

1 , X
n
2 = xn

2}H(Y n
2 |Xn

1 = xn
1 , X

n
2 = xn

2 )

=
1

n

∑

(xn
1
,xn

2
)∈Tn

ǫ [PX1X2
]

Pr{Xn
1 = xn

1 , X
n
2 = xn

2}

·
∑

(a,b)∈X1×X2

N(a, b|xn
1 , x

n
2 )
∑

y2∈Y2

−p(y2|a, b) log p(y2|a, b)

(a)

≥
∑

(xn
1
,xn

2
)∈Tn

ǫ [PX1X2
]

Pr{Xn
1 = xn

1 , X
n
2 = xn

2}

∑

(a,b)∈X1×X2

(

P (X1 = a,X2 = b)− ǫ
)

∑

y2∈Y2

−p(y2|a, b) log p(y2|a, b)

=
∑

(xn
1
,xn

2
)∈Tn

ǫ [PX1X2
]

Pr{Xn
1 = xn

1 , X
n
2 = xn

2}
(

H(Y2|X1, X2)− O(ǫ)
)

(b)

≥ (1− ǫ)H(Y2|X1, X2)− O(ǫ)

≥ H(Y2|X1, X2)− O(ǫ)

(129)
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where O(ǫ) → 0 as ǫ → 0. In the above equation, (a) follows from the definition that

(xn
1 , x

n
2 ) ∈ T n

ǫ [PX1X2
]. The inequality (b) makes use of the following

∑

(xn
1
,xn

2
)∈Tn

ǫ (PX1X2
)

Pr{Xn
1 = xn

1 , X
n
2 = xn

2} ≥ 1− pe ≥ 1− ǫ. (130)

To compute the third term in (120), we define

ρ(w0, w1, y
n
2 , x

n
2 ) =











xn
1,w0ab

if there is a unique b such that

(qnw0
, xn

1,w0ab
, xn

2 , y
n
2 ) ∈ T n

ǫ (PQX1X2Y2
)

arbitrary otherwise

(131)

Then

Pr{Xn
1 6= ρ(W0,W1, Y

n
2 , X

n
2 )}

=
∑

w0,a,b,s,t

pw0,a,b,s,tPr{xn
1,w0ab

6= ρ(w0, w1, Y
n
2 , x

n
2,w0st

)|w0, a, b, s, t}

= λ1 < ǫ

(132)

Therefore, by Fano’s inequality, we obtain

1

n
H(Xn

1 |W0,W1, Y
n
2 , X

n
2 ) ≤

1

n

(

1 + λ1 log 2
n(R0+R′

1
)
)

< ǫ2 (133)

where ǫ2 is small for sufficiently large n.

To compute the fourth term in (120), we define

ŷn2 =

{

yn2 if (qnw0
, xn

2 , y
n
2 ) ∈ T n

ǫ (PQX2Y2
)

arbitrary otherwise
(134)

We then obtain

1

n
H(Y n

2 |W0, X
n
2 )

=
1

n

∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2}H(Y n
2 |Xn

2 = xn
2 ,W0 = w0)

≤ 1

n

∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2}H(Y n
2 , Ŷ

n
2 |W0 = w0, X

n
2 = xn

2 )

=
1

n

∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2}

·
(

H(Ŷ n
2 |W0 = w0, X

n
2 = xn

2 ) +H(Y n
2 |W0 = w0, X

n
2 = xn

2 , Ŷ
n
2 )
)

(135)
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The first term in the preceding equation can be bounded as

1

n

∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2}H(Ŷ n
2 |W0 = w0, X

n
2 = xn

2 )

≤ 1

n

∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2} log ‖T n
ǫ (PY2|X2,Q|qnw0

, xn
2 )‖

≤
∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2}(H(Y2|X2, Q) + ǫ)

≤ H(Y2|X2, Q) + ǫ

(136)

To bound the second term in (135), we use Fano’s inequality and obtain

1

n

∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2}H(Y n
2 |W0 = w0, X

n
2 = xn

2 , Ŷ
n
2 )

≤ 1

n

∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2}
(

1 + Pr{Y n
2 6= Y n

2 |W0 = w0, X
n
2 = xn

2} log |Y2|n
)

=
1

n
+
∑

w0,xn
2

Pr{W0 = w0, X
n
2 = xn

2}

· Pr
{

(qnw0
, xn

2 , y
n
2 ) /∈ T n

ǫ (PQX2Y2
)|W0 = w0, X

n
2 = xn

2

}

log |Y2|

≤ 1

n
+

∑

w0,xn
1
,xn

2

Pr{W0 = w0, X
n
2 = xn

2 , X
n
1 = xn

1}

· Pr
{

(qnw0
, xn

1 , x
n
2 , y

n
2 ) /∈ T n

ǫ (PQX1X2Y2
)
}

log |Y2|
(a)

