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Abstract— A linear time approximate maximum likelihood
decoding algorithm on tail-biting trellises is presented, that
requires exactly two rounds on the trellis. This is an adaptation of
an algorithm proposed earlier with the advantage that it reduces
the time complexity from O(m logm) to O(m) where m is the
number of nodes in the tail-biting trellis. A necessary condition
for the output of the algorithm to differ from the output of th e
ideal ML decoder is deduced and simulation results on an AWGN
channel using tail-biting trellises for two rate 1/2 convolutional
codes with memory 4 and 6 respectively, are reported.

I. I NTRODUCTION

Maximum likelihood decoding on tail-biting trellises (TBT)
has been extensively studied in the literature and several linear
time approximate algorithms have been proposed, (see for
example, [7], [6], [10], [9], [3]). Some of these algorithmsmay
fail to converge on certain inputs. Algorithms with guaranteed
convergence were studied in [11], but they fail to achieve linear
complexity. In particular, although the approximate algorithm
proposed in [11], achieves performance close to an ideal ML
decoder, it has a worst case time complexity ofO(m logm),
wherem is the number of nodes in the TBT. The algorithm
exploits the fact that a linear tail-biting trellis can be viewed as
a coset decomposition of the group corresponding to the linear
code with respect to a specific subgroup and is an adaptation
of the classicalA∗ algorithm. The algorithm operates in two
phases. The first phase does a Viterbi-like pass on the TBT to
obtain certainestimates which are used in the second phase
to guide the search for the shortest path corresponding to a
codeword in the TBT.

In this note, the complexity of the approximate algorithm
in [11] is reduced toO(m). The reduction in complexity is
achieved by eliminating the use of a heap in the second phase
of the original algorithm using the well known technique of
dynamic programming. The estimates gathered during the first
phase are used in the second phase for the computation of a
metric for each node in the TBT using another simple Viterbi-
like pass. It turns out that updates performed by the two
algorithms are identical for the shortest path which must be
output by the algorithm (although the metric values computed
for other nodes may differ).

We give an analysis of the algorithm here. Simulations are
included for completeness and the two algorithms perform
identically as expected.

II. BACKGROUND

A linear tail-biting trellis for an(n, k) linear block codeC
over fieldFq can be constructed as atrellis product [5] of the
representation of the individual trellises correspondingto thek
rows of the generator matrixG for C [4]. The trellis productT
of a pair of trellisesT1 andT2 will have atT imeindex(i) a set
of vertices which is the Cartesian product of vertices ofT1 and
T2 at that time index, with an edge betweenT imeindex(i)
and T imeindex(i + 1) from (v1, v2) to (v′1, v

′
2), with label

(a + a′) whenever(v1, v′1) and (v2, v
′
2) are edges between

vertices atT imeindex(i) andT imeindex(i + 1) in T1 and
T2 with labels a and a′ respectively for somea, a′ ∈ Fq,
0 ≤ i ≤ n − 1, where+ denotes addition inFq. Let ~gi, 1 ≤
i ≤ k be the rows of a generator matrixG for the linear code
C. Each vector~gi generates a one-dimensional subcode ofC,
which we denote byCi. ThereforeC = C1 + C2 + ...+ Ck,
and the trellis representingC is given byT = T1 × T2 ×
· · · × Tk, whereTi is the trellis for ~gi, 1 ≤ i ≤ k. Given a
codeword~c =< c1, c2, ..cn >∈ C, the linear span [5] of ~c,
is the interval[i, j] ∈ {1, 2, · · ·n} which contains all the non-
zero positions of~c. A circular span [4] has exactly the same
definition with i > j. Note that for a given vector, the linear
span is unique, but circular spans are not. For a vector~x =<
x1, · · · , xn > over the fieldFq, there is a uniqueelementary
trellis [5], [4] representing~x [4]. This trellis hasq vertices at
time indicesi to (j − 1) mod n, and a single vertex at other
positions. Consequently,Ti in the trellis product mentioned
earlier, is the elementary trellis representing~gi for some choice
of span (either linear or circular). Koetter and Vardy [4] have
shown that any linear trellis, conventional or tail-bitingcan
be constructed from a generator matrix whose rows can be
partitioned into two sets, those which have linear span, and
those taken to have circular span. The trellis for the code is
formed as a product of the elementary trellises corresponding
to these rows. We will represent such a generator matrix as

