
Sharp Bounds for MAP Decoding of General
Irregular LDPC Codes

Shrinivas Kudekar, Nicolas Macris
LTHC, EPFL, I&C, CH-1015 Lausanne

email : shrinivas.kudekar@epfl.ch, nicolas.macris@epfl.ch

Abstract— Consider communication over a binary in-
put memoryless output symmetric channel with LDPC
codes and MAP decoding. Recently Montanari proved
that the replica solution is a lower bound to the condi-
tional entropy for a class of LDPC ensembles. Here we
extend this lower bound toany irregular LDPC ensemble
for the BEC, BIAWGNC, BSC. Our work combines
an analysis of the second derivative of the conditional
entropy with respect to the noise and the interpolation
method.

I. I NTRODUCTION

Linear codes based on sparse random graphs are
useful because of low-complexity decoding schemes
and good performance [1],[2]. One quantity of interest
is the maximum a posteriori (MAP) threshold, above
which reliable communication is not possible. Fano’s
inequality tells us that the block error probability for
a code having lengthn and rater is lower bounded
byH(Xn|Y n)/(nr) whereH(Xn|Y n) is the entropy
of the transmitted messageXn conditional to the
received messageY n. Thus lower bounds for the
conditional entropy per bithn = H(Xn|Y n)/n also
give upper bounds on the MAP threshold.

Recent techniques of statistical physics applied to
communications have provided tight bounds onhn

for a class of LDPC(n,Λ, P ) code ensembles. Here
Λ(x) =

∑
d Λdx

d, P (x) =
∑

k Pkx
k are the variable

and check node degree distributions from the node
perspective [1]. These results are based on theinter-
polation method, developed recently in the theory of
mean field spin glasses [3], [4]. In [5] the interpolation
method is extended to the standard LDPC ensembles
with any polynomialΛ(x) but P (x) restricted to be
a convex polynomial in a region−e ≤ x ≤ e. In
particular if the right degree is constant this means
it has to beeven. In this paper we drop the convexity
requirement ofP (x) for the BEC, BIAWGNC and BSC.
Our result holds for any standard regular or irregular
code ensemble. The general scheme of our analysis
holds for any binary memoryless symmetric (BMS)
channel - except for one inequality limited to BEC,
BIAWGNC, BSC - and we expect that it should be
possible to further extend the present results to more
general channels.

We consider communication through a BMS chan-
nel with transition probabilitypY |X(y|x) and noise

parameterε understood to vary in the appropriate
range. We will work in terms of both the likelihood
l = ln pY |X(y|1)

pY |X(y|0) and differencet = tanh l
2 domains.

Let V be some random variable with an arbitrary
symmetricdensity dV (v). In the present context a
r.v is said to be symmetric ifdV (v) = evdV (−v).
Also let U = tanh−1

[∏k−1
i=1 tanhVi

]
whereVi are

i.i.d copies ofV and k is the degree of check nodes
distributed asPk (the degree of variable nodesd is
distributed asΛd). Notice that the r.vU appears as
the check node message in the belief propagation (BP)
decoding algorithm. The mathematically ill defined
replica calculationsof spin glass theory lead to a
conjectured formula for the entropy

EC [hn] = sup
dV

hRS [dV ]

where the functionalhRS [dV ] is known as the “replica
symmetric” or “trial” entropy

hRS [dV ] = −Λ′(1)EV,U

[
ln(1 + tanhV tanhU)

]
+ El,d,Uc

[
ln

(
e

l
2

d∏
c=1

(1 + tanhUc)

+ e−
l
2

d∏
c=1

(1− tanhUc)
)]

+
Λ′(1)
P ′(1)

Ek,Vi

[
ln(1 +

k∏
i=1

tanhVi)
]
− Λ′(1)
P ′(1)

ln 2

Our main result is
Theorem 1.1:Assume communication using a stan-

dard irregular LDPC(n,Λ, P ) code ensemble, through
a BEC or BIAWGNC with any noise level and a BSC
with crossover parameter0.421 ≤ ε < 0.5. For almost
all ε in the above ranges we have,

lim inf
n→+∞

EC [hn] ≥ sup
dV

hRS [dV ]

It is strongly suspected that in fact the equality
holds, so a numerical implementation of the replica
expression provides a practical means to compute a
precise value for the MAP threshold. Besides, the
equations for the critical points of the functional
hRS [dV ] are closely related todensity evolution, so
the above bound - and the conjectured equality - are



of theoretical importance for the elucidation of the
relationship between MAP and BP decoding.