≤ 1

n
+

∑

w0,xn
1
,xn

2
:

(qnw0
,xn

1
,xn

2
)/∈Tn

ǫ

Pr{W0 = w0, X
n
2 = xn

2 , X
n
1 = xn

1} log |Y2|

+
∑

w0,xn
1
,xn

2
:

(qnw0
,xn

1
,xn

2
)∈Tn

ǫ

Pr{W0 = w0, X
n
2 = xn

2 , X
n
1 = xn

1}

· Pr{(qnw0
, xn

1 , x
n
2 , y

n
2 ) /∈ T n

ǫ (PQX1X2Y2
)} log |Y2|

≤ ǫ3
(137)

where ǫ3 is small for sufficiently large n. In the preceding equation, the second term in (a)

is small because
∑

w0,xn
1
,xn

2
:

(qnw0
,xn

1
,xn

2
)/∈Tn

ǫ

Pr{W0 = w0, X
n
2 = xn

2 , X
n
1 = xn

1} ≤ pe ≤ ǫ. (138)
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Hence, the fourth term in (120) is

1

n
H(Y n

2 |W0, X
n
2 ) ≤ H(Y2|X2, Q) + ǫ3 (139)

Substituting (128), (129), (133) and (139) into (120), we obtain

H(W1|Y n
2 , X

n
2 ,W0,W2) ≥ R′

1 +H(Y2|X1, X2)−H(Y2|X2, Q)− ǫ4

= R′
1 +H(Y2|X1, X2, Q)−H(Y2|X2, Q)− ǫ4

= R′
1 − I(X1; Y2|X2, Q)− ǫ4

(140)

where ǫ4 is small for sufficiently large n.

Similarly, we can also obtain

H(W2|Y n
1 , X

n
1 ,W0,W1) ≥ R′

2 − I(X2; Y1|X1, Q)− ǫ5 (141)

where ǫ5 is small for sufficiently large n.

Hence, using the codebook given in Lemma 5 in Step 1 and the encoding functions defined

in (116) in Step 2, the equivocation rates for sufficiently large n are given by

R1,e ≤ R′
1 − I(X1; Y2|X2, Q) (142)

and

R2,e ≤ R′
2 − I(X2; Y1|X1, Q). (143)

Step 4: Other Cases

In Step 1, we have assumed that R′
1 > I(X1; Y2|X2, Q) and R′

2 > I(X2; Y1|X1, Q). If

R′
1 ≤ I(X1; Y2|X2, Q), we generate 2nR1 codewords xn

1 , and do not require λ1 < ǫ in Lemma

5. We set R1,e = 0. Similarly, if R′
2 ≤ I(X2; Y1|X1, Q), we set R2,e = 0.

In Step 2, we have assumed that R1 > R′
1−I(X1; Y2|X2, Q) and R2 > R′

2−I(X2; Y1|X1, Q).

If R1 ≤ R′
1 − I(X1; Y2|X2, Q), we change the encoder f1 to be the following:

f1 : (W0,W1) → {xn
1,iab}, mapping (w0, w1) → xn

1,w0w1b
,

where b is chosen uniformly from the set [1, 2nI(X1;Y2|X2,Q)]
(144)

In this case, note that the number of codewords is less than the number of rows in the

codebook. The encoding strategy is to map each codeword to each row. It is expected that

in this case the other user (user 2) is not able to decode any information, and hence user 1

achieves perfect secrecy.

In fact, the first term of the equivocation rate in (120) becomes

1

n
H(X1|W0) = R1 + I(X1; Y2|X2, Q) (145)
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because for each W0 = i, Xn
1 has 2n(R1+I(X1;Y2|X2,Q)) possible equally likely values. All other

terms in (120) remain the same as before. We hence have

H(W1|Y n
2 , X

n
2 ,W0,W2)

≥ R1 + I(X1; Y2|X2, Q) +H(Y2|X1, X2)−H(Y2|X2, Q)− ǫ

= R1 + I(X1; Y2|X2, Q)− I(X1; Y2|X2, Q)− ǫ

= R1 − ǫ.

(146)

Thus, for sufficiently large n,

R1,e ≤ R1, (147)

and user 1 achieves perfect secrecy.

We can similarly obtain that if R2 ≤ R′
2− I(X2; Y1|X1, Q), user 2 achieves perfect secrecy,

i.e.,

R2,e ≤ R2. (148)

Hence in summary, for a given point (R0, R1, R2) ∈ C̃p
MAC , the achievable equivocation

rate pairs are in the set S̃e(R0, R1, R2) defined in (90).