G =

[

Gl

Gc

]

, whereGl is the submatrix consisting of rows

with linear span, andGc the submatrix of rows with circular
span. LetTl denote the minimum conventional trellis for the
code generated byGl. If l is the number of rows ofG with
linear span andc the number of rows of circular span, the
tail-biting trellis constructed using the product construction
will have qc start states. where, each such start state defines
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a subtrellis whose codewords form a coset of the subcode
corresponding to the subtrellis containing the all 0 codeword.

For the description of the decoding algorithm we assume a
tail-biting trellis with start statess0, s1 . . . st and final states
f0, f1 . . . ft. wheret is the number of subtrellises. An(si, fi)
path is a codeword path in trellisTi, whereas an(si, fj)
path for i 6= j is a non codeword path. For purposes of
our discussion we term the edge label sequence along such
a path as asemi-codeword as in [11]. We assume an AWGN
channel with binary antipodal signalling. When the edges
are given weights corresponding to the log-likelihood values,
ML decoding corresponds to finding the minimum weight
codeword path in the TBT.

III. T HE TWO PHASE ALGORITHM

The algorithm operates in two phases, each taking linear
time. The first phase is a Viterbi pass which computes a
function Cost() for each vertexu in the trellis. This value
of cost is used by the second phase to compute ametric at
each vertex of the trellis. The final decoding decision will be
based on themetric values at the final nodes of the trellis.

Let l(u, v) denote the length of the shortest path connecting
verticesu andv in the tail-biting trellis. Note thatl() satisfies
the triangular inequality. ie., l(u, v) ≤ l(u,w)+ l(w, v) for all
nodesu, v, w in the trellis. Acodeword is ansi−fi path while
a semi-codeword is ansj − fi path,i, j ∈ {1, ..t}, wheret is
the number of subtrellises. Note that all codewords are semi-
codewords. Defineδ(u) = min1≤i≤tl(si, u) We say an edge
(u, v) ∈ Section(i) if v ∈ T imeinde(i). Define themetric at
node u for trellis i mi(u) = l(si, u) + δ(fi) − δ(u). Define
metric at node u, m(u) = min1≤i≤tmi(u).

Supposeδ(u) = x and this is the length of ansi − u path,
the first phase of the algorithm assigns the program variable
Cost[u] the valuex and SurvT rellis[u] the value i. We
call the thesi − u path corresponding to this assignment the
survivor at u.

These values are used to assign values to the program
variableMetric[u] in the second phase, which is intended to
store the value of the metricm(u). The trellis corresponding to
the minimum metric value is stored in the variableTrellis[u].
However, the values assigned toMetric[] can be incorrect, in
that it is not equal tom(). The algorithm may even fail to
assign a value toMetric[u] for every nodeu. We shall derive
the conditions under which the algorithm may fail to decode
correctly.

The program variableDist[] stores the length of the path to
the node corresponding to the minimum value ofMetric[] in
the second phase. The program variablePred[] used in both
the phases stores the predecessor along the paths traced to the
node by the algorithm in the respective phases.

The functionMember((u, v), i) assumed in the algorithm
description below takes as input an edge(u, v) and integer
i and returns TRUE if the edge(u, v) belongs to trellisTi,
FALSE otherwise. Note that the functionMember() needs
only O(1) lookup time although the lookup table is of size
quadratic on the number of vertices in the trellis.

A. Phase 1: Estimation

Initialization:
for each si ∈ T imeIndex(0)

Cost[si] = 0
SurvT rellis[si] = i
Pred[si] = si

for each v /∈ T imeIndex(0) cost[v] = ∞

Estimation:

for T imeindex := 1 to n do
for each edge (u, v) ∈ Section(i) do

Temp = Cost[u] + l[u, v]
if (Cost[v] > Temp) then

Cost[v] = Temp
Pred[v] = u
SurvT rellis[v] = SurvT rellis[u]

Clearly by the end of this phase,Cost[u] = δ(u) for each
vertexu in the trellis.

