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Abstract— Consider communication over a binary in- parametere understood to vary in the appropriate

IOU(tj mem(éry'{ii% %Utpué.symgetric |Ch6,:/f|me| with LDPCd range. We will work in terms of both the likelihood
codes an ecoding. Recently Montanari proved ; 5 py|x(¥1) : - i .

that the replica solution is a lower bound to the condi- b=In py|x (¥0) and dlfferencq - tan'h 2 domalr.Is.
tional entropy for a class of LDPC ensembles. Here we L€t V' be some random variable with an arbitrary
extend this lower bound toany irregular LDPC ensemble symmetricdensity dy (v). In the present context a
for the BEC, BIAWGNC, BSC. Our work combines rv is said to be symmetric itly (v) = eVdy(—v).

an analysis of the second derivative of the conditional ajsq |et 7 = tanh~! [Hk_ltanh V] where V; are
= i=1 ¢ i

ﬁ]net{ﬁgé/.wnh respect to the noise and the interpolation i.i.d copies ofV andk is the degree of check nodes
distributed asP, (the degree of variable nodekis
|. INTRODUCTION distributed asA,;). Notice that the r.vU appears as

the check node message in the belief propagation (BP)

Linear codes based on sparse random graphs @&oding algorithm. The mathematically ill defined
useful because of low-complexity decoding schemggpica calculationsof spin glass theory lead to a

and good performance [1],[2]. One quantity of i”tere%onjectured formula for the entropy
is the maximum a posteriori (MAP) threshold, above

which reliable communication is not possible. Fano’s Eclhn] = sup hrs[dy]

inequality tells us that the block error probability for dv

a code having length and rater is lower bounded \yhere the functionak zs[dy ] is known as the “replica
by H(X"[Y™)/(nr) whereH (X"|Y™) is the entropy symmetric” or “trial” entropy

of the transmitted messag&™ conditional to the

received messag&™. Thus lower bounds for the hrsldy] = —A'(l)Eva[ln(l+tanthanhU)]

conditional entropy per bit,, = H(X"|Y")/n also d

give upper bounds on the MAP threshold. + Epav, [In (e? [1(1+ tanh )
Recent techniques of statistical physics applied to i

communications have provided tight bounds by d

for a class of LDPG{, A, P) code ensembles. Here te® H(l — tanh UC))]

A(z) =, Aazd, P(z) =, Pya® are the variable =1

and check node degree distributions from the node A(1) k A(1)

perspective [1]. These results are based onirther- + ) Ekv, [In(1 + Htanh Vi) - ) In2

polation methoddeveloped recently in the theory of i=1
mean field spin glasses [3], [4]. In [5] the interpolatiotyyr main result is

method is extended to the standard LDPC ensemblesrhggrem 1.1:Assume communication using a stan-

with any polynomialA(x) but P(z) restricted to be gard irregular LDPGE, A, P) code ensemble, through
a convex polynomial in a regior-e < z < e. In 3 BEC or BIAWGNC with any noise level and a BSC

particular if the right degree is constant this meangith crossover paramet€r421 < e < 0.5. For almost
it has to beeven In this paper we drop the convexityq| ¢ in the above ranges we have,

requirement ofP(x) for the BEC, BIAWGNC and BSC.

Our result holds for any standard regular or irregular liminf E¢[h,] > sup hrs[dy]

code ensembleThe general scheme of our analysis e dv

holds for any binary memoryless symmetric (BMS) It is strongly suspected that in fact the equality

channel - except for one inequality limited to BECholds, so a numerical implementation of the replica

BIAWGNC, BSC - and we expect that it should beexpression provides a practical means to compute a

possible to further extend the present results to mopeecise value for the MAP threshold. Besides, the

general channels. equations for the critical points of the functional
We consider communication through a BMS chankrs[dy] are closely related talensity evolutionso

nel with transition probabilitypy | x (y|z) and noise the above bound - and the conjectured equality - are



of theoretical importance for the elucidation of thélherefore the evaluation of the conditional entropy and

relationship between MAP and BP decoding. soft bit estimate reduce to that of the average free
Our proof of the theorem uses teecondderivative energy%EC,ln [In Z¢] and magnetizatioro, ), of the

of Ec[h,,] with respect to the noise parameter. By anaorresponding spin system.

