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Abstract— 1t is shown how particle methods can be viewed
as message passing on factor graphs. In this setting, particle
methods can readily be combined with other message-passing
techniques such as the sum-product and max-product algorithm,
expectation maximization, iterative conditional modes, steepest
descent, Kalman filters, etc. Generic message computation rules
for particle-based representations of sum-product messages are
formulated. Various existing particle methods are described as
instances of those generic rules, i.e., Gibbs sampling, importance
sampling, Markov-chain Monte Carlo methods (MCMC), particle
filtering, and simulated annealing.

I. INTRODUCTION

Particle methods (or “Monte-Carlo methods”) have in the
last fifty years intensively been used to solve a wide variety
of problems in physics and computer science (e.g., statistical
inference and optimization). The main idea behind particle
methods is to represent a probability density function (pdf)
or probability mass function (pmf) as a list of mass points
(“particles”), as illustrated in Fig. 1. A (positive) weight is as-
sociated to each particle in the list; the weights of all particles
are supposed to add to 1. If the mass points are samples from
the pdf or pmf at hand, all weights are identical (“uniform”)
(see Fig. 1 (left)); if the particles are generated by other means
(e.g., they may be sampled from a different function than
f), non-uniform weights are associated to the particles (see
Fig. 1 (right)). A list £ of N particles representing the pdf
or pmf f(x) with € X is thus formally defined as a list of
pairs

L; 2 {EW,w®), (@, w?),..., @™, wM)},

where 2" € X, the weights w(?) are positive real numbers
and 3, w® = 1.

xT

Fig. 1. A probability density function f : R — R™ and its representation as
a list of particles. The radius of the particles is proportional to their weights.
(left) uniform weights; (right) non-uniform weights.

Particle methods can be used to evaluate the expectation of
some function g w.r.t. a pdf f, i.e.,

Eslg) 2 / o) f (), 0
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where [ h(x)dz stands either for integration or summation
of h over the whole range of X. The expression (1) is
ubiquitous in statistical inference; for example, the minimum
mean square error estimate (MMSE) of a real random variable
(or vector) X from an observation Y = y is

Immse = Ex |y [X] = / o f (z]y)dx, 2

where f(z|y) is the posterior pdf. If the expression (1) is
intractable, one needs to resort to approximations; in particle
methods, the expectation (1) is approximated as an average
over a particle list Ly:

N
Eflg] = ) wWg(a). 3)
=1

In many practical problems, the pdf f and the function g have
a “nice” structure, i.e., they factorize; particle lists of f can
then be generated by means of simple local computations; also
the evaluation of (3) then only involves local computations. We
will show in this paper that particle methods can be viewed as
message-passing algorithms operating on factor graphs where
messages are represented as lists of samples [1] [2]. In other
words, particle methods are a full member of the family of
message-passing methods; this enables us for example:

« to apply particle methods locally, i.e., at a particular node
in the factor graph of the system at hand;

« to combine particle methods with other message-passing
techniques such as the sum-product and max-product
algorithm [1], expectation maximization [3], iterative
conditional modes [4], steepest descent [5], Kalman fil-
ters [6], etc.;

« to apply particle methods on factor graphs with cycles;

o to choose the order in which particle lists (“messages”)
are updated (“message-update schedule”).

The use of particle lists in message passing algorithms was
proposed in [7], [1], [2]. In this paper, we go into more detail.
In particular:

o« We investigate how particle methods can be used to
(approximately) compute marginals when straightforward
sum-product message passing is intractable. We formulate
generic message computation rules for particle-based
representations of sum-product messages; we thereby
systematically investigate various types of incoming mes-
sages.
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e We describe various existing methods for drawing sam-
ples from a multivariate pdf as message passing on factor
graphs.

This paper is structured as follows. In the following section,
we explain how the sum-product message computation rule
may be approximated by particle methods; particle-based
representations of sum-product messages are thereby required.
We investigate in Section III how such representations can be
obtained. In Section IV, we present various existing particle
methods as message passing on factor graphs.