Let j = argmin1≤i≤tδ(fi). If the algorithm assigns
SurvT rellis[fj] = j, thensurvivor at fj which corresponds
to the minimum weight semi-codeword in the trellis turns out
to be a codeword and the algorithm stops. Otherwise, the
second phase described below will be executed.

B. Phase 2: Revision

Initialization:

for each si ∈ T imeIndex(0)
if (Survivor[fi] 6= i) then Metric[si] = δ(fi)
else Metric[si] = ∞ /* No processing forTi */
Pred[si] = si
Trellis[si] = i
if (Metric[si] = ∞) thenDist[si] = ∞
else Dist[si] = 0

for each v /∈ T imeIndex(0) Metric[v] = ∞

Revision

for T imeindex := 1 to n do
for each edge (u, v) ∈ Section(i) do

Update(u, v)

Update(u, v)
if (notMember((u, v), T rellis[u]) return;
temp = Dist[u] + l[u, v] + Cost[fTrellis[u]]− Cost[v]
if (Metric[v] > temp) then

Metric[v] = temp
Pred[v] = u
Trellis[v] = Trellis[u]
Dist[v] = Dist[u] + l[u, v]

The second phase attempts to compute the value of the
metric, m(u) for each vertexu of the trellis. If the first phase
assignedSurvT rellis[fi] = i for some final nodefi, for



the particular trellisTi the second phase processing is not
required. We say a TrellisTi participates in the second phase if
SurvT rellis[fi] 6= i andδ(fi) ≤ minj,SurvTrellis[fj ]=jδ(fj).
The final decoding decision is based on the values of the metric
at the final nodes of the trellis. We shall derive the conditions
under which the algorithm will achieve maximum likelihood
decoding on a tail-biting trellis for a linear code, when binary
antipodal signaling is used over an AWGN channel.

C. Final Decision

If the algorithm does not stop in the first phase, choose ver-
tex j = argmin1≤i≤tMetric[fi]. The output of the algorithm
is the codeword corresponding to thesj−fj path obtained by
tracing the predecessors offj till sj . The arrayPred() stores
the predecessors of each node along the path the minimizes
the value ofmetric. Note that ifTj does not participate in the
second phase, the path must be traced alongPred() values in
the first phase.

IV. A NALYSIS

For any nodeu, if Trellis[u] = j, thenDist[u] ≥ l(sj, u)
because the value assignedDist[u] is the length of ansj −
u path. ConsequentlyMetric[u] ≥ mj(u). We collect these
facts into a lemma:

Lemma 1: During the second phase, if the algorithm as-
signs for a nodeu, Trellis[u] = j thenDist[u] ≥ l(sj, u)
andMetric[u] ≥ mj(u).

The following simple property ofδ() will be useful:
Lemma 2: If (u, v) is an edge in the TBT, theδ(v) ≤ δ(u)+

l(u, v).
Proof: The shortest path from a start node tov cannot

be longer than the shortest path from a start node tov through
u.

The following lemma asserts that the value assigned to
Metric by the algorithm cannot be smaller than theMetric
value of its predecessor node.

Lemma 3: Let (u, v) be an edge in the Tail-biting Trel-
lis. Let Trellis[u] = i Suppose the second phase assigns
Pred[v] = u thenMetric[v] ≥ Metric[u]

Proof: An inspection of the algorithm reveals that the
algorithm assigns toDist[u] the cost of somesi − u path.
HenceDist[u] ≥ l(si, u). By theMetric update rule of the
algorithm,Metric[v] = Dist[u]+l(u, v)+δ(fi)−δ(u). Since
Metric[u] = Dist[u] + δ(fi) − δ(u), the result follows as
δ(v) ≤ δ(u) + l(u, v) by lemma 2.

