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Abstract— In this paper, we study the effect of channel memory
order on the information rate bounds in time-varying flat-fading
(FF) channels. We model time variations of the FF channel with
autoregressive (AR) processes with varying degrees of model
order. We observe that in high SNR conditions (SNR � 20 dB),
the information rate penalty of not knowing the AR channel
is a non-increasing function of the AR model order. This is
expected, since the AR channel predictability cannot decrease
with increasing its order. However, in low SNR conditions, the
information rate penalty in low-order AR channels can be lower
than those in high-order AR channels. Likewise, the intuitive
and universal monotonic increase of the information rate bounds
with the AR model order is only observed in almost noiseless
conditions. In the low SNR regime, however, the achievable
information rate bounds in low-order AR channels can be higher
than those in high-order AR channels.

I. INTRODUCTION

A. Motivation and Background

The information capacity of time-varying fading channels
has been recently investigated in the literature due to its
practical significance in mobile communication systems [1]–
[3]. The main goal of this paper is to study the effect of
channel memory order on the achievable information rates
in time-varying fading channels. The time-varying channel is
assumed to be a random process, whose realization is unknown
at the transmitter and at the receiver sides. The memory order
of a random process is the number of previous realizations of
the process that statistically determine its current realization. A
well-known model to represent a time-varying channel process
is the autoregressive (AR) model [2], [4], [5]. In an AR
channel model of order P , hereafter denoted by AR(P ), the
current channel realization is determined from P previous
channel realizations and a sample from a white random process
with variance σ2

P .
A smaller variance σ2

P in an AR(P ) process signifies a
higher predictability of the current realization of the process
from its P previous realizations. From the theory of AR
models, it is known that σ2

P is a non-increasing function of
the model order P [6, p. 600]. That is, for a given correlation
function for the process, an AR(P + 1) process is at least as
predictable as an AR(P ) process. In the theoretical limit, an
AR(∞) process with a bandlimited spectrum is deterministic,
in the sense that its current realization can be predicted, with
no error, given its infinite past [6, p. 600], [7].

In this paper, we aim to investigate whether the non-
decreasing predictability of AR time-varying channels with the
AR model order has a non-decreasing effect on the achievable
information rates through the channel. From an engineering
point of view, estimation and tracking of a theoretically more
predictable channel could potentially be more accurate, and
hence, higher information rates should be achievable at the
same noisy channel observation conditions.

In an earlier work by the authors [8], it was shown that
decreasing the Markov channel memory order does not neces-
sarily decrease the capacity of the finite-state Markov channel
(FSMC) [9], [10]. The capacity comparison of FSMC models
with different orders showed that when the FSMC states are
deeply hidden in noise, a high-order FSMC usually has a lower
capacity than its low-order FSMC counterpart. The intuitive
capacity increase with increasing channel memory order only
happens when the FSMC states are highly observable at the
receiver. Whether a similar phenomenon happens in other
time-varying channels deserves further analysis.

B. Approach and Contributions

Unlike [8], which considered finite-level partitioning of
the flat-fading (FF) channel gain into FSMC models, we
consider continuous-level FF channels. Therefore, the findings
in this paper cannot be attributed to the artifacts of finite-
level presentation of the FF channel gain in FSMC models or
the choice of FF channel gain partitioning thresholds. With
no channel state information (CSI) assumption, the channel
capacity and the capacity-achieving input distribution for time-
varying FF channels are essentially open problems [4], [11],
[12]. Hence, we apply the bounds in [12], [13] to our problem
to study the achievable information rate bounds in AR-FF
channels.

The contributions of this paper are summarized as follows.

1) In low SNR conditions, the information rate penalty
due to not knowing a high-order AR channel is higher
than the penalty due to not knowing its low-order AR
channel counterpart (Fig. 1, SNR � 7 dB). In fact, higher
predictability of higher-order AR channels only has a
non-increasing effect on the information rate penalty in
very high SNR conditions.