6.4 Proof of Theorem 8

In this section, we change Se(R0, R1, R2) given in (76) to an explicit form that is characterized

by inequality bounds only. We need only to derive the explicit form for S̃e(R0, R1, R2) given

in (90). The explicit form for Se(R0, R1, R2) follows by prefixing two discrete memoryless

channels to the GMAC as reasoned at the beginning of Section 6.2.

We first characterize S̃e(R0, R1, R2) given in (90) in a more convenient form. We define

the following set B(R0, R1, R2) of (R
′
1, R

′
2):

B(R0, R1, R2) :=























































(R′
1, R

′
2) :

R′
1 ≤ I(X1; Y |X2, Q),

R′
1 +R2 ≤ I(X1, X2; Y |Q),

R0 +R′
1 +R2 ≤ I(X1, X2; Y )

R′
2 ≤ I(X2; Y |X1, Q),

R1 +R′
2 ≤ I(X1, X2; Y |Q),

R0 +R1 +R′
2 ≤ I(X1, X2; Y )

R′
1 +R′

2 ≤ I(X1, X2; Y |Q),
R0 +R′

1 +R′
2 ≤ I(X1, X2; Y )























































(149)

For S̃e(R0, R1, R2), if we replace union over the set A(R0, R1, R2) with union over the set
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B(R0, R1, R2) as in the following, the region S̃e(R0, R1, R2) remains unchanged; i.e.,

S̃e(R0, R1, R2) =
⋃

(R′

1
,R′

2
)∈B(R0,R1,R2)























(R1,e, R2,e) :
0 ≤ R1,e ≤ R1

R1,e ≤ [R′
1 − I(X1; Y2|X2, Q)]+

0 ≤ R2,e ≤ R2

R2,e ≤ [R′
2 − I(X2; Y1|X1, Q)]+























. (150)

To see this, we plot the two sets A(R0, R1, R2) and B(R0, R1, R2) in Fig. 12. For any point

(r′1, r
′
2) that is in B(R0, R1, R2) but not in A(R0, R1, R2), there exists a corresponding point

(r̄′1, r̄
′
2) ∈ A(R0, R1, R2) such that r′1 ≤ r̄′1 and r′2 ≤ r̄′2. Hence























(R1,e, R2,e) :
0 ≤ R1,e ≤ R1

R1,e ≤ [r′1 − I(X1; Y2|X2, Q)]+
0 ≤ R2,e ≤ R2

R2,e ≤ [r′2 − I(X2; Y1|X1, Q)]+























⊂























(R1,e, R2,e) :
0 ≤ R1,e ≤ R1

R1,e ≤ [r̄′1 − I(X1; Y2|X2, Q)]+
0 ≤ R2,e ≤ R2

R2,e ≤ [r̄′2 − I(X2; Y1|X1, Q)]+























(151)

Therefore, those points that are in B(R0, R1, R2) but not in A(R0, R1, R2) do not contribute

new (R1,e, R2,e) for S̃e(R0, R1, R2).

We now show that S̃e(R0, R1, R2) given in (150) is equivalent to the following region

S̃ ′
e(R0, R1, R2).

S̃ ′
e = L̃1 ∪ L̃2 ∪ L̃3 (152)

where

L̃1 =































































(R1,e, R2,e) :
0 ≤ R1,e ≤ R1, 0 ≤ R2,e ≤ R2

R1,e ≤ [I(X1; Y |X2, Q)− I(X1; Y2|X2, Q)]+,
R1,e ≤ [I(X1, X2; Y |Q)−R2 − I(X1; Y2|X2, Q)]+,
R1,e ≤ [I(X1, X2; Y )−R0 − R2 − I(X1; Y2|X2, Q)]+
R2,e ≤ [I(X2; Y |X1, Q)− I(X2; Y1|X1, Q)]+,
R2,e ≤ [I(X1, X2; Y |Q)−R1 − I(X2; Y1|X1, Q)]+,
R2,e ≤ [I(X1, X2; Y )−R0 − R1 − I(X2; Y1|X1, Q)]+
R1,e +R2,e ≤ [I(X1, X2; Y |Q)− I(X1; Y2|X2, Q)− I(X2; Y1|X1, Q)]+,
R1,e +R2,e ≤ [I(X1, X2; Y )− R0 − I(X1; Y2|X2, Q)− I(X2; Y1|X1, Q)]+































































(153)

L̃2 =































(R1,e, R2,e) :
0 ≤ R1,e ≤ R1,
R1,e ≤ [I(X1; Y |X2, Q)− I(X1; Y2|X2, Q)]+,
R1,e ≤ [I(X1, X2; Y |Q)− R2 − I(X1; Y2|X2, Q)]+,
R1,e ≤ [I(X1, X2; Y )− R0 −R2 − I(X1; Y2|X2, Q)]+
R2,e = 0