Corollary 1: If the algorithm assignsTrellis[u] = i, then
Metric[u] ≥ Metric[si] = δ(fi)

Proof: The algorithm initializesMetric[si] to δ(fi). By
previous lemma, the value cannot decrease along anysi − u
path.

The algorithm, if assigns any value, must setTrellis[fj] =
j andMetric[fj] = Dist[fj] ≥ l(sj , fj) = mj(fj) for each
j ∈ {1, .., t}. Thus, if the shortest path corresponding to a
codeword in the trellis is ansj−fj path, then ifMetric[fj] =
l(sj , fj) the algorithm is guaranteed to decode correctly. In the

following, we derive a condition necessary for the algorithm
to fail.

Theorem 1: If the shortest codeword corresponds to ansi−
fi pathP , and ifP corresponds to the codeword output by a
maximum likelihood decoder, then, the two phase algorithm
fails to assignMetric[u] = mi(u) and Trellis[u] = i for
any nodeu in P only if there existsk 6= j 6= i such that
l(sk, fj) ≤ l(si, fi).

Proof: Without loss of generality, assume that the all zero
codeword was transmitted and an ideal ML decoder will output
the all zero codeword. Again, without loss of generality let
P = (s1 =)u0, u1..un−1, un(= f1) be the shortestsi−fi path
in the sub-trellisT1 corresponding to the all zero codeword.
We therefore havel(s1, f1) < l(si, fi) for all 1 < i ≤ t. Let
u, be the first node along the pathP where there exists some
1 < j ≤ t such thatmj(u) ≤ m1(u). such nodeu must exist
for otherwise, the algorithm will decode correctly as it will
assignTrellis[ui] = 1 with Metric[ui] = m1(ui) all along
the pathP .

Note thatm1(f1) = l(s1, f1) is the value the algorithm
would have assigned toMetric[f1] if the algorithm had
assignedTrellis[ui] = 1 all along the pathP . As the
algorithm assigns the minimum value ofMetric possible
for each node, by lemma 3, it must be true that the actual
value assigned to theMetric[u] by the algorithm must satisfy
Metric[u] ≤ l(s1, f1). Since we assume that the algorithm
assignedTrellis[u] = j, the value of the metric computed
at u must have followed ansj − u path and consequently
Metric[u] ≥ Metric[sj] = δ(fj) (Corollary 1). Hence
δ(fj) ≤ l(s1, f1).

Now, Assume that the survivor atfj is ansk−fj path, ifk =
j, we havel(sj, fj) ≤ l(s1, f1), a contradiction. Otherwise,
the condition stated in theorem holds.

Now to specialize the above to AWGN channel with binary
antipodal signaling. The following two results proved in [11]
are repeated here for completeness.

Lemma 4: The space of semi-codewords is a vector space.
Proof: Assume that each of thec vectors in the submatrix

Gc of the generator matrix is of the formvi = [~hi,~0, ~ti]
where ~hi stands for the sequence of symbols before the zero
run, and is called thehead and ~ti stands for the sequence of
symbols following the zero run and is called thetail and~0
is the zero run containing the appropriate number of zeroes.
Let {v1, v2 . . . vc} be the vectors ofGc. Then the matrixGs

defined asGs =

[

Gl

G′
c

]

, whereG′
c consists of2c rows of

the form [~hi,~0], [~0, ~ti], 1 ≤ i ≤ c, generates the set of labels
of all paths from any start node to any final node.

The following is due to Tendolkar and Hartmann [8].
Lemma 5: LetH be the parity check matrix of the code and

let a codeword~x be transmitted as a signal vectors(~x). Let
the binary quantization of the received vector~r = r1, r2, . . . rn
be denoted by~y. Let ~r′ = (|r1|, |r2|, . . . |rn|) andS = ~yHT .
Then maximum likelihood decoding is achieved by decoding
a received vector~r into the codeword~y+~e where~e is a binary



vector that satisfiesS = ~eHT and has the property that if~e′ is
any other binary vector such thatS = ~e′HT then~e.~r′ < ~e′.r′

where. is the inner product.
Combining all the above, we have the following necessary

condition for error.
Theorem 2: Assume the~0 codeword is the ML codeword

corresponding to the paths1−f1 in the tail biting trellis. Let~y
be the binary quantization of the received vector. Letr, r′ be
as defined in Lemma 4. For the error pattern~e the two phase
algorithm decodes to a vector to a vector~α 6= ~0 correspond
an sj − fj pathj 6= i only if there exists a semi-codewordCs

satisfying
(Cs + ~e).r′ ≤ ~e.r′ < (C + ~e).r′

for all nonzero codewordsC, where the semi-codewordcs
either shares either its head or tail with Trellisj.