Our proof of the theorem uses thesecondderivative
of EC [hn] with respect to the noise parameter. By ana-
lyzing this second derivative we are able to extend the
domain of applicability of the interpolation method.
The first derivative of the conditional entropy is known
as the Generalized EXIT function [6] and plays an
important role in the analysis of LDPC codes (namely
the relationship between MAP and BP decoding). We
find it interesting to see that the second derivative
seems to also be of some use, and are not aware
whether it has been investigated before.

II. D ERIVATIVES OF THE CONDITIONAL ENTROPY

A. Conditional Entropy and Free Energy

Consider a fixed code of an LDPC(n,Λ, P ) ensem-
ble. The Tanner graph has variable nodes, denoted
by (i,j,...), that are connected to check nodesc. The
posterior distributionpXn|Y n(xn|yn) used in MAP
decoding can be viewed as the Gibbs measure of a
particular random spin system. For this it is convenient
to use the usual mapping of bits onto spinsσi =
(−1)xi . For a uniform prior over the code words and
a BMS channel, Bayes rule impliespXn|Y n(xn|yn) =
µC(σ(n)) with

µC(σ(n)) =
1
ZC

∏
c∈C

1
2
(1 + σ∂c)

n∏
i=1

e
li
2 σi

where σ∂c =
∏

i∈c σi and ZC is the normalization
factor or partition function. We can assume that the
input is the all zero codeword which induces a dis-
tribution c(l) for the likelihood variables (this isε
dependent). Expectations with respect to the Gibbs
measure for a fixed graph and a fixed channel output
are denoted by the bracket〈−〉. More precisely for
anyX ⊂ {1, ..., n},

〈σX〉 =
∑
σn

σXµC(σn), σX =
∏
i∈X

σi

Expectations with respect to the code ensemble and
the channel outputs will be denoted byEC,ln [−].

The correspondence between communications and
statistical mechanical quantities is as follows. The
extrinsic soft bit estimate is

pX1|Y n\Y1(0|y
n \ y1)− pX1|Y n\Y1(1|y

n \ y1) = 〈σ1〉0
where the subscript in the Gibbs bracket indicates
that it is computed forl1 = 0. We will also need
extrinsic soft estimates forX1 ⊕ Xj , j 6= 1. These
are computed withpX1⊕Xj |Y n\Y1,Yj

. In the statistical
mechanics formalism they are simply expressed as
〈σ1σj〉00 where the subscript in the Gibbs bracket
means that we setl1 = lj = 0. It is possible to show
[7]

EC [hn] =
1
n

EC,ln [lnZC ]−
∫ +∞

−∞
dlc(l)

l

2

Therefore the evaluation of the conditional entropy and
soft bit estimate reduce to that of the average free
energy 1

nEC,ln [lnZC ] and magnetization〈σ1〉0 of the
corresponding spin system.

B. First Derivative

Differentiating the relationship between entropy and
free energy we get [8],

d

dε
EC [hn] =

∫ +∞

−∞
dl1

dc

dε
(l1)g1(t1) (1)

where we recall the notationt1 = tanh l1
2 and

g1(t1) = EC,ln\1

[
ln

(
1 + t1〈σ1〉0

1 + t1

)]
Note that this is nothing else than the GEXIT function
[6].

Channel symmetry implies a set of generalNishi-
mori identities[9]. Expanding the logarithm and using
these identities we obtain a useful power series expan-
sion for (1),

∞∑
k=1

m
(2k)
1

2k(2k − 1)
EC,ln\1 [〈σ1〉2k

0 − 1] (2)

where

m
(2k)
1 =

∫ +∞

−∞
dl1

dc

dε
(l1)t2k

1

The derivation of (2) and explanations on Nishimori
identities can be found in [10].

