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Abstract— We consider the problem of universal simulation
of memoryless sources and Markov sources, based on training
sequence emitted from these sources. The objective is to max-
imize the conditional entropy of the simulated sequence given
the training sequence, subject to a certain distance constraint
between the probability distribution of the output sequence and
the probability distribution of the input, training sequence. We
derive a single–letter expression for the maximum conditional
entropy and then propose a universal simulation scheme that
asymptotically attains this maximum.

I. INTRODUCTION

Simulation of a source means artificial production of ran-
dom data with some probability law, by using a certain device
that is fed by a source of purely random bits. Simulation of
sources and channels is a problem that has been studied in
a series of works, see, e.g., [1], [7], [8], [9] and references
therein. In all these works, it was assumed that the probability
law of the desired process is perfectly known.

Recently, a universal version of this problem was studied
in [4], [5] (see also [2]), where the assumption of perfect
knowledge of the target probability law was relaxed. Instead,
the target source P to be simulated was assumed in [4] to
belong to a certain parametric family P , but is otherwise
unknown, and a training sequence Xm = (X1, . . . , Xm),
that has emerged from this source, is available. In addition,
the simulator is provided with a sequence of ` random bits
U ` = (U1, . . . , U`), which is independent of Xm. The goal
of the simulation scheme in [4] was to generate an output
sequence Y n = (Y1, . . . , Yn), n ≤ m, corresponding to the
simulated process, such that Y n = ψ(Xm, U `), where ψ is a
deterministic function that does not depend on the unknown
source P , and which satisfies the following two conditions: (i)
the probability distribution of Y n is exactly the n-dimensional
marginal of the probability law P corresponding to Xm for
all P ∈ P , and (ii) the mutual information I(Xm;Y n) is as
small as possible, or equivalently (under (i)), the conditional
entropy H(Y n|Xm) is as large as possible, simultaneously for
all P ∈ P (so as to make the generated sample path Y n as
“original” as possible). In [4], the smallest achievable value
of the mutual information (or, the largest conditional entropy)
was characterized, and simulation schemes that asymptotically
achieve these bounds were presented (see also [5]). In [3],
the same simulation problem was studied in the regime of a
delay–limited sytem, in which the simulator produces output
samples on–line, as the training data is fed into the system

sequentially. The cost of limited delay was characterized and a
strictly optimum simulation system was proposed. A different
perspective on universal simulation was investigated in [6],
where xm was assumed to be an individual sequence not
originating from any probabilistic source.

In this work, we extend the scope of the universal simulation
problem in another direction, namely, relaxing the requirement
of exact preservation of the probability law at the output of the
simulator. In particular, we study the best achievable tradeoff
between the performance of the simulation scheme and the
distance (measured in terms of a certain metric) between the
probability law of the output and that of the input. Observe
that when the probability law of the simulated sequence is not
constrained to be identical to that of the training sequence, the
criteria min I(Xm;Y n) and maxH(Y n|Xm) are no longer
equivalent. They both remain, however, reasonable measures
of the “diversity” or the “richness” of the typical sample paths
generated by the simulator. While the former criterion has been
discussed in [5] (in the context of the ρ̄–distance between
probability distributions), here we focus on the latter.

For the class of discrete memoryless sources (DMSs), we
derive a single-letter formula for the maximum achievable
conditional entropy subject to the distance constraint, and
propose a simulation scheme that universally achieves this
performance for large m and n. We also briefly discuss how
our derivations can be extended to the Markov case. Finally,
we derive similar results for the ρ̄–distance measure, which is
not a special case of the distance measure considered in the
first part.

II. NOTATION AND PROBLEM FORMULATION

Throughout the paper, random variables will be denoted by
capital letters, specific values they may take will be denoted
by the corresponding lower case letters, and their alphabets,
as well as some other sets, will be denoted by calligraphic
letters. Similarly, random vectors, their realizations, and their
alphabets, will be denoted, respectively, by capital letters, the
corresponding lower case letters, and calligraphic letters, all
superscripted by their dimensions. For example, the random
vector Xm = (X1, . . . , Xm), (m – positive integer) may take
a specific vector value xm = (x1, . . . , xm) in Am, the mth
order Cartesian power of A, which is the alphabet of each
component of this vector. For i ≤ j (i, j – integers), xj

i will
denote the segment (xi, . . . , xj), where for i = 1 the subscript
will be omitted.