(154)
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(a): Region A(R0, R1, R2) of (R
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Figure 12: Regions A(R0, R1, R2) and B(R0, R1, R2) of (R
′
1, R

′
2)

and

L̃3 =































(R1,e, R2,e) :
R1,e = 0,
0 ≤ R2,e ≤ R2,
R2,e ≤ [I(X2; Y |X1, Q)− I(X2; Y1|X1, Q)]+,
R2,e ≤ [I(X1, X2; Y |Q)− R1 − I(X2; Y1|X1, Q)]+,
R2,e ≤ [I(X1, X2; Y )− R0 −R1 − I(X2; Y1|X1, Q)]+































(155)

We first show S̃e(R0, R1, R2) ⊂ S̃ ′
e(R0, R1, R2). For a point (r1,e, r2,e) ∈ S̃e(R0, R1, R2), we
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consider the following four cases.

Case 1. If r1,e > 0 and r2,e > 0, then there exits (R′
1, R

′
2) ∈ B(R0, R1, R2), such that

0 < r1,e ≤ R′
1 − I(X1; Y2|X2, Q) (156)

and

0 < r2,e ≤ R′
2 − I(X2; Y1|X1, Q). (157)

Applying the bounds that (R′
1, R

′
2) ∈ B(R0, R1, R2) needs to satisfy to the preceding inequal-

ities, it is clear that (r1,e, r2,e) ∈ L̃1.

Case 2. If r1,e > 0 and r2,e = 0, then it is easy to check that (r1,e, r2,e) ∈ L̃2.

Case 3. If r1,e = 0 and r2,e > 0, then it is easy to check that (r1,e, r2,e) ∈ L̃3.

Case 4. If r1,e = 0 and r2,e = 0, then it is trivially true that (r1,e, r2,e) ∈ S̃ ′
e(R0, R1, R2).

We now show that S̃ ′
e(R0, R1, R2) ⊂ S̃e(R0, R1, R2). We first show L̃1(R0, R1, R2) ⊂

S̃e(R0, R1, R2). We consider the following four cases.

Case 1. If r1,e > 0 and r2,e = 0, then we let r′1 = r1,e + I(X1; Y2|X2, Q) and r′2 = R2. From

the first three bounds that define L̃1(R0, R1, R2) and (R0, R1, R2) ∈ C̃p
MAC , it is easy to check

that (r′1, r
′
2) ∈ B(R0, R1, R2). Hence (r1,e, r2,e) ∈ S̃e(R0, R1, R2).

Case 2. If r1,e = 0 and r2,e > 0, then it can be similarly checked that (r1,e, r2,e) ∈
S̃e(R0, R1, R2) as in Case 1.

Case 3. If r1,e > 0 and r2,e > 0, then let r′1 = r1,e + I(X1; Y2|X2, Q) and r′2 = r2,e +

I(X2; Y2|X1, Q). It is easy to check that (r′1, r
′
2) ∈ B(R0, R1, R2). Hence (r1,e, r2,e) ∈

S̃e(R0, R1, R2).

Case 4. If r1,e = 0 and r2,e = 0, then it is trivially true that (r1,e, r2,e) ∈ S̃e(R0, R1, R2).

Finally, the conditions L̃2(R0, R1, R2) ⊂ S̃e(R0, R1, R2) and L̃2(R0, R1, R2) ⊂ S̃e(R0, R1, R2)

can be similarly shown as in Case 1 and Case 2, respectively.

7 Conclusions

We have studied the capacity-equivocation region of the GMAC with confidential messages.

For the GMAC with one confidential message set, we have derived inner and outer bounds on

the capacity-equivocation region. Although the two bounds only match partially, they are

tight enough to characterize the secrecy capacity region, where confidential messages sent

by user 1 are perfectly hidden from user 2. For the degraded GMAC, we have established

the capacity-equivocation region. We have further derived the capacity-equivocation region

for two examples of degraded GMACs. In particular, we have found that the capacity-

equivocation region of GMACs with confidential messages depends only on the marginal
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channels p(y|x1, x2), p(y1|x1, x2), and p(y2|x1, x2). Based on this observation, we have ob-

tained the capacity-equivocation region for the Gaussian GMAC (not necessarily physically

degraded) with one confidential message set.

We have also obtained an achievable rate-equivocation region (inner bound on the capacity-

equivocation region) for the general case of the GMAC with two confidential message sets.

The region takes a much more complicated form than the case of the GMAC with one

confidential message set. We have further derived an equivalent but explicit form for the

achievable rate-equivocation region. Moreover, we have shown that the achievable rate-

equivocation region for the case of two confidential message sets carries a new feature of a

trade-off between the two equivocation rates corresponding to the two confidential message

sets sent by the two users.
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