lyzing this second derivative we are able to extend the

domain of applicability of the interpolation methodB. First Derivative

The first derlvatlye of the conqunal entropy is known Differentiating the relationship between entropy and

as the Generalized EXIT function [6] and plays an oo energy we get [8]

important role in the analysis of LDPC codes (namely '

the relationship between MAP and BP decoding). We d too e
find it interesting to see that the second derivative &Ec[hn} :/ dll@(ll)gl(tl) @)
seems to also be of some use, and are not aware o
whether it has been investigated before. where we recall the notatiohh = tanh % and
II. DERIVATIVES OF THE CONDITIONAL ENTROPY 1+t
iti t1) = Eg o |In 1+ ti{on)o
A. Conditional Entropy and Free Energy g1(ty C,im\t 1+t

Consider a fixed code of an LDP&(A, P) ensem-
ble. The Tanner graph has variable nodes, denot

by (:,j,...), that are connected to check nodeshe o .
posterior distributionp .y« (z"|y") used in MAP Channel symmetry implies a set of genekihi-

decoding can be viewed as the Gibbs measure oin?Pri id.entit?ets[Q]. Expanding the logarithm ar}d using
particular random spin system. For this it is convenieff€Se identities we obtain a useful power series expan-

qu)te that this is nothing else than the GEXIT function
6].

to use the usual mapping of bits onto spims — Sion for (1),
(—1)*:. For a uniform prior over the code words and o (2k)
a BMS channel, Bayes rule impligsc. |y« (z"[y") = > o t——Ec i [(01)gF — 1] )
™Y wi — 2k(2k—1) ™
pe (o™ with k=1
1 1 LB where
(n)y — —_ il 505
He (o’ ) = (1 + 0'8(:) e?2 400 d
Ze 1}: 2 1;[1 m{*H :/ dlldf(ll)t%k
o €

where 0. = [],c.0: and Z¢ is the normalization

factor or partition function. We can assume that th&he derivation of (2) and explanations on Nishimori
input is the all zero codeword which induces a digdentities can be found in [10].

tribution ¢(1) for the likelihood variables (this is

dependent). Expectations with respect to the Giblés Second Derivative of the Conditional Entropy
measure for a fixed graph and a fixed channel outputs caiculation of the second derivative yields the
are denoted by the brackét-). More precisely for t5rmula

any X C {1,...,n},

. d2 +o0 d2
(ox) = ZUX,UC(U ), ox = H 7i ——Eclhn] = / dliﬁ(ll)gl(tl)

. de?
e X —o0
. . +oo +o00 de de
Expectations with respect to the code ensemble angz/ / dlydl; == (1) 5= (1) ga(t1, 1) (3)
the channel outputs will be denoted By ;- [—]. 0 Joo de” ' de
The correspondence between communications and
statistical mechanical quantities is as follows. Thwith
extrinsic soft bit estimate is _
ga(t,t;) = Eg pm1

o . - ( 1+ ti{o1)oo + tj{0j)00 + t1t;{0105)00 )]
wherg .the subscript in the Gibbs bracket indicatel$! T+ 101000 + £5(0)00 + £185(01)00(7; )00
that it is computed forl; = 0. We will also need

extrinsic soft estimates foX; & X;, j # 1. These Remarkably the same formula (3) hold if §n, g we

are computed Withhx, s x,|y\v,v;- In the statistical replace the brackets-)o, (—)oo by (), and replace
mechanics formalism they are simply expressed as(t1),g2(t1,t;) by —gi(—t1), —g2(—t1, —t;).