C. Second Derivative of the Conditional Entropy

A calculation of the second derivative yields the
formula

d2

dε2
EC [hn] =

∫ +∞

−∞
dli
d2c

dε2
(l1)g1(t1)

+
∑
j 6=1

∫ +∞

−∞

∫ +∞

−∞
dl1dlj

dc

dε
(l1)

dc

dε
(lj)g2(t1, tj) (3)

with

g2(t1, tj) = EC,ln\1,j

[
ln

(
1 + t1〈σ1〉00 + tj〈σj〉00 + t1tj〈σ1σj〉00

1 + t1〈σ1〉00 + tj〈σj〉00 + t1tj〈σ1〉00〈σj〉00

)]
Remarkably the same formula (3) hold if ing1, g2 we
replace the brackets〈−〉0, 〈−〉00 by 〈−〉, and replace
g1(t1), g2(t1, tj) by −g1(−t1),−g2(−t1,−tj).

Expanding the logarithms, using the Nishimori iden-
tities and reorganizing the series suitably we get a
useful expansion for

d2

dε2
EC [hn] = S1 + S2



The termS1 has the same form as (2) withd
2c

dε2 (l1)
replacingdc

dε (l1). The second partS2 is obtained after
some tedious algebra,

∑
j 6=1

∞∑
l=1

∑
k≥l

m
(2k−1)
1 m

(2l−1)
j EC,ln\1,j

[(
〈σ1σj〉00

− 〈σ1〉00〈σj〉00
)2〈σ1〉2k−2l

00

2l−2∑
r=0

Ar,l〈σ1〉r00〈σj〉r00

×
(
〈σ1〉00〈σj〉00 − 〈σ1σj〉00

)2l−r−2
]

+
∑
j 6=1

∞∑
k=1

∑
l>k

m
(2k−1)
1 m

(2l−1)
j

(
(1 ↔ j), (k ↔ l)

)
where Ar,l =

1
(2l)!

(
2l−2

r

)
[2l]r[2k − 2]2l−2−r

and[m]r = (m) · · · (m−r+1). This expansion, which
is used later on, can be shown to converge.

III. T HE DECAY OF SPIN-SPIN CORRELATIONS

One expects that in the limitn → ∞ EC [hn] re-
mains continuous with a finite jump in the first deriva-
tive at the MAP (or phase transition) threshold(s). In
other words the first derivative should remain finite
uniformly in n. This is the content of the following
lemma.

Lemma 3.1:For BEC, BSC and BIAWGN we have

0 ≤ d

dε
EC [hn] ≤ a

wherea = 1 for BIAWGN, a = 2 ln 2 for BEC and
a = (1− 2ε)/(2ε(1− ε)) for BSC.

Proof: Using |〈σ1〉00| ≤ 1 and computem(2k)
1

in the expansion (2) we obtain the upper bound. The
lower bound follows fromm(2k)

1 ≤ 0 [1] and〈σ1〉2k
0 ≤

1.
The second derivative remains finite except at the

thresholds where it diverges as a function ofn. This
divergence is intimately related to the absence of decay
of the spin-spin correlation〈σ1σj〉 − 〈σ1〉〈σj〉 as a
function of the distance between nodes1 and j (on
the Tanner graph the distance between two nodes is
the length of the shortest path joining them). This is
basically the content of lemma 3.2.

Depending on the situation it is more convenient
to work with the brackets〈−〉00 or 〈−〉. This is why
we will also need the following which we state here
without proof.

Lemma 3.2:For any BMS channel there is a func-
tion R(l1, lj) such that

〈σ1σj〉−〈σ1〉〈σj〉 = R(l1, lj)
(
〈σ1σj〉00−〈σ1〉00〈σj〉00

)
In particular for the BEC with any noise level and the
BSC with 0.421 ≤ ε < 0.5 we have

R(l1, lj) ≤ ρ

whereρ is a finite positive constant.