II. APPROXIMATING THE SUM-PRODUCT RULE BY
PARTICLE METHODS

Suppose that we wish to compute marginals from a
given multivariate function f(x1,a,...,2y), where the vari-
ables X may be discrete or continuous. As is well known,
marginals of a function f can in principle be computed by
applying the sum-product algorithm on a cycle-free factor
graph of f [1]. However, this naive approach fails if the sum-
product rule is intractable at some node(s) in the factor graph
of f, which is often the case if (some of) the variables X}
are continuous. In the following, we take a closer look at this
issue. A generic node h in the factor graph of f is depicted
in Fig. 2.

X
NN Y
Do h =
XTTL

Fig. 2. Message along a generic edge.
The sum-product message towards edge Y is given by [1]:

,uy(y)&/h(y,xh

15:Tm

T ) ix (T1) - px,, (Tm)dz,  (4)

where px, is the message that arrives at node h along the
edge X (see Fig. 2). The expression (4) may be intractable
for the following reasons.

o If the variables Xj in Fig. 2 are discrete, the expres-
sion (4) can in principle be evaluated straightforwardly.
However, the summation occurring in (4) can only be
carried out in practice if the alphabets of the variables X},
are sufficiently small.

o If (some of) the variables X} are continuous, the expres-
sion (4) may lead to intractable integrals.

If the expression (4) is infeasible for one of the above reasons
(or both), one needs to resort to approximative methods such
as particle methods. Suppose, without loss of generality, that
the summation/integration over X; in (4) is infeasible. This
summation/integration may be approximated by means of
particle methods as follows: the message px, is represented
as a particle list and the rule (4) is evaluated as (cf. (3)):

R p
py (y) Z/ Wy, 3"z, ...
i z2,

5 Im) ! wgi)

s Tm

S, (2) - px, (Tm)dp, (5)

where @Y’
sents the sum-product message px, and w

is the i-th particle in the particle list that repre-
gl) is the weight
associated to 7",

Particle methods are not the only option to handle in-
tractable sum-product message computation rule (see e.g.,
[1] [2]). If X is continuous, one may alternatively represent
the message px, as:

e a quantized-variable message

« a Gaussian distribution (as in Kalman filtering [6])

« a single value 21, e.g., the mode or mean of px, (as in
decision-directed algorithms).

Obviously, if in (4) also the summation/integration over
some other variable(s) X}, is intractable, one may also choose
one of the above representations for the corresponding mes-
sage(s) px,; each of those messages may be represented
differently. In other words, at every node in the factor graph of
the system at hand, one has the freedom to combine various
types of messages, and hence, various types of algorithms,
e.g., decision-based algorithms (such as iterative conditional
modes and expectation maximization), Kalman filters, and
particle methods. Following this approach, we have derived
various message-passing algorithms for code-aided phase es-
timation [4] and estimation in AR models [8].

III. GENERATING A PARTICLE LIST FROM A SUM-PRODUCT
MESSAGE

We pointed out in the previous section that if the sum-
product message computation rule is intractable, it may be
evaluated (approximately) by particle methods. Incoming sum-
product messages are then represented as particle lists (e.g.,
x, in (5)). In this section, we describe methods to generate
particle lists from sum-product messages. We again consider
the generic node h depicted in Fig. 2; we wish to represent
the sum-product message j1y towards edge Y as a particle list.
First we consider the case where all variables X, are discrete,
then we will assume that all variables X} are continuous.
It is straightforward to extend our considerations to the case
where some of the variables X are discrete and others are
continuous.

A. Discrete variables X,

Suppose that all variables X} are discrete; in addition,
suppose that the alphabets of the variables X}, are sufficiently
small so that the messages px, can be represented by a list
of their values. (If a message ptx, can not be represented
in this fashion since the alphabet of X is too large, one
may represent p1x, as a particle list; we consider this type
of representation for the messages j1x, in section III-B.) One
may generate samples from py by the following procedure:

1) For each k = 1,...,m, select a value &) of X with
probability proportional to ux, (Zx).