(o105)00 Where the subscript in the Gibbs bracket Expanding the logarithms, using the Nishimori iden-
means that we sé{ = [; = 0. It is possible to show tities and reorganizing the series suitably we get a

Px,|y"\v Oly™ \y1) —pxl\yn\yl(“yn\yl) = (o1)o

[7] useful expansion for
1 Feo l 2
Ec [hn] = g]EC,l" [ln ZC] - /—oo dlc(l)§ %Ec[hn] =51+ .5



The term S, has the same form as (2) witﬁg(ll)
replacing%(ll). The second par$, is obtained after
some tedious algebra,

o
SN S Ve | (o100
j#1 1=1 k>I
20—2

Z Ari(o1)o0{o;5)00
r=0

— {o1)oo(o)o0) {00}~
X (<01>OO<0'j>OO _ <O.10j>00)21_r_1

n Z i Z m§2k71)m§_2171)

J#£1 k=1 1>k

(=), (k= 1)

where 1
Apy = @( O 212k — 2)a—2—r

and[m],, = (m) - -- (m—r+1). This expansion, which
is used later on, can be shown to converge.

IIl. THE DECAY OF SPIN-SPIN CORRELATIONS
One expects that in the limit — oo Ec[h,] re-

wherep is a finite positive constant.

Remark for the BIAWGNC we do not need this
lemma. For the BEC and BSC the values pofare
1 and16.83.

Lemma 3.3:For the BEC and the BIAWGNC with
any noise level and the BSC with421 < e < 0.5,
there exist finite positive constanksand ¢, possibly
dependent om, such that

d2
TzEclhn] > —c+bY Ecun [((0105) — (01)(0;))?]
J#1
4)
Remark A similar upper bound holds with other
constants’, v'.

Proof: The proof can be based on the expansion
of %Ec[hn}. However for the BIAWGNC and the
BEC we have a more elegant argument.
BIAWGNC.Using the identityd< (1) = 2e=2(c/(1) —
¢’(1)) and integration by parts in the formula (3)
expressed with the brackét), leads to the simple
expression

mains continuous with a finite jump in the first deriva-

tive at the MAP (or phase transition) threshold(s). In
other words the first derivative should remain finite
uniformly in n. This is the content of the following

lemma.

Lemma 3.1:For BEC, BSC and BIAWGN we have BEC. We have

d
0< —E¢glh,] <
~ de clhn] <a
wherea = 1 for BIAWGN, a = 2In2 for BEC and
a=(1-2¢)/(2¢(1 —¢)) for BSC.

Proof: Using |{c1)00] < 1 and computerngzk)

in the expansion (2) we obtain the upper bound. Thgy,

lower bound follows fromng%) <0[1]and(o;)2kF <
1. |

d? 1

T ZE(<0103'> — (o1){(0;))?

Thus we get (4) withe = 0 andb =

D) = §o(1) — duo(l),

the second derivative is equal to

Z Eln\l,j |:1Il

J#1

On the BEC the spin system has positive coupling
constants so that we can apply the Griffiths-Kelly-
erman correlation inequalities [10] we know that
(0105000 — (01)00(cj)00 = 0, (c1)00 > 0, (c5)00 > O.
Thus

1
5
d?c(l)

=~ = 0so

1+ (01)00 + (05)00 + (010})00
L+ {o1)00 + ()00 + (01)00(05)00

The second derivative remains finite except at the

thresholds where it diverges as a functionnofThis

divergence is intimately related to the absence of decay

of the spin-spin correlatiofoy0;) — (01)(0;) as a
function of the distance between nodesand j (on

L <1+ (o1)00 + (75)00 + (71)00(;)00
<14 {o1)00 + (05)00 + (0105)00 < 4

Inequality (4) then follows froninu—Inv > I (u—v)

the Tanner graph the distance between two nodes¢is 4 ~ .,/ > » > 1 and lemma 3.2. We get= 0 and
the length of the shortest path joining them). This ig _ 1/_4_ -

basically the content of lemma 3.2.