2) The information rate bounds in AR channels also exhibit
a non-monotonic behavior with the channel memory
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order in the low SNR regime. Our analysis shows that
in the low SNR regime, the achievable information
rate bounds in low-order AR channels are often higher
than those in high-order AR channels (Fig. 2, SNR
� 7 dB and Fig. 4, SNR � 10 dB). The universal
monotonic increase of the information rate bounds with
AR model order and its predictability only happens in
almost noiseless conditions.

II. SYSTEM MODEL

With the FF channel assumption, the low-pass received
signal at the discrete time index k is

yk = hkxk + nk, (1)

where xk is the transmitted signal, hk is the complex-valued
and Gaussian-distributed FF channel gain, and nk is a sample
of complex-valued, additive white Gaussian noise (AWGN).
Furthermore, we assume that hk has a zero mean and a nor-
malized variance of 0.5 per dimension and nk has a zero mean
and variance of N0/2 per dimension. The average transmitted
power and SNR per symbol are denoted as Es = E

{|xk|2
}

and γs = Es/N0, respectively.
We further assume that the time-varying FF channel gain

hk is related to its past realizations through the AR(P ) model

hk = −
P∑

p=1

aphk−p + wk, (2)

where wk is a complex-valued, white Gaussian noise with
variance σ2

P and the vector a =
[
a1 , · · · , aP

]T
contains the

AR filter coefficients and is derived from the Yule-Walker
equation [14, pp. 55-57]:

Ra = −v, (3)

where R is the P × P Toeplitz covariance matrix of the
process, whose element at row i and column j only depends
on |i− j| and is denoted as R(|i− j|). The vector v is given
as

v =
[
R(1) , R(2) , · · · , R(P )

]T
. (4)

If we assume that the FF channel follows the Clarke’s model
[15, Ch. 14], then R(|i − j|) is given as

RClarke(|i − j|) = J0(2πfD|i − j|), (5)

where J0 is the zero-order Bessel function of the first kind
and fD is the Doppler frequency shift that is normalized by
the transmitted symbol period. Alternatively, for the ease of
spectral analysis in Section IV, we may assume that R(|i−j|)
is given as

RU(|i − j|) = sinc(2πfD|i − j|), (6)

which is, in fact, equivalent to ‘the Clarke’s model’ for
3D isotropic scattering. In an AR(P ), the complete set of
covariance elements Rh(n) is given as [16]

Rh(n) =

{
R(n) |n| � P

−∑P
p=1 apRh(n − p) |n| > P

, (7)

where R(n) for |n| � P was defined in (5) or (6). The power
spectral density (PSD) of AR(P ) is a rational function

HP (ω) =
σ2

P∣∣∣1 +
∑P

p=1 ape−jpω
∣∣∣2 . (8)

For the special case of AR(∞), we obtain the well-known
bowl-shaped PSD for the Clarke’s model, which is given as

HClarke(ω) =

{
1

πfD

√
1−(ω/2πfD)2

|ω| < 2πfD

0 otherwise
, (9)

and a uniform PSD for RU in (6) as

HU(ω) =

{ 1
2fD

|ω| < 2πfD

0 otherwise
. (10)

The variance σ2
P of the white noise wk in (2) is the minimum

mean square error (MMSE) of the one-step predictor of order
P for the fading process hk [6, pp. 598-601] and is given as

σ2
P = exp

( 1

2π

∫ π

−π

lnHP (ω)dω
)
, (11)

where ln stands for natural logarithm. It is known that the
MMSE is a non-increasing function of the prediction order P
[6, p. 600]. That is,

σ2
P+1 � σ2

P , ∀P. (12)

In other words, the AR(P ) channel is at most as equally
predictable as the AR(P +1) channel. From (11), we observe
that if the asymptotic PSD of the fading process is zero over
some frequency interval, the asymptotic MMSE prediction
error is zero. In other words, a bandlimited fading process
(as in (9) or (10)) is, in theory, deterministic in the sense that
its future realization can be predicted from its infinite past
with no error [7].