Let P denote the class of all DMSs with a finite alphabet
A, and let P denote a particular member of P . For a given
positive integer m, let Xm = (X1, X2, . . . , Xm), Xi ∈ A,
i = 1, . . . ,m, denote an m-vector drawn from P , namely,
Pr{Xi = xi, i = 1, . . . ,m} =

∏m
i=1 P (xi)

∆= P (xm) for
every (x1, . . . , xm), xi ∈ A, i = 1, . . . ,m. Let H ≡ H(X) =
−
∑

x∈A P (x) logP (x) denote the entropy of the source P ,
where here and throughout the sequel log(·) ∆= log2(·). When
it is the dependence of the entropy upon P that we wish
to emphasize (rather than the name of the random variable
X), we denote the entropy by H(P ), with a slight abuse of
notation.

For given positive integers m, `, and n, and for a given
mapping ψ : Am × {0, 1}` → An, let Y n = ψ(Xm, U `). Let
W (yn|xm) denote the conditional probability of Y n = yn

given Xm = xm corresponding to the channel from Xm to
Y n that is induced by ψ. The expectation operator, denoted
E{·}, will be understood to be taken with respect to (w.r.t.)
the joint distribution P ×W of (Xm, Y n).

Let ρ(P,Q) denote a distance measure between two prob-
ability measures on A, and define the distance between Pn

and Qn, which are two probability measures on An, as

ρn(Pn, Qn) =
1
n

n∑
i=1

∑
ai−1

Q(ai−1)ρ(P (·|ai−1), Q(·|ai−1)).

For example, if ρ(P (·|ai−1), Q(·|ai−1)) is∑
ai
Q(ai|ai−1) log[Q(ai|ai−1)/P (ai|ai−1)], then ρn is

the normalized divergence between Qn and Pn. In that sense,
ρn can be thought of as a generalized divergence.1

Finally, let H(Y n|Xm) denote the conditional entropy of
Y n given Xm that is induced by the source P and the channel
W (or, equivalently, the mapping ψ).

This paper is about the quest for a mapping ψ that is
independent of the unknown P , and that satisfies the following
conditions:
C1. For every P ∈ P , the probability distribution Qn of

Y n = ψ(Xm, U `) obeys ρn(Pn, Qn) ≤ D, where
Pn is the n–th power of P (i.e., the product measure
corresponding to the DMS P , generating n–tuples), and
D is a prescribed constant. Note that Qn need not be
necessarily memoryless.

C2. The mapping ψ maximizes H(Y n|Xm) simultaneously
for all P ∈ P among all mappings satisfying C1.

III. MAIN RESULT

Let us define the function:

φ(D) = max{H(Q) : ρ(P,Q) ≤ D}, (1)

and φ̄(D) = UCE{φ(D)}, where UCE stands for upper
concave envelope. Note that if ρ(P, ·) is convex in Q (which
is the case for many useful metrics), then φ is concave, thus

1In general, additive distance functions between the conditional distribu-
tions {P (·|ai−1)} and {Q(·|ai−1)} may arise naturally in prediction and
sequential decision problems, as they reflect the penalty for mismatch between
the assumed probability law and the underying one.

φ̄(D) ≡ φ(D). Our first theorem asserts that φ̄(D) is an
upper bound on the conditional entropy per symbol for any
simulation scheme.

Theorem 1: (Converse): For every simulation scheme ψ
that satisfies condition C1, H(Y n|Xm) ≤ nφ̄(D).
Discussion: (i) In fact, we prove below, moreover, that
H(Y n) ≤ nφ̄(D). Intuitively, since the conditioning on Xm

will be made (in the direct part, cf. Theorem 2 below) only via
its empirical distribution, this conditioning does not make a big
difference. (ii) Another obvious upper bound to H(Y n|Xm)
is ` = nR, where R is the key rate in bits per output symbol.
However, if R ≤ φ̄(D), then it makes sense to decrease D
to the level that gives φ̄(D) = R, because larger values of D
mean degrading the fidelity of the output distribution w.r.t. P ,
without any gain in the conditional entropy of the output. Thus,
it can be assumed without loss of generality that R ≥ φ̄(D),
i.e., the key–rate limitation is not really an issue. Moreover, by
the same rationale, it makes sense to assume that R ≥ H(P ),
as otherwise, if R < H(P ), there is no incentive to allow
D > 0, because then H(Y n|Xm)/n ≤ R < H(P ) = φ̄(0),
and so there is nothing to gain from distorting the probability
law (this takes us back to the case D = 0). This means that
the interesting situation occurs when the key rate is sufficiently
large, and for the sake of simplicity, we will assume that it is
unlimited, and focus only on the interplay between conditional
entropy and fidelity.
Proof. Consider first the conditional entropy of the ith output
symbol, Yi, given Y i−1. Then, we have:

