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Abstract— We consider the problem of estimating the total
probability of all symbols that appear with a given frequency
in a string of i.i.d. random variables with unknown distribu tion.
We focus on the regime in which the block length is large yet no
symbol appears frequently in the string. This is accomplished by
allowing the distribution to change with the block length. Under
a natural convergence assumption on the sequence of underlying
distributions, we show that the total probabilities converge to a
deterministic limit, which we characterize. We then show that the
Good-Turing total probability estimator is strongly consistent.

I. I NTRODUCTION

The problem of estimating the underlying probability dis-
tribution from an observed data sequence arises in a varietyof
fields such as compression, adaptive control, and linguistics.
The most familiar technique is to use the empirical distribution
of the data, also known as the type. This approach has
a number of virtues. It is the maximum likelihood (ML)
distribution, and if each symbol appears frequently in the
string, then the law of large numbers guarantees that the
estimate will be close to the true distribution.

In some situations, however, not all symbols will appear
frequently in the observed data. One example is a digital
image with the pixels themselves, rather than bits, viewed as
the symbols [1]. Here the size of the alphabet can meet or
exceed the total number of observed symbols, i.e., the number
of pixels in the image. Another example is English text. Even
in large corpora, many words will appear once or twice or not
at all [2]. This makes estimating the distribution of English
words using the type ineffective. This problem is particularly
pronounced when one attempts to estimate the distribution of
bigrams, or pairs of words, since the number of bigrams is
evidently the square of the number of words.

To see that the empirical distribution is lacking as an
estimator for the probabilities of uncommon symbols, con-
sider the extreme situation in which the alphabet is infinite
and we observe a length-n sequence containingn distinct
symbols [3]. The ML estimator will assign probability1/n
to then symbols that appear in the string and zero probability
to the rest. But common sense suggests that the(n + 1)st
symbol in the sequence is very likely to be one that has not yet
appeared. It seems that the ML estimator is overfitting the data.
Modifications to the ML estimator such as the Laplace “add
one” and the Krichevsky-Trofimov “add half” [4] have been
proposed as remedies, but these only alleviate the problem [3].

In collaboration with Turing, Good [5] proposed an esti-
mator for the probabilities of rare symbols that differs con-
siderably from the ML estimator. The Good-Turing estimator
has been shown to work well in practice [6], and it is now
used in several application areas [3]. Early theoretical work
on the estimator focused on its bias [5], [7], [8]. Recent
work has been directed toward developing confidence intervals
for the estimates using central limit theorems [9], [10] or
concentration inequalities [11], [12]. Orlitsky, Santhanam, and
Zhang [3] showed that the estimator has a pattern redundancy
that is small but not optimal. None of these works, however,
have shown that the estimator is strongly consistent.

We show that the Good-Turing estimator is strongly consis-
tent under a natural formulation of the problem. We consider
the problem of estimating the total probability of all symbols
that appeark times in the observed string for each nonnegative
integerk. Fork = 0, this is the total probability of the unseen
symbols, a quantity that has received particular attention[7],
[13]. Estimating the total probability of all symbols with the
same empirical frequency is a natural approach when the
symbols appear infrequently so that there is insufficient data to
accurately estimate the probabilities of the individual symbols.
Although the total probabilities are themselves random, we
show that under our model they converge to a deterministic
limit, which we characterize. Note that if the alphabet is small
and the block length is large, then the problem effectively
reduces to the usual probability estimation problem since it is
unlikely that multiple symbols will have the same empirical
frequency.

It is known that the Good-Turing estimator performs poorly
for high-probability symbols [3], but this is not a problem since
the ML estimator can be employed to estimate the probabilities
of symbols that appear frequently in the observed string. We
therefore focus on the situation in which the symbols are
unlikely, meaning that they have probabilityO(1/n). We allow
the underlying distributions to vary with the block length
n in order to maintain this condition, and we assume that,
properly scaled, these distributions converge. This modelis
discussed in detail in the next section, where we also describe
the Good-Turing estimator. In Section III, we establish the
convergence of the total probabilities. Section IV uses this
convergence result to show strong consistency of the Good-
Turing estimator. Some comments regarding how to estimate
other quantities of interest are made in the final section.
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II. PRELIMINARIES

Let (Ωn,Fn, Pn) be a sequence of probability spaces. We
do not assume thatΩn is finite or even countable. Our
observed string is a sequence ofn symbols drawn i.i.d. from
Ωn according toPn. Note that the alphabet and the underlying
distribution are permitted to vary withn. This allows us to
model the situation in which the block length is large while
the number of occurrences of some symbols is small.