Depending on the situation it is more convenien[b show that the contributios;

to work with the brackets—)q or (—). This is why

we will also need the following which we state her%ontrib

without proof.

BSC.Thanks to an expansion similar to (2) it is easy
to (3) is greater than

¢ = 1/(2¢(1 — €)). Let us now look at the
ution fromSs. In the expansion of the later we
can isolate the termt =17 =1

—c for

Lemma 3.2:For any BMS channel there is a func-

tion R(ly,l;) such that

(0105)—(o1)(0;) = R(l1,1;) ({7105)00—(71)00(75)00)

In particular for the BEC with any noise level and th

BSC with 0.421 < € < 0.5 we have

16(1—26)* Y Ec i [((0105)00 — (7100 (05)00) ]

i#1

éf we could prove that the rest of the series is strictly

positive we would have the result for all values eof
We have been unable to show this but we can easily
bound the power series expansion term by term to



show that it cannot be more negative than The remainder ternR,,(s) is given by

16(1 — 2¢)? > 1
20— B0 207 Rul) = 2 31y
2
X Z Ec i [({0105)00 — (01)00(05)00) "] x E[(P(Q2p) — P'(q2p)(Q2p — q2p) — P(q2p))2p,5]
JAL (5)
Combining these remarks with lemma 3.2 we obtai}hqre g, = Ey[(tanhV)?] and Q, are overlap
r p

(4) with b = 0028(1*26)2 [2* W] >0
|

parametersdefined as
as long a9).421 < e < 0.5.

I 0 @
IV. PROOF OFTHEOREM BY INTERPOLATION @ = Z;U’? i (©)
_ METHOD Herea§“), a=1,2,...,parep independent copies
A. A Brief Survey (replicas) of the spino; and (—), , is the Gibbs

We use the interpolation method in the form devebracket associated to the product measure (replica
oped by Montanari. As explained in [5] it is difficult to measure)[ [*_, uc. (0. ...o{"). Finally we use the
deal directly with general irregular ensembles. Rathehorthande[—] for the expectation with respect &,
one introduces anulti-poisson ensemblehich ap- ", d;, U,.
proximates the general ensemble. Once the bounds gre
derived for the multi-Poisson ensemble a limiting pro- - i _
cedure permits to extend them to the general irregular W& conjecture the following: _
ensemble. The multi-Poisson ensemble is a technicalConiecture 4.1:For any BMS channel, there exists
elaboration of théPoisson ensembiand due to lack of & Small enough number> 0 such that forLebesgue
space we present the analysis here for the later. TRIENOSt every
extension of the estimates that follow to the multi-
Poisson ensemble and thus to the standard irregular

ensembles does not involve any extra difficulty except . e
for technicalities. there P is the probability distributioB(1x ), s.

The Poisson ensemble LDRE( —r, P) has afixed  Using lemmas 3.1 and 3.3 we will prove this con-
n number of variable nodes while the number of chegkcture for the BIAWGNC, BEC and the BSC (in the
nodes is Poisson with mean(1 — r) wherer is a appropriate noise interval). At the threshold values of
fixed design rate. The variables nodes are connectedti@ noise one expects the overlap fluctuations to grow
checks uniformly at random and their degree becomggcause the spin-spin correlation does not decay and
Poisonnian as» — oco. The check node degree isthis is why we have thalmost alle condition.
distributed according td(x). _

The main idea behind the interpolation techniquf- Proof of Main Theorem
is to recursively remove the check node constraints Our aim is to show that
and compensate for the change of rate with extra 1
observationslU, coming from an auxiliary channel. liminf [ Ry(s)ds > 0 (8)
More precisely lets € [0,1] be an interpolating
parameter. At “time”s the number of check nodes is ° S
a Poisson r.v with mean(1 —r)s and variable nodes 0N Of the terms with2p > »° is smaller than

