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Abstract— We describe the structure of optimal Input co-
variance matrices for single user multiple-input/multiple-output
(MIMO) communication system with covariance feedback and
for general correlated fading. Our approach is based on the novel
concept of right commutant and recovers previously derived
results for the Kronecker product models. Conditions are derived
which allow a significant simplification of the optimization
problem.

I. I NTRODUCTION

Since the seminal work of Telatar [1] on the Shannon
capacity of multi-antenna wireless systems, this area has
attracted a lot of attention. The deveploment has started with
the investigation of the capacity of single-user MIMO systems.
Many results on the capacity for different types of channel
state information at the transmitter and/or receiver are known.
The achieved progress in this field was the key element, that
MIMO systems are already used in existing systems. One
important research topic on MIMO systems is the impact of
correlation of the channel matrix on the achievable capacity
[2]-[8]. A lot of results are known in this area, but most of the
works are using the assumption, that the channel covariance
matrix is the Kronecker product of the covariance matrices of
the transmit and receive antennas [3], [4]. In the following
paper the general case is analyzed.
The paper is organized as follows: In Section II we review
shortly the model and formulate the main problem. Addition-
ally we divide the set of variance matrices into two classes
of separable and entangled positive semidefinite matrices,a
definition borrowed from quantum information theory. This
separation shall help us to present our results for the classof
the separable matrices which is easier to deal with, followed
by an extension of results to entangled matrices. Section
III starts with a novel concept of right commutant which
is the key ingredient in our approach. It can be seen as a
characterization of one-sided invariant subspaces for thegiven
channel variance matrix (cf. Lemma 3.1) or, alternatively,
as description of symmetries of the channel variance matrix
(cf. Lemma 3.5.1). Our subsequent results in Section III rely
hardly on that concept, which, combined in a appropriate

way with some simple concavity considerations1, turns out
to be rather powerful tool. For example, we do not need
any majorization results/considerations which are the basis
of results in [7], [8]. Our main result, Theorem 3.3, is a
characterization of optimal input variance matrices.
Notation and Preliminaries We shall denote matrices by
capital letters, e.g.H . The hermitian conjugate (adjoint) is
denoted by(·)H while (·)t is reserved for the transpose of a
matrix. The set ofN × N matrices with complex entries is
abbreviated byM(N,C) andA⊗B denotes the tensor product
(Kronecker product) of matricesA andB. 1N is theN ×N

unity matrix. diag(Q1, . . . , Qc) is the shorthand for the matrix
which has the matricesQ1, . . . , Qc as its diagonal entries and
0s else, the size of the diagonal blocks will be specified in
each particular case. tr(A) is the trace of the matrixA and
H ∼ N (0,Σ) means that the complex valued random matrix
H of prescribed size is normally distributed with mean0 and
varianceΣ.
We shall introduce some simple concepts from the theory of∗-
algebras of matrices which will be helpful in this paper (cf.[9]
chap. I for more information). A∗-algebra A in M(N,C) is
a linear subspace which is closed under matrix multiplication
and under the action of(·)H -operation. It can be shown [9] that
each∗-algebra of matrices has a multiplicative unit.∗-algebras
appearing in this paper shall have1N as the unit element with
respect to the matrix multiplication. A (orthogonal) projection
P 6= 0 is called minimal projection in A if P ∈ A and
Q ≤ P for any projectionQ ∈ A implies Q = 0 or P = Q.
Equivalently, a non-zero projectionP ∈ A is minimal if and
only if PAP = CP . By a resolution of identity in A we
mean a set of mutually orthogonal projections{Pi}ci=1 ⊂ A
that satisfies

∑c

i=1 Pi = 1, where1 denotes the multiplicative
unit in A.
If A ∈ A ⊂ M(N,C) is hermitian or normal matrix, then
we can represent it according to the spectral theorem as
A =