A. Total Probabilities

For each nonnegative integerk, let An
k denote the set of

symbols inΩn that appear exactlyk times in the string of
lengthn. We call

ξnk := Pn(A
n
k )

the total probability of symbols that appeark times.
Of course, for k ≥ 1, ξnk is simply the sum of the

probabilities of the symbols with frequencyk. On the other
hand,An

0 will be uncountable ifΩn is.
We view ξnk as a random probability distribution on the

nonnegative integers. Our goal is to estimate this distribution.

B. The Good-Turing Estimator

The Good-Turing estimator is normally viewed as an es-
timator for the probabilities of the individual symbols. Let
ϕn
k = |An

k | denote the number of symbols that appear exactly
k times in the observed sequence. The basic Good-Turing
estimator assigns probability

(k + 1)ϕn
k+1

nϕn
k

to each symbol that appearsk ≤ n − 1 times [5]. The case
k = n must be handled separately, but this case is unimportant
to us since under our model it is unlikely that only one symbol
will appear in the string.

This formula can be naturally viewed as a total probability
estimator since theϕn

k in the denominator is merely dividing
the total probability equally among theϕn

k symbols that appear
k times. Thus the Good-Turing total probability estimator
assigns probability

ζnk :=
(k + 1)ϕn

k+1

n
to the aggregate of symbols that have appearedk times for
eachk in {0, . . . , n − 1}. As a convention, we shall always
assign zero probability to the set of symbols that appearn
times

ζnn := 0.

Like ξnk , ζnk is a random probability distribution on the
nonnegative integers.

As a total probability estimator,ζnk is not ideal. For one
thing,ζnk can be positive even whenAn

k is empty, in which case
ξnk is clearly zero. A similar problem arises when estimating
the probabilities of individual symbols, and modificationsto
the basic Good-Turing estimator have been proposed to avoid
it [5]. But we shall show that even the basic form of the Good-
Turing estimator is strongly consistent for total probability
estimation.

C. Shadows

The distributions of the total probability,ξnk , and the Good-
Turing estimator,ζnk , are unaffected if one relabels the symbols
in Ωn. This fact makes it convenient in what follows to
consider the probabilities assigned byPn without reference
to the labeling of the symbols.

Definition 1: Let Xn be a random variable onΩn with
distribution Pn. The shadow of Pn is defined to be the
distribution of the random variablePn({Xn}).

As an example, ifΩn = {a, b, c} and

Pn({a}) = Pn({b}) =
1

2
Pn({c}) =

1

4
,

then the shadow ofPn would be uniform over{1/4, 1/2}. If
Pn is itself uniform, then its shadow is deterministic. Note
that the discrete entropy of a distribution only depends on the
distribution through its shadow. We will writePn(Xn) as a
shorthand forPn({Xn}) in what follows.

For finite alphabets, specifying the shadow is equivalent
to specifying the unordered components ofPn, viewed as a
probability vector. This is clearly seen in the above example,
since the shadow is uniformly distributed over{1/4, 1/2} if
and only if the underlying distribution has two symbols with
probability1/4 and one with probability1/2.

If Pn has a continuous component, then the shadow will
have a point mass at zero equal to the probability of this com-
ponent. The shadow reveals nothing more about the continuous
component than its total probability, but we shall have no need
for such information. Indeed, the distributions of bothξnk and
ζnk depend onPn only through its shadow.

D. Unlikely Symbols

To prove strong consistency, we assume that the scaled
profiles,n · Pn(Xn), converge to a nonnegative random vari-
able Y with distribution Q. This implies, in particular, that
asymptotically almost every symbol has probabilityO(1/n)
and therefore appearsO(1) times in the sequence on average.
As an example, ifPn is a uniform distribution over an alphabet
of size n, then the scaled shadow,n · Pn(Xn), equals one
a.s. for eachn (and hence it converges in distribution). More
complicated examples can be constructed by quantizing a fixed
density more and more finely to generate the sequence of
distributions.