Now, reconsider the unknown FF channel with observation
equation (1), where the FF channel gain varies with time
according to the AR(P ) model in (2). From the predictabil-
ity discussion following (11)-(12), one might be inclined to
conclude that the achievable information rates in an AR(P )
channel are generally lower than those in an AR(P + 1)
channel. In the limit, it might be even conjectured that an
AR(∞) model with the highest predictability has the highest
achievable information rate among its lower-order and less pre-
dictable AR counterparts. However, the predictability analysis
in (11)-(12) lies on the important assumption that the channel’s
infinite past is already observed without error and is available.
This is equivalent to assuming a noiseless channel observation
equation in (1) and a known transmitted signal (N0 = 0 and
known xk). The analysis in Section IV reveals, however, that in
low to medium SNR conditions, when the channel realizations
are not directly observable, the effect of increasing channel
memory order on the information rate bounds is not monotonic
with the AR model order.
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III. INFORMATION RATE BOUNDS

The information capacity and the capacity-achieving input
distribution of temporally correlated, time-varying FF channels
with no CSI at the transmitter and at the receiver are generally
open problems [3], [4], [11], [12]. Therefore, we limit our-
selves to analyze and compare the information rate upper and
lower bounds in correlated FF channels with varying degrees
of AR model order. We start by briefly reviewing the infor-
mation rate bounds in [12]. The advantage of these bounds is
that they have closed-form and single-letter expressions and
provide valuable insight into our problem. Later in Section
IV, we will verify our observations by using tighter bounds
in [13], which can only be numerically computed. All mutual
information rates are computed in nats per channel use.

Let x, y, and h be N × 1 sequences of transmitted signal,
received signal, and channel realization, respectively. Using
the chain rule on the mutual information I(y;x,h), we can
write the mutual information between y and x as

I(y;x) = I(y;x,h) − I(y;h|x) (13)

= I(y;h) + I(y;x|h) − I(y;h|x), (14)

where I(y;x|h) is the mutual information with perfect CSI
and I(y;h|x) − I(y;h) is the penalty in mutual information
when the CSI is not available. Since I(y;h) � 0, it is
concluded that I(y;h|x) is an upper bound on the mutual
information penalty due to unknown CSI. An upper bound on
I(y;h|x) can be derived as (see [12] for more details)

I(y;h|x) �
N∑

n=1

ln
(
1 +

Es

N0
λn

)
, (15)

where {λn}N
n=1 are the eigenvalues of the N × N Toeplitz

covariance matrix of channel vector h with elements defined in
(7). The asymptotic information rate per symbol for N → ∞
is then upper bounded as

∆P � IP (y;h|x) = lim
N→∞

1

N
I(y;h|x) (16)

�
1

2π

∫ π

−π

ln
(
1 +

Es

N0
HP (ω)

)
dω. (17)

The equality in (17) is achieved for constant power signal-
ing such as M -ary PSK schemes [15, Ch. 4-5]. Therefore,
it is possible to upper bound I(y;x) for constant power
signaling by using (13) and upper bounding I(y;h,x) =
H(y)−H(y|h,x) = H(y)−H(n) by assuming a Gaussian
distribution for y. The following asymptotic information rate
upper bound is derived for constant power signaling

IC
P (y;x) � ln

(
1 +

Es

N0

)
− ∆P (18)

= ln
(
1 +

Es

N0

)
− 1

2π

∫ π

−π

ln
(
1 +

Es

N0
HP (ω)

)
dω.

Using the fact that I(y;h) is non-negative in (14), we obtain
the following lower bound on I(y;x)

I(y;x) � I(y;x|h) − I(y;h|x). (19)

In order to evaluate the asymptotic information rate per sym-
bol, we use (16)-(17) and the fact that the mutual information
rate with CSI is independent of time index. This yields

I(y;x|h) = H(y|h) − H(y|x, h) = H(y|h) − H(n) (20)

= H(y|h) − ln(πeN0),

and therefore,

I(y;x) � I(y;x|h) − ∆P (21)

� I(y;x|h) − 1

2π

∫ π

−π

ln
(
1 +

Es

N0
HP (ω)

)
dω.