Remark: for the BIAWGNC we do not need this
lemma. For the BEC and BSC the values ofρ are
1 and16.83.

Lemma 3.3:For the BEC and the BIAWGNC with
any noise level and the BSC with0.421 ≤ ε < 0.5,
there exist finite positive constantsb and c, possibly
dependent onε, such that

d2

dε2
EC [hn] ≥ −c+ b

∑
j 6=1

EC,ln
[
(〈σ1σj〉−〈σ1〉〈σj〉)2

]
(4)

Remark: A similar upper bound holds with other
constantsc′, b′.

Proof: The proof can be based on the expansion
of d2

dε2 EC [hn]. However for the BIAWGNC and the
BEC we have a more elegant argument.
BIAWGNC.Using the identitydc

dε (l) = 2ε−2(c′(l) −
c′′(l)) and integration by parts in the formula (3)
expressed with the bracket〈−〉, leads to the simple
expression

d2

dε2
EC [hn] =

1
2

n∑
j=1

E(〈σ1σj〉 − 〈σ1〉〈σj〉)2

Thus we get (4) withc = 0 andb = 1
2 .

BEC. We have dc(l)
dε = δ0(l) − δ∞(l), d2c(l)

dε2 = 0 so
the second derivative is equal to

∑
j 6=1

Eln\1,j

[
ln

1 + 〈σ1〉00 + 〈σj〉00 + 〈σ1σj〉00
1 + 〈σ1〉00 + 〈σj〉00 + 〈σ1〉00〈σj〉00

]
On the BEC the spin system has positive coupling

constants so that we can apply the Griffiths-Kelly-
Sherman correlation inequalities [10] we know that
〈σ1σj〉00 − 〈σ1〉00〈σj〉00 ≥ 0, 〈σ1〉00 ≥ 0, 〈σj〉00 ≥ 0.
Thus

1 ≤ 1 + 〈σ1〉00 + 〈σj〉00 + 〈σ1〉00〈σj〉00
≤ 1 + 〈σ1〉00 + 〈σj〉00 + 〈σ1σj〉00 ≤ 4

Inequality (4) then follows fromlnu−ln v ≥ 1
4 (u−v)

for 4 ≥ u ≥ v ≥ 1 and lemma 3.2. We getc = 0 and
b = 1/4.
BSC.Thanks to an expansion similar to (2) it is easy
to show that the contributionS1 to (3) is greater than
−c for c = 1/(2ε(1 − ε)). Let us now look at the
contribution fromS2. In the expansion of the later we
can isolate the termk = l = 1

16(1−2ε)2
∑
j 6=1

EC,ln\1,j

[(
〈σ1σj〉00−〈σ1〉00〈σj〉00

)2]
If we could prove that the rest of the series is strictly
positive we would have the result for all values ofε.
We have been unable to show this but we can easily
bound the power series expansion term by term to



show that it cannot be more negative than

− 16(1− 2ε)2

2(1− 25
4 (1− 2ε)2)4

×
∑
j 6=1

EC,ln\1,j

[(
〈σ1σj〉00 − 〈σ1〉00〈σj〉00

)2]
Combining these remarks with lemma 3.2 we obtain
(4) with b = 0.028(1−2ε)2

[
2− 1

(1−(2.5(1−2ε))2)4

]
> 0

as long as0.421 ≤ ε < 0.5.

IV. PROOF OFTHEOREM BY INTERPOLATION

METHOD

A. A Brief Survey

We use the interpolation method in the form devel-
oped by Montanari. As explained in [5] it is difficult to
deal directly with general irregular ensembles. Rather
one introduces amulti-poisson ensemblewhich ap-
proximates the general ensemble. Once the bounds are
derived for the multi-Poisson ensemble a limiting pro-
cedure permits to extend them to the general irregular
ensemble. The multi-Poisson ensemble is a technical
elaboration of thePoisson ensembleand due to lack of
space we present the analysis here for the later. The
extension of the estimates that follow to the multi-
Poisson ensemble and thus to the standard irregular
ensembles does not involve any extra difficulty except
for technicalities.

