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We consider a two-user discrete multiple-access channel in —------------
which one user wishes to communicate confidential messages
to a common receiver while the other user is permitted to
eavesdrop. We refer to this channel as thaltiple access
Channel W|th Conﬁdential messag(iMACC) and denote |t || CHANNEL MODEL AND STATEMENT OF RESULT
(X1 x Xa,p(y, y1|z1, z2), Y x Y1). The communications sys- ) ) ) )
tem is shown in FigurEl1. The ignorance of the other user is” discrete memoryless MAC with confidential messages
measured by equivocation. This approach was introduced §SiSts Of finite setst1, 4>, Y, V1 and a conditional proba-
Wyner [1] for the wiretap channel, a scenario in which a singPiity distribution p(y, y1 |21, 22). Symbols(z1, 25) € X1 x Xy
source-destination communication is eavesdropped. Uthéer &€ channel inputs an@/, y1) € ¥ x )1 are channel outputs
assumption that the channel to the wire-tapper is a degraddth® receiver and encoder, respectively. The channel
version of that to the receiver, Wyner determined the cay)acip(y|“71j x2) is @ MAC channel, and the channgly, y: |1, 2)
secrecy tradeoff. This result was generalized by Csismdr 45 & Wire-tap channel. Each encodgt = 1,2, wishes to send
Korner who determined the capacity region of the broadc&dl independent messad€; < {1,...,M;} to a common
channel with confidential messages [2]. The Gaussian wjpe-f €C€IVer inn channel uses. The channel is memoryless and
channel was considered in [3]. time-invariant in the sense that

In this paper, we determine the bounds on the capacity re- , b i i—1 i—1y , , , )
gion of thré I\F;IACC, under the requirement that the e:’;tﬁiesd%op-pwlﬂ’yz’z|xl’Xg’y1 Y2 ) = P yaalers e2) (1)
ping user is kept in total ignorance. The results charameriwherex: = [xtyl, cee :c“] To simplify notation, we drop
the rate penalty when compared to the conventional MAC [4he superscript wheh= n. A deterministic encodey for user
[5] due to the requirement that one message is kept secretl is a mappingy : Wi — X" generating codewords

It is apparent from the results that eavesdropping by user
1 will hurt the achievable rate of usér As illustrated in the x1 = g(wr). )

last section by an example in which the half-duplex corlstraiA stochastic encodef for user? is specified by a matrix
is imposed, the eavesdropper should give up on listening g%l conditional probabilitiesf (x|ws ), wherexs € X3, ws €
together, thus maximizing rates of both users. The moral 9\f, is the private message set ar'1d 2
the example is that either usérwill make both himself and =~ '

the other user miserable by eavesdropping more and thus Zf(x2|w2) =1.
reducing both its own and other user’s ability to transmif; o X2

it will make both of them happy if it decides not to listen
We note that, although usé@rcannot know exact times when
userl is eavesdropping, it is enough for useto know the
eavesdropping probability (or equivalently, the fractafrtime

userl is listening), to adjust its code rate accordingly. Thig"1 X WQ' . L .
information can be considered public, since it is known ® th The implicit as;umptlon In our mod_el Is that useobserves
common receiver. the sequenc®&’; in block fashion. This prevents usérfrom

using symbolsy; for encoding its own messages, as reflected
1This work was supported by NSF Grant NSF ANI 0338805. in the encoding functior{2). This restriction of our model i

———

Fig. 1. System Model

Note thatf(x2|w2) is the probability that the message is
encoded as channel inpus.
The decoding function is given by a mappigg: V" —
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made for the sole purpose of making the problem easier toConsider a codéM;, M, n, P.) for the MACC. Applying
solve and understand. Fano’s inequality results in

An (M, My, n, P.) code for the channel consists of two N
encoding functionsf, g, decoding functions such that the (W1, W2[Y) < Pelog(My M — 1) + h(Fe) = ndn  (12)

average probability of erroof the code is wheres, — 0 as P, — 0. It follows that

1
P = Z M1M2P{¢(Y) # (w1, ws)|(w1, w2) sent (3) H(Wy, Wo|Y) = HW1|Y) + H(Ws|Y, W) < né, (13)

(w1,w2)