H(Yi|Y i−1) =
∑
ai−1

Q(ai−1)H(Q(·|ai−1))

≤
∑
ai−1

Q(ai−1)φ(ρ(P (·), Q(·|ai−1))

≤
∑
ai−1

Q(ai−1)φ̄(ρ(P (·), Q(·|ai−1))

≤ φ̄

(∑
ai−1

Q(ai−1)ρ(P (·), Q(·|ai−1))

)
.

Thus, we obtain:

1
n
H(Y n|Xm)

≤ 1
n

n∑
i=1

H(Yi|Y i−1)

≤ 1
n

n∑
i=1

φ̄

(∑
ai−1

Q(ai−1)ρ(P (·), Q(·|ai−1))

)

≤ φ̄

(
1
n

n∑
i=1

∑
ai−1

Q(ai−1)ρ(P (·), Q(·|ai−1))

)
= φ̄(ρn(Pn, Qn))
≤ φ̄(D), (2)

which completes the proof of Theorem 1.
Theorem 2: (Direct): Assume that ρ(P,Q) is: (i) continu-

ous at P uniformly in Q, and (ii) continuous and bounded in



Q for a given P . Then, there exists a sequence of simulation
schemes, independent of P , that asymptotically (as m,n →
∞) satisfy condition C1, and whose conditional entropies tend
to nφ̄(D) for all P ∈ P .

Our proposed universal simulation scheme (see proof be-
low) is based on forming grids in P and ‘quantizing’ the
empirical distribution of Xm to the nearest grid point, with
the density of the grid growing slower than m. This will be
needed to guarantee that the induced conditional distributions
at the output would be close to Q∗, the achiever of φ(D) (cf.
eqs. (6) and (7) below).
Sketch of Proof. We actually prove that φ(D) is achievable,
which coincides with φ̄(D) whenever φ is concave. If this is
not the case, then time–sharing between two schemes should
be applied, and the below description refers to the action to
be carried out for each one of the two working points.

Let us form a sequence of grids, PK = {P1, P2, . . . , PK},
K = 1, 2, . . . , such that ∪∞K=1PK is dense in the simplex
of probability distributions over A. For a given probability
distribution P ′ on A, let [P ′]K denote the2 nearest neighbor
of P ′ in PK (under an arbitrary metric between probability
distributions, which is not necessarily ρ, say, the variational
distance). Thus, the distance between P ′ and [P ′]K is bounded
uniformly by a number εK , which tends to zero as K →∞.
Our simulation scheme works as follows: Given Xm, extract
its empirical distribution, P̂ , and ‘quantize’ it to the nearest
neighbor P̃ = [P̂ ]K ∈ PK . Then, find the achiever Q̃ of
φ(D) but with P̃ playing the role of P , and finally, use Q̃
as the target memoryless source that governs Y n (which is
implemented with unlimited key rate). Let TP̃ = T[P̂ ]K

denote
the union of all type classes {Txm} for which P̃ is the nearest
neighbor of the empirical distribution P̂ corresponding to Txm .
Now by the AEP, for any fixed K, the probability P (T[P ]K )
goes to unity as m grows without bound. Since ρ is continuous
at P uniformly in Q, and [P ]K is within distance εK from P ,
then |ρ(P,Q)−ρ([P ]K , Q)| ≤ δK , where δK → 0 as K →∞,
independently of Q. As for the conditional output entropy, we
then have:

1
n
H(Y n|Xm) = E{H(Q̃)}

≥
∑

Txm⊂T[P ]K

P (Txm)H(Q̃)

=
∑

Txm⊂T[P ]K

P (Txm)×

max{H(Q) : ρ([P ]K , Q) ≤ D}
≥

∑
Txm⊂T[P ]K

P (Txm)×

max{H(Q) : ρ(P,Q) + δK ≤ D}
=

∑
Txm⊂T[P ]K

P (Txm)φ(D − δK)

= P (T[P ]K )φ(D − δK). (3)

2We assume, without essential loss of generality, that there are no ties.