2) Draw a sample ¢ from h(y,Z1,. .., &m).

3) Iterate 1-2 until a sufficient number of samples from py-
are obtained.
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The resulting particles have uniform weights; the above sam-
pling method (Step 1-3) is therefore referred to as unweighted

sampling.

Alternatively, one may draw samples ¢ from
h(y,Z1,...,2%m) for each possible m-tuple (Z1,...,%m).
The weight w associated to sample ¢ is proportional to

m
woc [ px, (&r). (6)
k=1

This sampling method is called weighted sampling since it
leads to a particle list with non-uniform weights.

If one successively draws particles & from that list with
probability proportional to their weights w (6), one obtains
a list of particles with uniform weights; note that a particle
with a large weight w (6) may be drawn several times,
whereas a particle with a small weight may not be drawn
at all. This technique to generate particles lists with uniform
weights from particle lists with non-uniform weights is called
resampling [9].

B. Continuous variables Xy,

If the variables X} are continuous, we distinguish the

following cases:

« If a suitable closed-form expression for the message py
is available, one may sample from that expression jy .

« If the messages j1x, are quantized-variable messages [2],
one proceeds as in the case of discrete variables X.

o If the messages p1x, are lists of samples, the procedure
is again similar to the one for discrete variables Xj.
The first step in the unweighted sampling procedure is
slightly modified: for each k, one draws a particle &3 with
probability proportional to its weight wy. In weighted
sampling, one draws a sample § from h(y,&1,...,ZN)
for each m-tuple of particles (1, ..., Zm). The weight w
associated to the sample ¢ is proportional to

w X H Wi, @)
k=1

where wy, is the weight of particle Zy.

o If the incoming messages pux, are represented as
Gaussian distributions (and no suitable closed-form ex-
pression for py is available), one may first represent
the messages j1x, as particle lists and proceed as in the
previous case.

o If the incoming messages are single values 2, one draws
samples from h(y, &1,...,ZTm)-

« The extension to the situation where the incoming mes-
sages are not all of the same type is straightforward,
except if the node h is an equality constraint node (see
Section III-C).

C. Specific node functions

So far, we have considered generic node functions h. We
now investigate two important types of node functions in more
detail: (i) nodes corresponding to deterministic mappings; (ii)
equality constraint nodes.

o Deterministic mapping.
Suppose that the node h corresponds to a deterministic

mapping y = v(x1,...,Tm):
hy, 21, xm) =6y —v(z1, .. 2m)). (8)
Samples § from h(y,Z1,...,%4m) are then trivially ob-

tained as § = v(Z1,...,3m).

« Equality constraint node.
Suppose that the node h is an equality constraint node,
ie.,

m—1
Wy, @1, 2m) = 8(y — a1) H Mxpyr —28). (9)

k=1

The message 1y is then given by:

py (y) o [ px, (). (10)
k=1

We distinguish the following cases:

— If Y is discrete, one obtains a particle list for py
by selecting values ¢ with probability proportional
to [T, px, (4). This approach is only applicable
if the alphabet of Y is sufficiently small. Otherwise
one may represent the messages f1x, as particle lists.

— If the messages jx, are represented as particle lists,
it is not straightforward to draw samples from (10).
One may first generate a continuous representation
such as mixtures of Gaussian distributions for each
of the incoming messages (i x,. Efficient methods
have been devised to draw samples from products of
Gaussian mixtures [7] [10].

— If Y is continuous, and a closed-form expression
for the message uy is available, one may obviously
sample from that expression py .

— If Y is continuous, and closed-form expressions for
the incoming messages x, are available, but not for
Wy , one may sample from the product (10). This may
be done by importance sampling (see Section IV-B).

— If the messages px, are quantized-variable mes-
sages, one proceeds as in the discrete case.