; -5 . N
i received; extra observation§U?} which are iid O °) 2k kFx. Thus this contribution tends as
copies of the rvU. For eachi, d; is a Poisson ry * — T and it is sufficient to look at the terms with

4
with meann(1 — r)(1 — s). The interpolating Gibbs 2P < "' - .
measure is Consider the term inside the Gibbs bracket of (5)

Conjecture on Overlaps

1
liny | dsPQ) — (@)l > 5] =0 (@)

n—o0

Since |Q2,] < 1 and |¢g2p] < 1 the contribu-

1 H 1(1 + 05e) ﬁ 6(%#2"“ Ui)o; P(Q2p) — P/(qZP)(QQP — q2p) — P(q2p)

- c=1"a
Ze. e, i=1 = Pu(Q5, — kQopab, ' + (k—1)d5,)  (9)

where C; is a Tanner graph at “time”s in F

LDPC(n, (1 — 7)s,P). At s = 1 one recovers the Even degrees kror these terms we use the standard

original measure while at = 0 we have a simple argument: the convexity of the function” on the

product measure which is tailored to yield the replic¥hole real line implies(Q5, — kQapa5, ' + (k —

Symmetric entropyIRS [dV] up to a remainder term. l)qlgp) > 0. Therefore the contribution of even terms

The central result that we use is to the remainder is non negative.
Odd degrees KWe decompose the Gibbs bracket as

1
Eclh,] = hpsld (s)d B
clhn] = hrsldy] +/0 R, (s)ds (@5, — kQapdh + (k= 1)g5)ape = Cop + Fip

pe, (™)



where The results of the preceding sections are also valid
_ k k—1 k for the bracket{—); because sinc& is a symmetric

Cop = (Q2p)zp,s = K Q2plopstyy + (k= 1)a, random variabl<é]}2 also is. Therefore from lemma 3.3

and we have
F2p = <Q12€p>2p,s - <Q2p>]2€p,s

- s posit v ofk PlIQk — @kl > L]
Since (Q,) is positive, the convexity of:” on the P PPl o
positive real axis(rememberk is odd) implies that E2n26—% d? 3
Cy, > 0 and the contribution to the remainder is non < O( )(1 +cb ™+ bil@Ec [hn]>
negative. The fluctuation termy, on the other hand - ) )
can be negative. However we can control its effeé€t ¥(e) be aC§e positive normalized test function.

thanks to (7). Its contribution to the remainder is  Using the Schwartz inequality, integration by parts
overe, and lemma 3.1 we can show

S EQh o — (@a)h)

_ 2 1/2
sy 2P2P = 1) / de¢(e)<1+cb‘1+b‘1j€2Ec[hn])
1 2 2
<Y mm et > H5EHT v
_ g _
oy 2@ = 1)md T e 2p(2p — 1) <1tebl bl / dev(e) dg Eclhn]
€
X 2p
POk — (OF “p
X HQZP <Q2p>2p75| > n5] < 0(1)(1+/d6|¢/(6)‘>1/2

We can bound the first term above I(n =% Inn). ] ] o )
From (7) and dominated convergence we get that thé0m this we conclude (usmlg Fubini and dominated
s integral of the second term goes to zeronas> co. CONVergence) that fab < 4 < ;

Combining all the above results we obtain (8) and . ¥ . . p
thus the theorem. /d6¢(€) nh_{T;O/ dsPl|Qp — (@p)p| > 51 =0
V. OVERLAP FLUCTUATION FORBEC, BSC, Since this is true for any positive test function we
BIAWGN conclude that (7) holds for almost everyNote that

In this section we sketch the proof of the conjecturthis proof would work for any channel satisfying (4).
(7) for these three channels. The proof rests on lemmas

3.1 and 3.3. The identity ,_, ACKNOWLEDGMENT
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and|Qp| < 1imply [Qp—(Qp)p| < k[(Qp—(Qp)p.s)l-
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