Since φ is concave, it is also continuous (except, perhaps for
the edgepoints), and thus φ(D) is asymptotically achieved for
large K and m.

It remains to show that ρ(Pn, Qn) is essentially less than
D. Before we do that, we pause to introduce some additional
notation, and a few facts that we will need in the sequel. Let
the quantization of P̂ result in Pk = [P̂ ]K ∈ PK , for some
k = 1, 2, . . . ,K. Then, the corresponding achiever of φ(D),
which we earlier denoted by Q̃, will also be denoted by Qk.
We will assume that Q1, . . . , QK are all distinct (otherwise,
we can slightly perturb some of them). We will also denote
by k0 the integer k ∈ {1, . . . ,K} for which Pk = [P ]K . The
corresponding Qk0 will also be denoted by Q∗. For a given
δ > 0, let TQk

(δ) denote the union of all {Txm} corresponding
to empirical distributions {P̂} for which D(P̂‖Qk) ≤ δ. As
{Qk, k = 1, . . . ,K} are assumed distinct, then there exists
a small enough δ > 0, such that TQk

(δ) are disjoint. This
follows from the fact that the divergence is lower bounded in
terms of the variational distance, which is a metric. By the
same token, it is easy to see that if l is sufficiently large and
δ > 0 is sufficiently small, and if al ∈ TQk

(δ) for some k, then
for any extension al+1 = (a`, al+1), the empirical distribution
is still closer to Qk (in the divergence sense) than to any Qk′ ,
k′ 6= k.

Returning now to the proof that ρn(Pn, Qn) is not much
larger than D, we will first show that for any ε > 0 and
sufficiently large n and m, ρ(P (·), Q(·|ai−1)) is essentially
less than D for all i ≥ εn and for all ai−1 ∈ TQ∗(δ). To this
end, let us examine the conditional distribution Q(ai|ai−1),
induced by the proposed scheme, for ai−1 ∈ TQ∗(δ).

Q(ai|ai−1)

=

∑
Txm

P (Txm)Q̃(ai)∑
Txm

P (Txm)Q̃(ai−1)

=
∑

k P (TPk
)Qk(ai)∑

k P (TPk
)Qk(ai−1)

=
P (T[P ]K )Q∗(ai) +

∑
k 6=k0

P (TPk
)Qk(ai)

P (T[P ]K )Q∗(ai−1) +
∑

k 6=k0
P (TPk

)Qk(ai−1)
. (4)

The first term in the numerator and the first term in the
denominator are the desired terms. Let us assess the relative
error contributed by each one of the other terms in the
numerator and the denominator. As for the denominator, for
every k 6= k0, P (TPk

) ≤ 2−mε′K (for some ε′K > 0) and
Qk(ai−1) ≤ Q∗(ai−1) since ai−1 ∈ TQ∗(δ) and i ≥ nε
(see the previous paragraph). The same goes for the numerator
because, as explained earlier, the empirical distribution of ai

is still closer to Q∗ than to any Qk, k 6= k0. Thus,

Q(ai|ai−1) ≤
P (T[P ]K )Q∗(ai)(1 +K · 2−mε′K )

P (T[P ]K )Q∗(ai−1)

= Q∗(ai)(1 +K · 2−mε′K ) (5)

and by the same token, Q(ai|ai−1) ≥ Q∗(ai)/(1+K ·2−mε′K ).
Now, ρ is assumed continuous in Q. Thus, since we have just
seen that Q(·|ai−1) is close to Q∗ for large enough m and



i (for any metric), then ρ(P,Q(·|ai−1)) ≤ ρ(P,Q∗) + µm,K ,
where µm,K → 0 as m → ∞ for every fixed K. Consider
now the i–th term of the distance function ρn, where i ≥ εn.
Then, ∑

ai−1

Q(ai−1)ρ(P (·), Q(·|ai−1))

=
∑
Txm

P (Txm)
∑
ai−1

Q̃(ai−1)ρ(P (·), Q(·|ai−1))

=
∑

k

P (TPk
)
∑
ai−1

Qk(ai−1)ρ(P (·), Q(·|ai−1))

= P (T[P ]K )
∑
ai−1

Q∗(ai−1)ρ(P (·), Q(·|ai−1)) +∑
k 6=k0

P (TPk
)
∑
ai−1

Qk(ai−1)ρ(P (·), Q(·|ai−1)), (6)

where the second term vanishes as P (TPk
) vanishes for k 6= k0

and ρ is assumed bounded. Let us focus then on the first term,
where we upper bound P (T[P ]K ) by unity:∑

ai−1

Q∗(ai−1)ρ(P (·), Q(·|ai−1))