For M -ary PSK signaling, the CSI entropy rate H(y|h) only
depends on the channel gain amplitude r = |h| and is given
as

H(y|h) =

∫
∞

0

∫
∞

−∞

f(y|r)f(r) ln f(y|r)dydr, (22)

where f(y|r) is the conditional pdf of y given r and r is
Rayleigh-distributed. For equiprobable, constant power, M -
ary PSK signaling f(y|r) is given by

f(y|r) =
1

M

M−1∑
m=0

f(y|xm, r), (23)

where f(y|xm, r) is the pdf of AWGN in (1) with mean
rxm = r

√Ese
j2πm/M and variance N0/2 per dimension.

IV. ANALYSIS OF INFORMATION RATE BOUNDS

We first examine the information rate upper and lower
bounds in (18) and (21) in more detail. We observe that the
first terms in (18) and (21) are independent of the dynamics
of time-varying AR channel and only depend on SNR. On the
other hand, the second term ∆P , given in (17) depends on
both the AR(P ) spectrum HP (ω) and SNR Es/N0.

The information rate penalty ∆P for the special case of
AR(1) has a closed form. To see this, we use (3) to rewrite
the AR spectrum in (8) as

H1(ω) =
σ2

1∣∣∣1 + a1e−jω
∣∣∣2 (24)

=
1 − R2(1)

1 + R2(1) − 2R(1) cos ω
. (25)

Upon using (25) in (17) and the integral identity [17, p. 526]∫ π

−π

ln(1 + a cos x)dx = 2π ln
1 +

√
1 − a2

2
, (26)

we obtain

∆1 = ln
A +

√
A2 − B2

C +
√

C2 − B2
, (27)

where A � 1 + R2(1) + Es/N0(1 − R2(1)), B � 2R(1), and
C � 1 + R2(1).

The information rate penalty ∆∞ for AR(∞) with the
uniform spectrum (10) is simply derived to be

∆∞ = 2fD ln
(
1 +

Es

N0

1

2fD

)
. (28)
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Fig. 1. The information rate penalty due to unknown CSI ∆P , given in
(17), as a function of SNR and the AR channel model order P . As shown
in the enlarged graphs, for SNR � 7 dB, the penalty in information rate due
to unknown CSI is highest in the most “ideally predictable” channel model
AR(∞). In fact, higher channel predictability has the expected monotonically
decreasing effect on the information rate penalty only in very high SNR
(ideally noiseless) conditions. This is observed for SNR � 27 dB.

The information rate penalty ∆P for P > 1 is numerically
evaluated by directly using (8) in (17).

Fig. 1 shows the information rate penalty ∆P at the
normalized fading rate of fD = 0.05. The elements of R

in (3) are chosen from (6) (uniform fading spectrum). Four
different AR models with P = 1 to P = 3 and P = ∞
are shown. From this figure, it is clearly observed that the
information rate penalty ∆P due to unknown CSI does not
necessarily decrease with increasing the channel memory order
(increasing channel predictability). For example, the penalty in
the achievable information rate in an AR(∞) channel, ∆∞, is
larger than the penalty in the achievable information rate in
an AR(1) channel, ∆1, for Es/N0 � 7 dB. This is despite
the fact that AR(1) is the least predictable channel according
to (12). Similarly, ∆∞ > ∆3 for Es/N0 � 27 dB. Only in
very high SNR conditions, do we observe a monotonically
decreasing information rate penalty with increasing P . In fact,
this phenomenon can be qualitatively explained by referring
to the integrand in (17). In very high SNR conditions, the
constant term 1 in the logarithm is negligible, compared to the
second term and may be ignored. In this case, the behavior of
∆P with memory order would be very much like the behavior
of σ2

P in (11), which is non-increasing as P grows large.
However, in low to medium SNR conditions, the constant
term in the integrand in (17) may not be ignored and the
real behavior of ∆P depends on SNR and AR(P ) spectrum.
The corresponding information rate upper bounds for constant
power signaling, IC

P in (18), are shown in Fig. 2. It is verified
that the non-monotonic behavior of ∆P translates into non-
monotonic information rate upper bounds. For example, the
information rate upper bound in the AR(3) channel is higher
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Fig. 2. The non-monotonic behavior of the information rate penalty with
the AR model order in Fig. 1 is translated into the non-monotonic behavior
of information rate upper bounds for constant power signaling. For example,
the information rate upper bound in the AR(∞) channel, IC