III. T OTAL PROBABILITY CONVERGENCE

Before considering the performance of the Good-Turing
estimator, we study the asymptotics of the total probabilities
themselves. Under our assumption that the scaled shadows
converge, we show that the total probabilities converge almost
surely to a deterministic Poisson mixture.

Proposition 1: The random distributionξn converges to

λk :=

∫

∞

0

yk exp(−y)

k!
dQ(y) k = 0, 1, 2, . . .

in L1 almost surely asn → ∞.
We prove this result by first showing that the mean ofξn

converges toλ and then proving concentration around the



mean. To show convergence of the mean, it is convenient to
make several definitions. Let

gnk (y) =

(

n

k

)

( y

n

)k (

1− y

n

)n−k

and

gk(y) =
yk exp(−y)

k!
.

Since
(

n

k

)

1

nk
→ 1

k!
asn → ∞

and
(

1 +
yn
n

)n

→ exp(y) if yn → y,

it follows that for all sequencesyn → y, gnk (yn) → gk(y).
Note also thatgnk (y) ≤ 1 if 0 ≤ y ≤ n by the binomial
theorem. Let

Cn = {ω ∈ Ωn : Pn(ω) > 0}
and note thatCn is countable for eachn.

Lemma 1:For all nonnegative integersk,

lim
n→∞

E[ξnk ] = λk.

Proof: We shall show that

E[ξnk ] = E[gnk (nPn(Xn))]. (1)

First consider the casek ≥ 1. Here

ξnk = Pn(A
n
k ∩Cn)

=
∑

ω∈Cn

1(ω ∈ An
k )Pn(ω)

so by monotone convergence

E[ξnk ] =
∑

ω∈Cn

(

n

k

)

Pn(ω)
k(1− Pn(ω))

n−kPn(ω)

=
∑

ω∈Cn

gnk (nPn(ω))Pn(ω)

= E[gnk (nPn(Xn))1(Xn ∈ Cn)]

= E[gnk (nPn(Xn))].

Next consider the casek = 0. Here

ξn0 = Pn(A
n
0 )

= Pn(A
n
0 ∩ Cn) + Pn(A

n
0 − Cn)

=
∑

ω∈Cn

1(ω ∈ An
0 )Pn(ω) + Pn(Ωn − Cn).

So again by monotone convergence,

E[ξn0 ] =
∑

ω∈Cn

(1− Pn(ω))
nPn(ω) + Pn(Ωn − Cn)

=
∑

ω∈Cn

gn0 (nPn(ω))Pn(ω) + Pn(Ωn − Cn)

= E[gn0 (nPn(Xn))1(X
n ∈ Cn)]

+ E[gn0 (nPn(Xn))1(Xn /∈ Cn)]

= E[gn0 (nPn(Xn))].

This establishes (1). SincenPn(Xn) converges in distribution
to Y , we can create a sequence of random variables{Yn}∞n=1

such thatYn has the same distribution asnPn(Xn) and Yn

converges toY almost surely [14, Theorem 4.30]. Then

gnk (Yn) → gk(Y ) a.s.

Since gnk (Yn) ≤ 1 a.s., the bounded convergence theorem
implies

lim
n→∞

E[gnk (Yn)] = E[gk(Y )]

=

∫

∞

0

gk(y) dQ(y) = λk.

Lemma 2:For all nonnegative integersk,

lim
n→∞

|ξnk − E[ξnk ]| = 0 a.s.

Proof: Let

Bn =

{

ω ∈ Ωn : Pn(ω) ≥
1

n3/4

}

and note that|Bn| ≤ n3/4. Then let

ξ̃nk = Pn(A
n
k ∩Bn),

and note that

|ξnk − E[ξnk ]| ≤
∣

∣

∣
(ξnk − ξ̃nk )− E[ξnk − ξ̃nk ]

∣

∣

∣
+ ξ̃nk + E[ξ̃nk ].

Now if we change one symbol in the underlying se-
quence, thenξnk − ξ̃nk can change by at most2/n3/4. By
the Azuma-Hoeffding-Bennett concentration inequality [15,
Corollary 2.4.14], it follows that for allǫ > 0

Pr
(
∣

∣

∣
(ξnk − ξ̃nk )− E[ξnk − ξ̃nk ]

∣

∣

∣
≥ ǫ

)

≤ 2 exp

[

− ǫ2
√
n

8

]

.