∑

λ∈σ(A) λPλ, whereσ(A) denotes the spectrum (set

1After finishing this paper we learned that Tulino, Lozano andVerdú
[14] used the concavity of the capacity in a similar way to characterize
optimal covariances for channels with independent columnsand symmetric
joint distribution.
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of eigenvalues) andPλ is the projection onto the eigenspace
corresponding to the eigenvalueλ. By defining properties
of a ∗-algebra, withA ∈ A we also haveg(A) ∈ A for
each complex valued polynomial. It is easily seen that for
eachλ ∈ σ(A) there is complex valued polynomialgλ with
gλ(A) = Pλ and hencePλ ∈ A for all λ ∈ σ(A), a fact which
will be useful in the proof of Lemma 3.1 below.
Finally, we recall a way of viewing a tensor product of
matrices as a linear map which will be necessary in the last part
of the paper: ForA ∈ M(M,C), B ∈ M(N,C) we consider
the tensor productA⊗B and anM ×N matrixH . Then it is
easily seen using rank oneM ×N matrices that the canonical
action ofA⊗B onH is given by(A⊗B)(H) = AHBt. This
action extends to arbitrary elements ofM(M,C) ⊗M(N,C)
by linearity, since eachΣ ∈ M(M,C) ⊗ M(N,C) can be
written as a complex linear combination of such elementary
tensorsA⊗B.

II. M ODEL AND PROBLEM FORMULATION

We focus on a single point-to-point wireless communication
system usingN transmit andM receive antennas. We assume,
that the behavior of the channel can be described by the well
known narrow-band flat fading channel model, i.e.

y = Hx+ n,

wherex is the N dimensional transmit vector,y is the M

dimensional receive vector,H is theM ×N channel matrix,
and theM componentsnk of the noise vectorn are assumed
to be i.i.d. complex circularly symmetric Gaussian distributed
with mean 0 and varianceσ2

n. For the channel matrixH we
will use a more general correlation model than [7], [8] to
present our ideas in the most transparent way which allows
a direct comparison with the existing results. Then we shall
show that this correlation model already incloses the full
complexity of the general case. The channel matrix in this
special case can be described as follows:

H =

s
∑

i=1

R
1

2

i WiT
t 1

2

i , (1)

whereWi are i.i.d. zero mean , mutually independent complex
GaussianM×N matrices and the positive semidefiniteM×M

resp.N ×N matricesRi resp.Ti are related to the variance
Σ of H by

Σ =

s
∑

i=1

Ri ⊗ Ti, (2)

whereΣ := E(H ⊗H) which has componentsE(Hi,jHl,m).
Observe that, since we are dealing withcomplex matrices,
A ≥ 0 implies thatA is hermitian.
Remark: Note that such decompositions into a sum of ten-
sor products of positive semidefinite (PSD) matrices are,
in general, non-unique: a simple example is given in the
symmetric case of two transmit and two receive antennas with
the variance matrixΣ = 1 ⊗ 1 which can be alternatively
decomposed intoΣ =

∑2
i=1 1 ⊗ eie

H
i , {e1, e2} being any

orthonormal basis inC2. This non-uniqueness with respect to
decompositions corresponds to the freedom of choice in the
particular realization of random variables distributed according
to a given probability distribution.
PSD matrices acting onCM ⊗CN that allow a decomposition
as in (2) with PSD summands are calledseparable in quantum
information theory. Otherwise we say that they areentangled
(cf. [11], [10] and references therein). The simplest example
of an entangled PSD matrix is given byggH , where g :=
e1 ⊗ e1 + e2 ⊗ e2 and{e1, e2} being canonical basis ofC2.
A handy sufficient criterion for separability of a given PSD
matrix overCM ⊗ C

N is given in [10]:
Theorem 2.1 (Gurvits/Barnum): A PSD matrixΣ is sepa-

rable if ||Σ−1M⊗1N ||2 ≤ 1, where||·||2 denotes the Hilbert-
Schmidt norm on matrices (i.e.||A||2 :=

√

(A,A)HS :=
√

tr(AHA)).
In the following paper we assume, that the receiver knows
the channel perfectly, and the transmitter has only knowledge
of the channel covariance matrixΣ. As a consequence, the
channel state information at the transmitter is a deterministic
function of the channel state information at the receiver. Under
this condition the ergodic capacity of the considered MIMO
system is given by

C = max
tr(Q)≤p
Q≥0

E(log det(1M +
1

σ2
n

HQHH)), (3)

as it is easily seen using the results of [12]. The optimization
problem (3) is a convex smooth optimization problem. The
capacityC = C(Q̂) for an optimal transmit covariance matrix
Q̂ is achieved by transmitting independent complex circular
Gaussian symbols along the eigenvectors ofQ̂, and the powers
are allocated according to the eigenvalues of the matrixQ̂ [5]-
[8].