The level of ignorance of user with respect to the confi- We first consider the bound oR; .

dential message is measured by the normalized equocah%rhl — H(W)
(1/n)H(W2|X1,Y1).
A rate pair(Ry, R,) is achievable for the MACC if, for any =I(W;Y) + HW1[Y)
€ > 0, there exists My, My, n, P,) code such that <@ 1(W;Y) + né,
M,>2"B =12 P, <e¢ (4) <O (X (W1);Y) + ndp
1 <) 1(X1:Y|X2) + nd,
Ry — ~H(W2|X1, Y1) <. ) = EL 1 Y|Xe) +n .
. =) X, Y H(Y|Y'"™ X1, X
The capacity region of the MACC is the closure of the set - ZH(YZ'| 2 ) = Z (Yil , X1, Xs)
of all achievable rate pair&R;, R2). =1 =1
The next two theorems show the outer bound and the +non
achievable rates and are the main results of this paper. () - -
Let Cy be a closure of the union of allR,, R,) satisfying = 2; H(Y:|Xa:) — 2} H(Y;| X1i, Xa:) + ndn
Ry < I(X1;Y|Xa) n
Ro < I(V: Y |U, X1) — I(V: AU, X1) = 2I(X1,i;Yi|X2,i) + ndy, (14)
R+ Ry <I(X1,V;Y)-I(V:1h|U, X4) (6)

where(a) follows from from Fano’s inequality(13)ip) from
for some joint distribution @); (c) from the independence &, X»; (d) from the chain
rule; (e) from the fact that the conditioning decreases entropy
and from the memoryless property of the chanhkl (1).
= p(wp(vlw)p(eiw)p(zz|v)p(y, yiler,z2)  (7) Following the approach in [6, Sed4.3.4], we introduce

p(u,v,xl, T2, yvyl)

whereU andV are auxiliary random variables satisfyibg— @ uniformly distributed random variabl@, @ € {1,...,n}.
V = (X1, X3) = (Y, Y1) Equation [[(T#) becomes
Theorem 1: (Outer Boundfor any achievable rate pair n
(R1, R2) in MACC it holds that(R;, R2) € Cy. nRy < ZI(Xl,i§ Yi|X2.i) + nén
Theorem 2: (AchievabilityYhe rates in the closure of the i=1
union of all (Ry, Rs) satisfying n
=Y I(X1:Yi|X24,Q =) +nd,  (15)

Ry <I(Xy;Y|U,V) i=1
Ry < I(V,Y|U, Xl) — I(V,Y&lU, Xl) =nl XLQ;YQ|X2_’Q,Q) + nd,
Ri+ Ry < I(X4,V;Y|U) - I(V;11|U, X1) (8) nl(X1;Y| X2, Q) + no,

for a joint distributionp(u, v, z1, z2,y,y1) that factors ad{7). whereX; = X; o, Xo = X2,,Y = Y. Distributions of new
variables depend o in the same way as the distributions of
X1, X2, Y; depend on.

Next, we derive the bound oR;. Note that the perfect
security [5) implies

Ill. OUTERBOUND

Proof: (Theorentill)
We next show that any achievable rate pair satisfies

Ry < I(X1;Y|X2,Q) 9

Ry < I(V; YU, X1,Q) — I(V; 1 |U, X41,Q)  (10)

Ri+ Ry < I(U,X1,V:Y|Q) — I(V;Y1|U, X1,Q) (11) Hence, we consider the bound &/(W5|X1,Y:).
for some product distributiotV — V' — (X1, X2) — (Y, Y1) H(W2|X1,Yq)

that factor as[{7) and an independent timesharing random = HWs|Xy) — I(Wa: Y1|X1)

variable Q. Then, the approach of [6, Thm4.3.3] and the . ] _ )
observation that Markovity/ — V — (X, X») — Y implies = [W5; Y[Xo) + H(Wo| Y, X) = (W3 Y1 X1)
U — (V,X1) = Y, will prove the claim. < I(Wa; Y[Xq) = I(Wa; Y1 Xy ) + ndy 17)

nRg — ne S H(WQle,Yl). (16)



where the inequality follows from Fano’s inequality {13)whereY; = Y . From the memoryless property of the
We next use a similar approach as in [2, Sect.V] to bourthannel[(lL), it follows thal” — (X1, X5) — (Y, Y7).