The Poisson ensemble LDPC(n, 1−r, P ) has a fixed
n number of variable nodes while the number of check
nodes is Poisson with meann(1 − r) where r is a
fixed design rate. The variables nodes are connected to
checks uniformly at random and their degree becomes
Poisonnian asn → ∞. The check node degree is
distributed according toP (x).

The main idea behind the interpolation technique
is to recursively remove the check node constraints
and compensate for the change of rate with extra
observationsUc coming from an auxiliary channel.
More precisely lets ∈ [0, 1] be an interpolating
parameter. At “time”s the number of check nodes is
a Poisson r.v with meann(1− r)s and variable nodes
i receivedi extra observations{U i

a} which are i.i.d
copies of the r.vU . For eachi, di is a Poisson r.v
with meann(1 − r)(1 − s). The interpolating Gibbs
measure is

µCs(σ
n) =

1
ZCs

∏
c∈Cs

1
2
(1 + σ∂c)

n∏
i=1

e(
li
2 +

∑di
c=1 Ui

a)σi

where Cs is a Tanner graph at “time”s in
LDPC(n, (1 − r)s, P ). At s = 1 one recovers the
original measure while ats = 0 we have a simple
product measure which is tailored to yield the replica
symmetric entropyhRS [dV ] up to a remainder term.

The central result that we use is

EC [hn] = hRS [dV ] +
∫ 1

0

Rn(s)ds

The remainder termRn(s) is given by

Rn(s) =
∞∑

p=1

1
2p(2p− 1)

× E[〈P (Q2p)−P ′(q2p)(Q2p − q2p)−P (q2p)〉2p,s]
(5)

where qp = EV [(tanhV )p] and Qp are overlap
parametersdefined as

Qp =
1
n

n∑
i=1

σ
(1)
i σ

(2)
i · · ·σ(p)

i (6)

Hereσ(α)
i , α = 1, 2, . . . , p arep independent copies

(replicas) of the spinσi and 〈−〉p,s is the Gibbs
bracket associated to the product measure (replica
measure)

∏p
α=1 µCs(σ

(α)
1 ...σ

(α)
n ). Finally we use the

shorthandE[−] for the expectation with respect toCs,
ln, di, U i

a.

B. Conjecture on Overlaps

We conjecture the following:
Conjecture 4.1:For any BMS channel, there exists

a small enough numberδ > 0 such that forLebesgue
almost everyε

lim
n→∞

∫ 1

0

dsP
[
|Qk

p − 〈Qp〉kp,s| >
p

nδ

]
= 0 (7)

where P is the probability distributionE〈1X〉p,s.

Using lemmas 3.1 and 3.3 we will prove this con-
jecture for the BIAWGNC, BEC and the BSC (in the
appropriate noise interval). At the threshold values of
the noise one expects the overlap fluctuations to grow
because the spin-spin correlation does not decay and
this is why we have thealmost all ε condition.

C. Proof of Main Theorem

Our aim is to show that

lim inf
n→+∞

∫ 1

0

Rn(s)ds ≥ 0 (8)

Since |Q2p| ≤ 1 and |q2p| ≤ 1 the contribu-
tion of the terms with2p > nδ is smaller than
O(n−δ)

∑
k kPk. Thus this contribution tends to0 as

n→ +∞ and it is sufficient to look at the terms with
2p < nδ.

Consider the term inside the Gibbs bracket of (5)

P (Q2p)− P ′(q2p)(Q2p − q2p)− P (q2p)

=
∑

k

Pk

(
Qk

2p − kQ2pq
k−1
2p + (k − 1)qk

2p

)
(9)

Even degrees k.For these terms we use the standard
argument: the convexity of the functionxk on the
whole real line implies(Qk

2p − kQ2pq
k−1
2p + (k −

1)qk
2p) ≥ 0. Therefore the contribution of even terms

to the remainder is non negative.
Odd degrees k.We decompose the Gibbs bracket as