III. R ESULTS

For a given variance matrixΣ ∈ M(M,C) ⊗M(N,C) we
define the “right” commutant

CΣ := {A ∈ M(N,C)|(1M ⊗A)Σ = Σ(1M ⊗A)},

and consider any resolution of unity consisting of mutually
orthogonal minimal projections inCΣ, i.e. 1N =

∑t

i=1 Pi

with Pi ∈ CΣ minimal andPiPj = δijPi.
Example 1. If the variance matrix is given byΣ = R⊗T then
we haveCΣ = {A ∈ M(N,C)|AT = TA}, and each set of
mutually orthogonal minimal projections inCΣ adding to1N

is given by projections onto the one-dimensional subspaces
spanned by the eigenvectors ofT .
Some simple observations concerning the concept of right
commutant are collected for ease in the following

Lemma 3.1: LetΣ be a PSD matrix inM(M,C)⊗M(N,C)
then we have:

1. CΣ is a subalgebra ofM(N,C) containing1N which is
closed under(·)H−operation, i.e.CΣ is a ∗-algebra.

2. Let {Pi}ui=1 and {Qj}vj=1 be resolutions of identity
consisting of minimal projections inCΣ . Then u = v



and there is a permutationπ of {1, . . . , u} such that
tr(Pi) = tr(Qπ(i)) for all i ∈ {1, . . . , u}.

3. If Σ is separable and if{Pj}uj=1 is a resolution of identity
consisting of minimal projections inCΣ, then there is a
decomposition ofΣ into sum of tensor products of PSD
matrices

Σ =

s
∑

i=1

Ri ⊗ Ti,

satisfyingTiPj = PjTi for all i ∈ {1, . . . , s} and j ∈
{1, . . . , u}.

Remark: Our right commutantCΣ is a close relative of the
concept of commutant which is widely used in the theory
of operator algebras and quantum information theory. And,
indeed, the proof of the properties stated in Lemma 3.1
consist of some standard conclusions, at least for those already
familiar with the usual commutant from the theory of operator
algebras. For the ease of reading we include this short proof.
Proof of Lemma 3.1: The first item is easily checked by
inspection and is standard in the theory of matrix (operator)
algebras (cf. [9]). For the second item, note that eachPiQjPi

is hermitian and contained inCΣ. It is well known that then
all spectral projections ofPiQjPi are also contained inCΣ.
Using this fact it is easy to deduce a contradiction to the
assumed minimality of the involved projections unlessu = v.
The second part is then easily obtained.
The third item follows from the relation

Σ =

u
∑

j=1

(1M ⊗ Pj)Σ(1M ⊗ Pj),

combined withΣ =
∑n

l=1 R̃l ⊗ T̃l whereR̃l and T̃l are PSD,
which is ensured by separability ofΣ. Indeed, we merely have
to set

Ri := R̃i and Ti :=
u
∑

j=1

Pj T̃iPj ,

and we arrive at the desired conclusion of the lemma. �
Remark: As we will show in the following the minimal
projections {P t

j }
u
j=1 shall serve as the starting point of

block-diagonalization procedure for optimal input covariance
matrices. The second part of Lemma 3.1 ensures that no
particularly chosen minimal resolution of identity is preferred,
i.e. the dimensions of the corresponding ranges of considered
projections are equal up to a permutation.