equivocationd (W»|X1,Y,) in (17). Using [23) in [22), we obtain
We denoteYzlJrl = [Y1,i+1, .- ., Y1,»] and use the chain rule
to obtain IWyY X)) =nI(V3YU, X1,Q) + X1 — X2, (26)
I(W2; Y[Xq) Similarly, using [25) in[(2B)
_ Vi1 . .
_Z;I(WQ,YJY , X1) I(Wa: Y1 |X0) = nI(V; ViU, X1, Q) + 51 — . (27)

_ ZI(WQ,;Y”??H’Yifl’XI) I -5, (18) Substituting [(26) and_(27) in_(17) results in

1=1 1
I(W2;Y1|Xy) EH(W2|X1,Y1)
n ~ . < . _ . .
:ZI(W27Y11|Y7]:+17X1) —I(V7Y|U7X17Q) I(V7YVI|U7X17Q)+57I (28)
iil Using [16) in [28), we obtain the desired the bound (10) on
_ Z I(Wa,; }/l,i|?i+la Yi_l,Xl) + 21 o 22 (19) rate Rs.
im1 We next prove the bound on the sum rdie] (11).
where § n(Ry + Ry) = I(Wy, Wa; Y) + H(W1, Wy Y)
=Y 1YY Y X) < I(Xq, Wa; Y) +nd,
i=1 < I(Xq, Wo;Y) — [H(Wa) (29)
Yy = Z I(Yzl'Jrl; Y;|Yi_1,X1, Wg) — H(W2|X1, Yl) — ne] + nd,
i=1 = I(Xl,Y)+I(W2,Y|X1)
. n . - —I(Wa;Y1|X1) + n(dp +
3, = ZI(YZ_1§Y1,Z'|Y1+1,X1) ( 2 1| 1) TL( 6)
i=1 where the second inequality follows from the perfect secrec

LY YAV Xy, W), (B). Using [22),[(2B) and Lemnid 1, we have

8
I

Il
-

K3

I(W27Y|X1) — I(WQ,Y1|X1)

Lemma 1:%; = 3; and ¥, = 3. n
. . ; ’ = Z[I(WQ;YiWi,XLi) — I(Wa; Y1,4|Us, X13)] (30)

Proof: Proof follows the approach in [2, Lemn¥4. [ ]
We let =1
i—1~Nit+1lyi—1~rit+1
Up = (Y'Y XX (20)  Hence, [(ZP) can be rewritten as
Vi = (Wa, U 21
(W2, U;) (21) (R + Ro)

in (I8) and [(IP) and obtain respectively n _

" <Y IXG YY) 4+ I(Was Vil Uy, X1.)

(W YIXy) = Y IV ViU, Xi ) + 51 =8y (22)  i=1
i=1 — I(Wa; Y1,4|Us, X13)] +n(0, + €)

I(Wa; Y1]Xy) = ZI(Vi; Y1,i|Us, X1,i) + S -3 (23)
=1
We follow the same approach as [n](15) to obtain

[1(X1, YL YY) + I(Wos Vi|Us, X1,0)

I

s
Il
-

— I(Wa; Y1 4|Us, X16)| 4+ n(6 + )

n

1 1 « _
=Y IV YilUs, X) = — > T(Vis YilUs, X1,6,Q = 1)

I

s
Il
-

[I(Vi, X1,:Y3) — 1(Vi; Y1,3|Us, X13)] +n(0n + €)

i=1 i=1 n
= 1(Vq; YglUq, X1,¢,Q) < Z[I(%, Ui, X1,5:Y:) — I(Vi; Y14 Us, X13)] + n(0n + )
=I(V;Y|U, X41,Q) (24) =1

whereV = Vg, Y =Yg, X; = X1.0,U = Ug. Similarly, whereU; andV; are defined in[{20) and{R1). Using the same

n time-sharing variable approach as before we obtain the sum

1 .
= ZI(Vi;H,AUi,Xu) = I(V: VAU, X1,Q) (25) rate bound[(1l1). Moreover, the Markovify,; ; — U; — V; can

i—1 easily be verified. m



IV. ACHIEVABILITY

Proof: (Theoreni2)
Fix p(u), p(z1|u), p(v[u) andp(zz|v). Let

R3 = R2+I(V,Y'1|X1,U)

to guarantee’, — 0 asn gets large.
Equivocation: We consider the normalized equivocation.