〈Qk
2p − kQ2pq

k−1
2p + (k − 1)qk

2p〉2p,s = C2p + F2p



where

C2p = 〈Q2p〉k2p,s − k〈Q2p〉2p,sq
k−1
2p + (k − 1)qk

2p

and
F2p = 〈Qk

2p〉2p,s − 〈Q2p〉k2p,s

Since 〈Q2p〉 is positive, the convexity ofxk on the
positive real axis(rememberk is odd) implies that
C2p ≥ 0 and the contribution to the remainder is non
negative. The fluctuation termF2p on the other hand
can be negative. However we can control its effect
thanks to (7). Its contribution to the remainder is∣∣∣∣ ∑

2p<nδ

1
2p(2p− 1)

E[〈Qk
2p〉2p,s − 〈Q2p〉k2p,s]

∣∣∣∣
≤

∑
2p<nδ

1
2p(2p− 1)

2p
nδ

+
∑

2p<nδ

2
2p(2p− 1)

× P[|Qk
2p − 〈Qk

2p〉2p,s| >
2p
nδ

]

We can bound the first term above byO(n−δ lnn).
From (7) and dominated convergence we get that the
s integral of the second term goes to zero asn→∞.

Combining all the above results we obtain (8) and
thus the theorem.

V. OVERLAP FLUCTUATION FOR BEC, BSC,
BIAWGN

In this section we sketch the proof of the conjecture
(7) for these three channels. The proof rests on lemmas
3.1 and 3.3. The identity

bk − ak = (b− a)
k−1∑
l=0

bk−l−1al (10)

and|Qp| ≤ 1 imply |Qk
p−〈Qp〉kp| ≤ k|(Qp−〈Qp〉p,s)|.

Then by Chebychev’s inequality

P[|Qk
p−〈Qp〉kp,s| >

p

nδ
] ≤ P[|Qp−〈Qp〉p,s| >

p

knδ
]

≤ O(
4k2n2δ

p2
)E[〈Q2

p〉p,s − 〈Qp〉2p,s]

Writing down explicitly the overlaps and using again
(10) we have

E[〈Q2
p〉p,s − 〈Qp〉2p,s]

≤ O(
p

n2
)

n∑
i,j=1

E[|〈σiσj〉s − 〈σi〉〈σj〉s|]

Swchartz’s inequality shows that the right hand side
is smaller than

O(
p

n
)
( n∑

i,j=1

E
[(
〈σiσj〉s − 〈σi〉s〈σj〉s

)2])1/2

Finally we arrive at

P[|Qk
p − 〈Qp〉kp,s| >

p

nδ
]

≤ O(
k2n2δ− 1

2

p
)
( n∑

j=1

E[(〈σ1σj〉s−〈σ1〉s〈σj〉s)2]
) 1

2

The results of the preceding sections are also valid
for the bracket〈−〉s because sinceV is a symmetric
random variableU i

a also is. Therefore from lemma 3.3
we have

P
[
|Qk

p − 〈Qp〉kp| >
p

nδ

]
≤ O(

k2n2δ− 1
2

p
)
(

1 + cb−1 + b−1 d
2

dε2
EC [hn]

) 1
2

Let ψ(ε) be aC∞0 positive normalized test function.
Using the Schwartz inequality, integration by parts
over ε, and lemma 3.1 we can show∫

dεψ(ε)
(

1 + cb−1 + b−1 d
2

dε2
EC [hn]

)1/2

≤ 1 + cb−1 + b−1

∣∣∣∣ ∫
dεψ′(ε)

d

dε
EC [hn]

∣∣∣∣1/2

≤ O(1)
(
1 +

∫
dε|ψ′(ε)|

)1/2

From this we conclude (using Fubini and dominated
convergence) that for0 < δ < 1

4∫
dεψ(ε) lim

n→∞

∫ γ

s

dsP[|Qk
p − 〈Qp〉kp| >

p

nδ
] = 0

Since this is true for any positive test function we
conclude that (7) holds for almost everyε. Note that
this proof would work for any channel satisfying (4).
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