— Also certain mixtures of the previous situations can
be handled, as we will illustrate in Section IV-B by
the example of importance sampling. However, an in-
depth treatment of this issue goes beyond the scope
of this paper.

IV. EXISTING PARTICLE METHODS VIEWED AS MESSAGE
PASSING

We now describe several standard Monte-Carlo techniques
as instances of the above generic rules, i.e.,

o Gibbs sampling,

« importance sampling,

o particle filtering (“sequential Monte-Carlo filtering”),

e Markov-Chain Monte-Carlo methods (MCMC),

« simulated annealing.
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A. Gibbs Sampling

Suppose that we wish to draw samples from a multi-
variate probability function f(x1,z2,...,2,). This can be
done by the following iterative algorithm known as Gibbs
sampling [11, p. 371-407]:

1) Choose an initial value (%1, &2, . .

2) Choose an index k.

3) Draw a sample Z; from

f(i‘lv'"7i‘k717xk‘7£k}+17"'

D J (@,

4) Iterate 2-3 a “large” number of times.

)

s &n)
~a£k—1>xkaik+17---7i’n)

(1)

flz) =

Fig. 3. Gibbs sampling at a generic edge Y.

Gibbs sampling can be interpreted as a message-passing
algorithm that iterates the following steps:
1) Select a variable (equality constraint node) Y in the
factor graph of f (see Fig. 3).
2) The equality constraint node Y generates the message y
by sampling from:

pa(y) - p2y) - - pm(y)

12)

3) The equality constraint node broadcasts the message y
to its neighboring nodes fi, (k=1,...,m).
In summary: Gibbs sampling can be regarded as message
passing on a factor graph, where messages are represented by
a single sample.

B. Importance Sampling

Suppose that we wish to approximate the expectation (1)
by some particle method. If it is “easy” to sample from f,
one may draw samples W 2™ from f and evaluate
the expectation (1) as

Bilol 2 5 Y 0(a®).

Suppose now that sampling from f is “hard”, and hence the
approach (13) is not feasible. One may then draw samples
#M 20 from a (different) function f with supp(f) C
supp(f), and approximate (1) as

N
1 NN
Eflg] =~ N E w(z)g($(1)>7
i=1

13)

(14)

where the weights w(?) are given by

o ,}i(:ﬁ(z’))'
f(jg(i))
The approach (14)—(15) is called importance sampling [11,

p- 90-107]. Importance sampling is particularly natural
when f factorizes. Suppose for example that

f(x) = fi@) fa()-

One may draw samples #() from f; and weight those samples
by the function fs:

s)

(16)

w® o fo(2). (17)

A message-passing view of this procedure is suggested

—
particle list

T closed-form

Fig. 4.

Importance sampling as message passing.

in Fig. 4. The message p; is a list of samples (1), ... (V)
drawn from f;. The message po is given in closed-form,
ie., U2 = f2. The message ug is the particle list pg =
{(i:(i),w(i))}i]\il, where w(? is defined in (17). Importance
sampling may be viewed as a particular instance of weighted
sampling, where (1) the local node function g is an equality
constraint node; (2) one of the messages is a list of samples;
(3) the other message is available in closed-form.

If it is hard to draw samples from both f; and fa, one
may use importance sampling (14) (15) in order to obtain
a particle list from either f; or f. Suppose that we gen-
erate a particle list {(@<i>,w<i>)}le from fi, ie., p1 =
{(55("’),@(“)}7{11. The message p3 is then represented as a

list of samples {i(i),w(i)}ij\il, where
w® oc 0 fo (27). (18)

This method is the key to (standard) particle filtering, the
subject of next subsection.
C. Farticle Filtering

Particle filtering [9] (or “sequential Monte-Carlo integra-
tion”) is a particle method for filtering in state-space models.
It can be viewed as for forward-only message passing in a
state-space model of the form:

7yTL)
2 fa(so) [ ] £aCsk-1,6) f5(sk,uk),  (19)
k=1

f(80a827'~'787Lay17y2>"'

where (some of the) messages are represented by lists of
samples (see Fig. 5; the figure shows only one section of the
factor graph). More precisely, the messages py and fiy (for

2055

ISIT 2006, Seattle, USA, July 9 - 14, 2006



— — —

Hre—1 K Kk

fa(sk—1,5k) e

fB(sk, yx)

Fig. 5. Particle filtering as message passing.

all k) are represented as lists of samples. In the basic particle
filter, the list iy is obtained from g1 by weighted sampling.
The sampling-importance-resampling particle filter (SIR) uses
unweighted sampling instead. In both particle filters, the list
is generated from ji; by importance sampling (cf. Fig. 4):
the message [ix, ,u{ and py in Fig. 5 correspond to the
message [i1, (b2 and pg respectively in Fig. 4.

D. Markov-Chain Monte-Carlo Methods (MCMC)

Markov-Chain Monte-Carlo methods [11] (MCMC) are
an alternative family of methods to draw samples from a
probability function (“message”) f from which it is hard to
sample directly. The main idea is to sample repeatedly from
an ergodic Markov chain with stationary distribution f. In the
following, we briefly present the most well-known MCMC
method, i.e., the Metropolis-Hastings algorithm [11]. This
algorithm is based on a conditional density ¢(y|z) from which
it is assumed to be easy to sample. In addition, ¢ is supposed
to be symmetric, i.e., ¢(y|z) = q(z|y). Usually, the function ¢
fully factorizes, i.e.,

N

~aw) 2 [ alyslan)-

k=1

q(y1,. .., yn|z1, .. (20)
For instance, ¢ may be a Gaussian distribution with mean z
and diagonal covariance matrix. The Metropolis-Hastings al-
gorithm generates samples & from the “target” function f by
the following iterative procedure:

1) Choose an initial value z.

2) Sample ¢ from ¢(y|%).

3) Set # = with probability p where

()

4) Tterate 2-3 a sufficient number of times.

Note that the function f must be available up to some constant.

Similarly as Gibbs sampling, the Metropolis-Hastings al-
gorithm may be interpreted as a message-passing algorithm
that operates on a factor graph of f. We refer to [4] for more
details.

E. Simulated Annealing

The original simulated annealing algorithm is an exten-
sion of the Metropolis-Hastings algorithm [11, pp. 163—
169]. It can be used (i) to sample from a multivariate func-
tion f(x1,...,2n); (i) to find the mode of f. The key idea
is to draw samples from f¢, where the (positive) exponent
slowly increases in the course of the algorithm. The initial
value of « is close to zero (e.g., « = 0.1). If one wishes

to obtain samples from f, one halts the algorithm as soon
as «« = 1. If one tries to find the mode of «, the end value
of « is much larger (e.g., o = 10 or 100). Note that for small
values of a (i.e., 0 < o < 1), the function f¢ is flatter than the
target function f, whereas for large values of « (i.e., a > 1),
the function f mainly consists a narrow peak centered at the
global maximum of f.

Simulated annealing works as follows:

1) Choose an initial value (%1, Z2,...,ZN).

2) Choose an initial value « (e.g., « = 0.1).

3) Sample a new value gy from q(y|z).

4) Set # = §j with probability p, where

el (1) )

5) Iterate 3—4 a “large” number of times.

6) Increase a according to some schedule.

7) Tterate 5-6 until convergence or until the available time
is over.

(22)

The principle of simulating annealing is generic. It can be
applied to any message-passing algorithm (e.g., sum-product
algorithm, expectation maximization etc.), not only to the
Metropolis-Hastings algorithm. The idea is to replace a local
function f by a power f, where « increases in the course of
the message-passing algorithm.

V. CONCLUSION

We presented particle methods as message passing on factor
graphs. This viewpoint enables us to (i) combine various
other families of signal-processing algorithms with particle
methods in a disciplined manner; (ii) develop novel particle-
based algorithms in a systematic fashion.
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