H(Ws|Y1,X1)
> H(Ws|Y1,X1,U)
= H(Wa, Y1|X1,U) — H(Y,|X;,U)
= H(W,, Y1, VX1, U) — H(V|[W2, Y1,X1,U)
— H(Y1|X1,U)

(31)

Codebook generation:Generate a random typical sequence
u, with probability p(u) = []}_, p(u;). We assume that both
transmitters and the common receiver know the sequance

GenerateM; = 2" sequences;, each with probabil-

ity p(xilu) = [[i—, p(z1:|u;). Label themx(wy), wi €
{1,..., My

Generate M3 = 2" sequencesv with probability
p(vlu) = I, p(vilu;). Label them v(ws,l), ws €
{1,...,2"8=) T e {1,..., 2 (VMi|X,0)y

Encoding: To send message; € W, user1 sends
codewordx; (w1). To send messages € W,, user2 uses
stochastic encodelf, and encoder2 uniformly randomly

= H(W,,V|X1,U) + H(Y1|W2,V, X, U)
— H(V|W5,Y1,X1,U) — H(Y,|X1,U)
> H(VIX,,U)+ H(Y.|V,X;,0)
— H(V|W3,Y1,X1,U) — H(Y,|X1,U)

chooses an codeword(w,, [). That is, the encoder chooses The first term in[(@R) is given by

randomly a codeword (w-, ) from a binws. Finally, user2

generates the channel input sequenceaccording ta(xs|v).
Decoding: Let AE") denote the set of typicdl, x;,v,y)

sequences. Decoder chooses the paif,w2) such that

(u,x1(w1), v(ws, 1), y) € A™ if such a pair(wy, ws) exists

and is unique; otherwise, an error is declared.
Probability of error: Define the events

Ewl,wg = {(u7 X1 (w1)7 Y) € Agn)}

Without loss of generality, we can assume tliat, w2) =

v(wa, 1), (32)

= H(V|X1,U) - H(V|W2,Y,X;,U)
— I(V;Y1|X17U) (42)
H(V|X1,U) = H(V[U) = nRs (43)

where the first equality follows from the Markov chaw —
U — X, and the second equality because gién= u, V
has2™s possible values with equal probability.

We next show that (V|W2,Y,X;,U) < ndy, where
01 — 0 asn — oo. Let Wy = wq. User2 then sends a
codewordv(ws, ). Let \,,, denote the average probability of
error that usell does not decode(w., ) correctly given the

(1,1) was sent. From the union bound, the error probabiliipformation W, = w. Following the joint typical decoding

is given by
P. <P{ES,|(1,1)} + Z;l P{Ew,1(1,1))
+ lel:P{El,uizKlal)}
+w§ > > P{Bu (1)) (33)
wiFl waAl 1

From the AEP and [6, Thm. 14.2.1, 14.2.3], it follows that

P{ET[(1,1)} <6 (34)
P{E,, 1](1,1)} < o—n[I(X1;Y|V,U)=4] (35)
P{E},|(1,1)} < 27T (VY 1X0,0)=3] (36)
P{Ey, w,|(1,1)} < 9—nlI(X1,V;Y|U)=6] (37)

whered — 0 asn — oco. Hence, [(3B) is bounded by

n(I(X1;Y|V,U)—46) + 2nR3 2—n(I(V;Y|X1,U)—5)

P, <§+42nBio-

+ 2”(Rl+R3)2*”(1(X17V§Y‘U)*5) (38)
implying that we must choose

Ry < I(X; Y|V, U) (39)

Ry < I(V;Y|X1,U) (40)

Ry + Ry < I(X4,V;Y|U) (41)

approach, we hava,,, — 0 asn — oo. Therefore, Fano’s
inequality implies that

H(V|W2 = ’LUQ,Yl,Xl,U) S 1 + )\w2 (nR3 — ’IIRQ) é TL51.
Hence

H(V|W2,Y,X;,U) =
Z p(Wg = ’LUQ)H

wa EWa

(V|W2 = U}Q,Yl,Xl,U) S ’I’L(Sl.
(44)
Finally, the third term in[(4R2) can be bounded by

I(V;Y1|X1,U) < nl(V;Yi|X1,U) +ndy  (45)
whereds — 0 asn — oo. The proof follows the proof in [1,
Lemmas].