∞
(y; x) is lower

than IC
3

(y; x) in the AR(3) channel for SNR conditions Es/N0 � 27 dB.

than that in the AR(∞) channel for Es/N0 � 27 dB.
In Fig. 3, we have shown the information rate upper bounds

for constant power signaling, IC
P in (18), as a function of

the normalized Doppler frequency shift fD for two low SNR
conditions of Es/N0 = 0 and Es/N0 = 3 dB and two AR
models AR(1) and AR(∞). The elements of R in (3) are
chosen from (6) (uniform fading spectrum). IC

1 and IC
∞

both
have closed-form expressions according to (18) and (27)-(28).
From this figure it is observed that IC

1 in AR(1) is higher
than IC

∞
in AR(∞) for slow to medium-speed fading rates.

However, for very fast fading rates IC
∞

is higher. It is also
verified from this figure that IC

∞
is higher than IC

1 for a wider
range of fading rates at higher SNR conditions. As expected,
when the SNR is sufficiently high (Es/N0 � 10 dB), IC

∞
is

universally higher than IC
1 for almost all fading rates. This is

not shown in Fig. 3 for more clarity of the figure.
In Fig. 4, we have shown the information rate lower bounds

in (21) by assuming QPSK constant power signaling. The
normalized fading rate is fD = 0.01. The bounds tend to
become loose in high SNR conditions. The reason is that in
(21), the first term is specifically calculated for QPSK and
hence, I(y;x|h) � 2 ln 2 = 1.39 nats/ch use, whereas the
second term in (21) generally holds for all constant power
signaling schemes and becomes large for high SNR. Never-
theless, the behavior of the lower bound at low SNR conditions
is noteworthy. In fact, the information lower bounds in AR(1)
to AR(3) models are all higher than that of AR(∞) for
Es/N0 � 10 dB. At higher SNR conditions, the information
rate lower bound in AR(3) is still higher than that in AR(∞).

We have also computed the lower and upper bounds in [13]
for two AR(1) and AR(∞) channels. The bounds are tighter
than those in [12], but can only be numerically computed.
The upper bound in [13] can be computed for constant power
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Fig. 4. The information rate lower bounds for QPSK signaling, given in (21),
as a function of SNR. The information rate lower bounds in AR(1) to AR(3)
channels are all higher than that in the AR(∞) channel for Es/N0 � 10 dB.
The information rate lower bound in the AR(3) channel is higher than that in
the AR(∞) channel for all considered SNR values.

signaling, since HP (y|x) = IP (y;h|x)+HP (y|x, h) = ∆P +
H(n) = ∆P +ln(πeN0). For the fading rate fD = 0.05, BPSK
scheme, and SNR of 0 dB, the information rate lower bound
in [13] for the AR(1) channel yields I1 = 0.3062 nats/ch use,
whereas for the AR(∞) channel I

∞
= 0.2361 nats/ch use.

The upper bound for the AR(1) channel yields I1 = 0.3830
nats/ch use, whereas for the AR(∞) channel I∞ = 0.3308
nats/ch use. The upper bounds in Fig. 2 for this SNR were
IC
1 = 0.5275 and IC

∞
= 0.4534 nats/ch use, respectively. This

confirms the non-increasing behavior of information rates with
increasing the AR model order at low SNR values.

We also observed that similar conclusions as in Figs. 1-4
can be drawn by using the Clarke’s spectrum in (9), instead
of (10). Therefore, the numerical results are omitted here.

V. CONCLUSIONS

The theoretical higher channel predictability of high-order
AR channel models is only well-defined in almost noiseless
conditions (high SNR regime). In this case, one can expect
that the achievable information rates in time-varying channels
are non-decreasing functions of the channel memory order.
On the other hand, in the low SNR regime, higher channel
memory order and ideal channel predictability do not affect the
achievable information rates as expected. Our analysis showed
that in many low SNR conditions and for a wide range of
channel fading rates, the information rate bounds in low-order
AR channels are higher than those in high-order AR channels.
Our analysis is in accordance with the findings in [8] on the
non-monotonic effect of memory order on the FSMC capacity.
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