=
∑

ai−1∈TQ∗ (δ)

Q∗(ai−1)ρ(P (·), Q(·|ai−1)) +

∑
ai−1∈T c

Q∗ (δ)

Q∗(ai−1)ρ(P (·), Q(·|ai−1)). (7)

Once again, the second term vanishes as it pertains to a–typical
sequences. As for the first term, we have:∑

ai−1∈TQ∗ (δ)

Q∗(ai−1)ρ(P (·), Q(·|ai−1))

≤
∑

ai−1∈TQ∗ (δ)

Q∗(ai−1)[ρ(P (·), Q∗(·)) + µm,K ]

≤
∑

ai−1∈TQ∗ (δ)

Q∗(ai−1)[ρ([P ]K(·), Q∗(·)) + δK + µm,K ]

≤
∑

ai−1∈TQ∗(δ)

Q∗(ai−1)(D + δK + µm,K)

≤ D + δK + µm,K . (8)

Finally, we should add to the distance yet another term that
is proportional to ε to account for all i < εn. This completes
the proof of Theorem 2.

IV. EXTENSION TO MARKOV SOURCES

Theorem 1 and 2 can be extended to the Markov case, but
this requires some more care. We next briefly review how this
extension can be carried out for first–order Markov sources
(further extension to higher orders is straightforward).

For simplicity, let us assume that Y n is required to be
stationary, which is a reasonable assumption when the input
is stationary. We will also assume now that ρ is convex in Q.
Let us now define

φ(D) = max{H(Y1|Y0) : dist{Y0} = dist{Y1},∑
a

Q(a)ρ(P (·|a), Q(·|a)) ≤ D}, (9)

where H(Y1|Y0) is the conditional entropy of Y1 given
Y0 under the first–order Markov probability measure Q,
and the maximization is over the transition probabilities
{Q(b|a), a, b ∈ A}, subject to the constraints that the
unconditional marginal distributions, {Q(a), a ∈ A}, of Y0

and Y1 are the same and the weighted distance constraint
between the transition probability distributions {Q(·|a)} and
{P (·|a)} is maintained. Also, let

φ(D;Q0) = max{H(Y1|Y0) : dist{Y0} = dist{Y1} = Q0,∑
a

Q0(a)ρ(P (·|a), Q(·|a)) ≤ D}, (10)

and observe that for a given Q0, φ(·;Q0) is concave (due to
the convexity of ρ in Q). Then, for every i = 2, . . . , n, we
have

Di
∆=

∑
ai−1

Q(ai−1)ρ(P (·|ai−1), Q(·|ai−1))

=
∑
ai−1

Q(ai−1)
∑
ai−2

Q(ai−2|ai−1)ρ(P (·|ai−1),

Q(·|ai−1, a
i−2))

≥
∑
ai−1

Q(ai−1) · ρ(P (·|ai−1),∑
ai−2

Q(ai−2|ai−1)Q(·|ai−1, a
i−2))

=
∑
ai−1

Q(ai−1)ρ(P (·|ai−1), Q(·|ai−1))
∆= D′

i, (11)

where the inequality follows from the assumed convexity of
ρ. Thus, for any simulation scheme with a given marginal Q0

of each Yi, we have

H(Y n|Xm) ≤
∑

i

H(Yi|Yi−1)

≤
∑

i

φ(D′
i;Q0)

≤ nφ

(
1
n

∑
i

D′
i;Q0

)
≤ nφ(D;Q0) ≤ nφ(D). (12)

The achievability scheme is constructed and analyzed in the
same spirit as in Theorem 2 except that the memoryless
structure is replaced by the Markov one.

V. THE ρ̄ DISTANCE MEASURE

A related result is now developed for the ρ̄ distance measure
considered in [8] and [5], where distances between proba-
bility measures are induced by distortion measures between
sequences of random variables. In this section, we are back
to the memoryless case, and the results do not seem to lend
themselves easily to extensions to sources with memory.