Unfortunately, there are cases where the algebraCΣ is triv-
ial, i.e. consists of complex multiples of1N as the following
example shows:
Example 2. Let M = 2 = N andΣ = e1e

H
1 ⊗e1e

H
1 +e2e

H
2 ⊗

ggH , where{e1, e2} denotes the canonical basis inC2 and
g = 1√

2
(e1 + e2). Let P ∈ CΣ be a projection, then we have

(1M ⊗ P )Σ = Σ(1M ⊗ P ). Inserting this into the expression
for Σ above and multiplying witheieHi ⊗ 1N for i = 1, 2 we
end up with two equationse1eH1 P = Pe1e

H
1 andggHP =

PggH . A simple calculation shows thatP = α1N with
α ∈ R+ and henceP = 0 or P = 1N .
In the following we separate our presentation in two parts; in

the first we consider the separable variance matrices while in
the second no restrictions on channel matricesH are assumed.
This separation, although not necessary from the viewpoint
of mathematics, has the advantage that we can first present
our ideas in a situation which is close in the spirit to the
previous work of Jafar/Wishwanath/Goldsmith [6], [7] and
Jorswieck/Boche [8], and then we show that the result extends
immediately to the general case.

A. Optimal Input Covariance Matrices: Separable Case

Now, we can describe the optimal input matrix in the case
where Σ is separable andCΣ contains non-trivial minimal
projections, i.e. not equal1N .
Choose any resolution of identity consisting of minimal mutu-
ally orthogonal projectionsCt

Σ (the transpose ofCΣ) , denoted
by {Pj}cj=1, and a decomposition ofΣ with properties given
in Lemma 3.1.3 with respect to{P t

j }
c
j=1, a resolution of

identity consisting of minimal projections inCΣ. Then there
is a unitaryU such thatT t

i = Udiag(Ti(1), . . . , Ti(c))U
H for

all i ∈ {1, . . . , s}, where the matricesTi(j) map the range of
Pj into itself, i.e. eachT t

i is block-diagonal in the basis given
by the unitary matrixU .

Theorem 3.2: Suppose that the variance matrixΣ of H ∼
N (0,Σ) is separable and thatCΣ 6= C ·1N . Then the capacity
achieving covariance matrixQ can be chosen such that

Q = Udiag(Q1, . . . , Qc)U
H ,

where eachQj maps the range ofPj into itself,j ∈ {1, . . . , c}.
Proof: Suppose that we are given any capacity achieving
covariance matrixQ, i.e.

C = C(Q) = E

(

log det

(

1M +
HQHH

σ2
n

))

.

Due to our system assumption, the last expression is written
as

C = E(log det(1M+

∑s

i=1 R
1

2

i WiT
t 1

2

i Q
∑s

l=1 T
t 1

2

l WH
l R

1

2

l

σ2
n

)).

Now, we insert the relation

T t
i = Udiag(Ti(1), . . . , Ti(c))U

H =: UT̃iU
H ,

with Q̃ := UHQU fulfilling tr (Q) = tr(Q̃) and arrive at

C = E(log det(1M +

∑s
i,l=1 R

1

2

i WiT̃
1

2

i Q̃T̃
1

2

l WH
l R

1

2

l

σ2
n

))

=: C̃(Q̃) (4)

where we have used that the random matricesWi andWiU

have the same probability distribution since eachWi is i.i.d.
Gaussian and theWi’s are jointly independent. The trans-
formed matrixQ̃ can be written as a block matrix with respect
to the transformationU induced by the set{Pj}cj=1 of minimal
projections inCt

Σ:

Q̃ =











Q11 Q12 . . . Q1c

Q21 Q22 . . . Q2c

...
...

. . .
Qc1 Qc2 . . .Qcc











.



We consider theunitary and hermitian matrix

U1 := diag(1P1
,−1P2

,−1P3
, . . . ,−1Pc

),

where1Pj
denotes the matrix acting as the identity on the

range ofPj . Then we haveU1T̃iU1 = T̃i,

Q̃1 :=
1

2
(Q̃+ U1Q̃U1) =











Q11 0 . . . 0
0 Q22 . . . Q2c

...
...