Therefore, by usind (31)_(#3], (¥4), and(45), we can rewrit

@2) as

H(W2|X1,Y1) Z nR3 - TLI(V,Y1|X1,

=nRy — ne

U) —n(é1 + 62)
(46)

wheree £ 61 + d. ]



V. DISCUSSION ANDIMPLICATIONS “squeeze” some information through even if usdistens all
To show the impact of secret communication on the achieit€ fime. Nonetheless, this example illustrates the furedtan
able rates in MACC, we present two examples: the half-dupi@ghavior in the MACC, that can be observed from Corolldry 1,
MACC and the Gaussian MACC. To simplify calculations, w&d- (48): the more uset decides to listen, the more user
consider the following corollary which gives a weaker inndf@S t0 equivocate and his achievable rate is lower.
bound used in the rest of the paper. We next consider the Gaussian channel

Corollary 1: The rates in the closure of the convex hull of Y =X, +Xo+ 2 (58)
all (Rq, R2) satisfying Y =Xy + 74 (59)

Ry < I(X1; Y|Xz) (47) whereZ andZ; are independent zero-mean Gaussian random
Ry < I(X2;Y[X1) — I(X2; Y1[Xy) (48) variables with varianceV and Ny, respectively. The code
Ri+ Ry < I(X31,X0;Y) — I(X3; V1| X1) (49) definition is the same as given in Sectloh Il with the addition

. o _of the power constraints
for fixed product distributionp(z1)p(z2) on X; x X is

achievable in MACC. 1< 2

- 1< =1,2.
Proof: Corollary follows by choosingl’ = X, and U n;E[X“] =k, t=12 (60)
independent fromX; and X, in Theoren{P. [] h

Binary inputs are to be communicated from the both usersCorollary 2: The rates in the closure of the convex hull of
under a half-duplex model in which usércannot listen and all (R, R,) satisfying
transmit at the same time. Therefake € {0,1} and X; €

{2,0,1}. Null symbol@ models the listening period of user R <C (ﬁ) (61)

1. When X; = &, userl observes the output; = Y’; when N

userl transmits,X; € {0, 1}, the outputt; is the null symbol, Ry < C (&) _C <&> (62)

no matter what use2 sends. When both users transmit, the N N Ny

MAC channel to the destination is given by the mbdum P+ P P

Y = X; ® X,. OtherwiseY = X,. In summary, Ri+R=C N ) -C N, (63)
Corollary follows from Theorer]Z by independently choosing

Y=X18X2, Y] =0, if X17£® (50) XtNN[O,Pt] fort:1,2.
Y=X,, Vi=Y if X1 =0 51
S ’ A (1) Future Work
DenoteP = P[X, = 1] andD = P[X; = 2]. Rates[(4")E{49) |t is conceivable that the outer bounds given in Theoém 1
for this channel can be shown to be can be strengthened to coincide with the lower bounds of
R1 < h(P) (52) Theoren{P. I_nvestlgatlng th|s possibility and determinihg
MACC capacity are the subjects of our future work. Moreover,
Ry < H(X2)(1 - D) (53) the formulation of this problem in which the objective is
Ry + Ry < H(Y) - H(X3)D. (54) to maximize rates under the secrecy constraint follows the
definition of Wyner [1]. However, different objectives car b
envisioned, in which uset is more interested in eavesdrop-
ing than in maximizing its rate. It would be interesting to

If we assume the inputs at use@rare equally likely, then
H(Y) = 1. The rates[(52):(34) become

Ry < h(P) (55) compare the conclusions that follow from the two problem
R,<1-D (56) formulations.
Ri+Ry<1-D (57) REFERENCES
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