Proof: Since the ideal ML decoder decodes~y to ~0, we
have~y + ~e = 0 or e = y. Let H be the parity check matrix
of the code whileHs the parity check matrix for the semi-
codeword vector space established in Lemma 3. Any binary
error vector~e′ which gives the same syndrome ase must
belong to the same coset of the code and hence must have
the formC + ~e, where C is a codeword. Applying Lemma 5,
we get~e.r′ < (C + ~e).r′ for all codewords C, which proves
the right inequality.

To yield the left inequality, first observe that the first phase
of the algorithm does an ML decoding on the semi-codeword
space. Anysk − fj pathP in the tail-biting trellis withk 6= j
and l(sk, fj) ≤ l(s1, f1) corresponds to a semi-codeword
that an ideal ML decoder operating on the space of semi-
codewords will prefer to the all zero codeword. Hence, by
applying Lemma 5 to this case and arguing identically as
above, we find that for each path suchP there must exist
a semi-codewordCs such that(Cs + ~e)r′ ≤ ~e.r′. The claim
follows as Theorem 1 asserts that this condition is necessary
for the algorithm to fail to decode the received vector to the
all zero codeword.

V. COMPLEXITY

Since each phase takes linear time, the algorithm runs in
time linear in the size of the tail-biting trellis. As each pass is
Viterbi like, the worst case number of comparisons performed
is bounded by twice that of the Viterbi algorithm. The space
complexity is quadratic in the size of the trellis owing to the
lookup table of sizet|V | required for themember() function,
where |V | is the number of vertices in the trellis. However,
this is not a serious drawback as the table can be efficiently
implemented using bit vector representation.

VI. SIMULATION RESULTS

The results of simulations on an AWGN channel for the
two phase algorithm are displayed in the figures below. The
codes used are a rate1/2 memory6 convoluational code with
a circle size of48 (same as the (554,744) code convolutional
code used in [2]) and a rate1/2 memory 4 convolutional code
with circle size20 (same as the (72,62) code used in [1]). The
performance of the above codes is compared with that of the
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exact ML decoding algorithm in [11]. It is seen that the bit
error rate of the algorithm approaches that of the ideal ML
decoder.

VII. D ISCUSSION AND CONCLUSION

The performance of the algorithm can be improved at the
expense of more storage by tracking more than one paths
corresponding lowest values ofMetric during the second
second phase. However, the time complexity increases pro-
portional to the number of stored paths. Practice has shown
that memorizing the best two paths corresponding to the
minimum value ofMetric at each node gives performance
almost indistinguishable from the ideal maximum likelihood
decoder [11]

An interesting failure condition of the algorithm is the
following: The algorithm may fail to assign a value to the
Metric field for a node if in the second phase a node fail
to belong to any of the trellises assigned to theTrellis field
of its predecessors by the algorithm. If this happens along all
paths to all final states, the algorithm may fail to output a
codeword in the second phase. Note that the error condition



proved handles this case as well. However this situation never
occurred in simulations performed.

From the results of simulations on the rate 1/2, memory
4 convolutional code with a circle size of 20 and a rate 1/2
memory 6 convolutional code with a circle size of 48, it is seen
that the algorithm performs close to the ideal ML decoder. The
performance is comparable with other linear time approximate
methods. The present algorithm reduces computation to just
two Viterbi computation on the tail-biting trellis and doesnot
require dynamic data structures like the heap necessary in the
orginal versions using the A* algorithm [11].
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