. . .
0 Qc2 . . .Qcc











,

and tr(Q̃) = tr(Q̃1).
Due to the concavity of the functional̃C defined by the last
eqn. in (4) we end up with

C ≥ C̃(Q̃1) ≥
1

2
C̃(Q̃) +

1

2
C̃(U1Q̃U1) = C̃(Q̃)

= C, (5)

where we have usedU1T̃iU1 = T̃i in the first equality. In
the next step we consider the unitary and hermitian matrixU2

given by

U2 := diag(1P1
,1P2

,−1P3
, . . . ,−1Pc

),

and can define in a similar way a matrix̃Q2 := 1
2 (Q̃1 +

U2Q̃1U2) and show analogously that̃C(Q̃2) = C holds.
Continuing this procedure we arrive at the claimed conclusion
of the theorem. �

Note that, as mentioned previously, in the caseΣ = R ⊗ T

the resolution of identity{Pj}c1 consists of one-dimensional
projections, i.e.c = N and we recover the results of [7],
[8] that the optimal transmission strategy consists of sending
independent circularly symmetric gaussian inputs along the
eigenvectors ofT .

B. Optimal Input Covariance Matrices: General Case

If we examine carefully our construction in the proof of
theorem 3.2 we see that we have needed only the concavity of
the capacity functional together with the fact thatUjT̃iUj = T̃i

which means that applyingUj does not change the probability
distribution of the considered random matrixH . Hence, in
order to extend our proof to the case of general random
matricesH ∼ N (0,Σ) we merely have to consider the
basis-free versions of hermitian and unitary matricesUj =
2(P1 + . . .+ Pj)− 1N , j = 1, . . . , c which realize our block-
diagonalization. Taking into account the first part of Lemma
3.5 below, that contains the description of the symmetries of
the channel at our disposal, we conclude that Theorem 3.2
extendsmutatis mutandis to the general situation. The only
change is that we drop the condition of separability we have
supposed in the statement of Theorem 3.2:

Theorem 3.3: Let H ∼ N (0,Σ) be a randomM × N

channel matrix and suppose thatCΣ 6= C1N . Then the capacity
achieving covariance matrixQ can be chosen such that

Q = Udiag(Q1, . . . , Qc)U
H ,

whereQj maps the range ofPj into itself, {Pj}cj=1 denotes
any resolution of identity consisting of minimal projections

in Ct
Σ andU is any unitary matrix which diagonalizes allPj

simultaneously.
We now use Theorem 3.3 for a further analysis of our

optimization problem. We use the structure

Q = [U1, . . . , U c]diag(Q1, . . . , Qc)[U
1, . . . , U c]H

of the optimal transmit covariance matrix Q. The blockQi has
the dimensionli× li and the corresponding unitary matrixU i

has the sizeM × li. We have
c
∑

i=1

li = N . If we use the matrix

Hi = HU i, then we have for the optimal transmit covariance
matrix

C = I(Q) = E(log det(1M +
1

σ2
n

c
∑

l=1

HlQlH
H
l )).

Thus the optimal block matrix diag(Q1, . . . , Qc) can be cal-
culated as the solution of

max
Ql≥0

c
∑

l=1

tr(Ql)≤p

E(log det(1M +
1

σ2
n

c
∑

l=1

HlQlH
H
l )).

As a consequence of this simple observation and Theorem
3.3 we achieve the following corollary.

Corollary 3.4: The block matrix diag(Q̂1, . . . , Q̂c) is the
optimal block matrix if and only if, there exists aµ > 0 and
positive semidefinite matricesΨ1, . . . ,Ψc, such thatQ̂k ≥
0, 1 ≤ k ≤ c,

1

σ2
n

E(tr(HH
k (1M +

c
∑

l=1

HlQ̂lH
H
l )−1Hk) = µ1lk −Ψk,

tr(ΨkQ̂k) = 0, 1 ≤ k ≤ c,

and
c
∑

l=1

tr(Q̂l) = p

holds.
Remark: For the classical correlation scenario

∑

= R ⊗
T we have againc = N, l1 = . . . = lN = 1, and Q̂ =
diag(p̂1, . . . , p̂N), p̂l ≥ 0, where thep̂l are the solution of the
well known power optimization problem [7], [8].
The following Lemma 3.5 gives a further description of the
optimal transmit covariance matrices.