Let ρ : A2 → IR+ be a given single–letter distortion
measure, and consider the Ornstein ρ̄ distance, ρ̄(P,Q), be-
tween two measures P and Q of n–vectors in An, i.e., the
minimum of 1

n

∑n
i=1Eρ(X̃i, Yi) across all joint distributions

of (X̃n, Y n) for which the marginal of X̃n is P and the



marginal of Y n is Q.3 Thus, loosely speaking, the ρ̄ distance
gives the best explanation of Y n ∼ Q as a distorted version
of X̃n ∼ P via some channel. For a given distortion level D,
we will allow the probability law Q of Y n to be at ρ̄ distance
at most D from Q, i.e., ρ̄(P,Q) ≤ D.

In view of the above, consider the function

Γn,m(D) = max
{

1
n
H(Y n|Xm) : ρ̄(P,Q) ≤ D

}
, (13)

where, again, Q is understood as the probability measure that
governs Y n and P is the one that governs Xm. Next, define
the single–letter function:

γ(D) = max{H(Y ) : Eρ(X,Y ) ≤ D} (14)

where X ∼ P and the maximization is across conditional
distributions {W (y|x), x, y ∈ A} that satisfy the distortion
constraint. It is easy to see that γ(·) is concave (simply because
the entropy is concave).

For example, if P is binary with parameter p < 1/2, and ρ
is the Hamming distortion measure, then denoting the binary
entropy function by h2(t), t ∈ [0, 1], we have γ(D) = h2(p+
D) for D < 1/2− p and γ(D) = 1 otherwise.

Our converse theorem asserts that γ(D) is an upper bound
to the per–symbol conditional entropy.

Theorem 3: (Converse): For all n and m, Γn,m(D) ≤
γ(D).
Proof. Given a simulation scheme that satisfies the ρ̄ con-
straint, then by definition, there must exist a random vector
X̃n ∼ P such that 1

n

∑n
i=1Eρ(X̃i, Yi) ≤ D. Thus,

H(Y n|Xm) ≤
n∑

i=1

H(Yi)

≤
n∑

i=1

γ(Eρ(X̃i, Yi))

≤ nγ

(
1
n

n∑
i=1

Eρ(X̃i, Yi)

)
≤ nγ(D),

(15)

where the first inequality is because conditioning reduces
entropy, the second is by definition of γ(·), the third is due to
the concavity of γ(·), and the fourth is due to its monotonicity
and the aforementioned distortion constraint. This completes
the proof of Theorem 3.

Theorem 4: (Direct): For all m ≥ n,

Γn,m(D) ≥ γ(D)− εn,

where εn tends to zero as n grows without bound.
Sketch of Proof. If m > n, we will ignore the training samples
Xn+1, . . . , Xm, and so, reduce m to the value of n. Thus,
from this point, we will assume m = n and denote both
integers by n. While γ(D) depends on P , we next show

3We are deliberately denoting here the random vector corresponding to P
by X̃n, because it may not coincide with the training sequence although both
are goverened by P .

that it is universally asymptotically achievable for large n.
For a given P , let Q = f(P ) denote the output marginal
induced by P and by the channel W that attains γ(D). For
a given training sequence xn, let Pxn denote the empirical
distribution, and let Qn = [f(Pxn)]n, where the operation
[·]n means quantization of a given probability distribution
to the nearest rational distribution with denominator n. The
proposed simulation scheme will simply draw Y n uniformly
from the type class corresponding to Qn (using the key U `

for this random selection). Since R is assumed larger than
γ(D), the randomness of U ` will suffice to implement a
uniform distribution within the type class of Qn, with high
probability [4]. We now have to show that: (i) the output
distribution of Y n is (essentially) within ρ̄–distance D from
P , and (ii) performance is close to γ(D) for large enough n.
As for (i), consider a random vector X̃n drawn from P and let
W (Y n|X̃n) assign a uniform distribution on the conditional
type class associated with the (single–letter) channel that
achieves γ(D). The uniform distribution within Txn induces
a uniform distribution within the type class of Qn, and at
the same time, the distortion constraint is maintained by joint
typicality. As for (ii), we have:

H(Y n|Xn) = E{log |T ([f(PXn)]n)|}
= nE{H([f(PXn)]n)} −O(log n)
= n[γ(D)− εn] (16)

where the last passage is due to the law of large numbers, the
continuity of f , the vanishing effect of the operation [·]n, and
the fact that H(f(P )) = γ(D).
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[7] Y. Steinberg and S. Verdú, “Channel simulation and coding with side
information,” IEEE Trans. Inform. Theory, vol. IT–40, no. 3, pp. 634–
646, May 1994.
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