Lemma 3.5: Consider anyM ×N random channel matrix
H ∼ N (0,Σ) and letU be a unitaryN ×N matrix. Then:

1. The channel matricesH andHU have equal probability
density functions iffU t ∈ CΣ, or equivalentlyU ∈ Ct

Σ.
2. If Q(1) andQ(2) are capacity achieving PSD matrices,

i.e. C(Q(1)) = C(Q(2)), with tr(Q(1)) = p = tr(Q(2))
then

HQ(1)HH = HQ(2)HH a.s., (6)

with respect to the law ofH .
Proof: 1. The first statement is easily obtained by using change
of variables. For reader’s convenience we give some crucial



steps: First, the variancesΣ of H resp.ΣU of HU are related
by ΣU = (1M ⊗U tH)Σ(1M ⊗U t). This can be easily verified
using change of variables formula and observing that each
tensor productA ⊗ B ∈ M(M,C) ⊗ M(N,C) canonically
induces a linear map onM × N matrices by assignment
H 7→ AHBt. Note that the probability density function of
the channel matrix can be written as

f(H) = Ke−
1

2
(H,Σ−1H)HS ,

where(·, ·)HS denotes the Hilbert-Schmidt inner product and
K is the normalization constant. The conclusion of the first
part of the lemma is now obvious.
2. According to our assumption and due to the concavity of
the capacity functional we may conclude that

C = C(
1

2
Q(1) +

1

2
Q(2)) =

1

2
C(Q(1)) +

1

2
C(Q(2)).

Moreover, since the functionallog det(·) is concave we see
that for Q̃ = 1

2 (Q
(1) +Q(2))

log det

(

1M +
HQ̃HH

σ2
n

)

=
1

2
log det

(

1M +
HQ(1)HH

σ2
n

)

+
1

2
log det

(

1M +
HQ(2)HH

σ2
n

)

holds almost surely with respect to the probability distribution
of the channel matrixH . This last equation, in turn, is
equivalent to

det

(

1M +
HQ̃HH

σ2
n

)

= det

(

1M +
HQ(1)HH

σ2
n

)

1

2

× det

(

1M +
HQ(2)HH

σ2
n

)

1

2

(7)

almost surely. Now, recall the Minkowski’s determinant in-
equality and thelog-concavity of the determinant (cf. [13])
which can be stated as the following chain of inequalities:

det(λA+ (1 − λ)B) ≥ (λdet(A)
1

M

+ (1− λ) det(B)
1

M )M

≥ det(A)λ det(B)1−λ, (8)

for λ ∈ (0, 1) and A,B ∈ M(M,C) positive definite. The
equality appears in the first inequality iffA = αB with α > 0,
while the equality in the second line is obtained iffdet(A) =
det(B). Hence the overall equality in (8) can appear iffA =
B. Translating this to our eqn. (7) we see that

1M +
HQ(1)HH

σ2
n

= α(H)

(

1M +
HQ(2)HH

σ2
n

)

,

a.s. with a measurable functionα which is almost surely
positive and

det

(

1M +
HQ(1)HH

σ2
n

)

= det

(

1M +
HQ(2)HH

σ2
n

)

a.s.

These two relations lead immediately to

1M +
HQ(1)HH

σ2
n

= 1M +
HQ(2)HH

σ2
n

a.s. �

Remark: As the proof shows, the second part of our Lemma
3.5 gives us also a necessary and sufficient condition for
equality in the concavity of the capacity functional.

IV. CONCLUSION

We have described the structure of optimal input covariance
matrices using the symmetries of the channel matrixH at
our disposal. Those symmetries are encoded in the right com-
mutantCΣ. If CΣ 6= C1N the original optimization problem
reduces to independent optimization problems coupled only
over the trace constraint of Corollary 3.4.
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