Since the right-hand side is summable overn, this implies that
∣

∣

∣
(ξnk − ξ̃nk )− E[ξnk − ξ̃nk ]

∣

∣

∣
→ 0 a.s.

Now
ξ̃nk =

∑

ω∈Bn

Pn(ω)1(ω ∈ An
k )

so

E[ξ̃nk ] =
∑

ω∈Bn

Pn(ω)

(

n

k

)

(Pn(ω))
k(1− Pn(ω))

n−k

≤
∑

ω∈Bn

(

n

k

)

(Pn(ω))
k(1 − Pn(ω))

n−k.

But
(

n

k

)

(Pn(ω))
k(1− Pn(ω))

n−k

= exp

[

−n

(

H

(

k

n

)

+D

(

k

n

∣

∣

∣

∣

∣

∣
Pn(ω)

))]

,

whereH(·) denotes the binary entropy function andD(·||·)
denotes binary Kullback-Leibler divergence, both with natural



logarithms [16, Theorem 12.1.2]. For all sufficiently largen,
k/n < 1/n3/4, which implies that for allω ∈ Bn,

D

(

k

n

∣

∣

∣

∣

∣

∣
Pn(ω)

)

≥ D

(

k

n

∣

∣

∣

∣

∣

∣

1

n3/4

)

.

This gives
(

n

k

)

(Pn(ω))
k(1− Pn(ω))

n−k

≤
(

n

k

)(

1

n3/4

)k (

1− 1

n3/4

)n−k

,

so

E[ξ̃nk ] ≤ n3/4

(

n

k

)(

1

n3/4

)k (

1− 1

n3/4

)n−k

.

Since
(

n

k

)

≤ nk

k!
,

this implies

E[ξ̃nk ] ≤
n(k+3)/4

k!

(

1− 1

n3/4

)n−k

. (2)

Now the right-hand side tends to zero asn → ∞, so

lim
n→0

E[ξ̃nk ] = 0.

In fact, the right-hand side of (2) is summable overn. By
Markov’s inequality,

Pr(ξ̃nk > ǫ) ≤ E[ξ̃nk ]

ǫ
,

this implies thatξ̃nk → 0 a.s. The conclusion follows.
Proof of Proposition 1:It follows from Lemmas 1 and 2

that for eachk,
lim
n→∞

ξnk = λk a.s.

That is, ξn converges pointwise toλ with probability one.
The strengthening toL1 convergence follows from Scheffé’s
theorem [17, Theorem 16.12], but we shall give a self-
contained proof since it is brief. Observe that with probability
one,

0 =
∞
∑

k=0

[λk − ξnk ]

=

∞
∑

k=0

[λk − ξnk ]
+ −

∞
∑

k=0

[λk − ξnk ]
−
,

where[·]+ and [·]− represent the positive and negative parts,
respectively. Thus

∞
∑

k=0

|λk − ξnk | = 2

∞
∑

k=0

[λk − ξnk ]
+ a.s.

But [λk−ξnk ]
+ converges pointwise to 0 a.s. and is less than or

equal toλk. The dominated convergence theorem then implies
that

lim
n→∞

∞
∑

k=0

[λk − ξnk ]
+
= 0 a.s.

IV. STRONG CONSISTENCY

The key to showing strong consistency is to establish
a convergence result for the Good-Turing estimator that is
analogous to Proposition 1 for the total probabilities.

Proposition 2: The random distributionζn converges toλ
in L1 almost surely asn → ∞.

The desired strong consistency follows from this result and
Proposition 1.

Theorem 1:The Good-Turing total probability estimator is
strongly consistent, i.e.,

lim
n→∞

n
∑

k=0

|ξnk − ζnk | = 0 a.s.

Proof: We have

n
∑

k=0

|ξnk − ζnk | ≤
∞
∑

k=0

|ξnk − λk|+
∞
∑

k=0

|λk − ζnk |.

We now letn → ∞ and invoke Propositions 1 and 2.
The proof of Proposition 2 parallels that of Proposition 1 in

the previous section. In particular, we first show that the mean
of ζn converges toλ and then establish concentration around
the mean.

Lemma 3:For all nonnegative integersk,

lim
n→∞

E[ζnk ] = λk.

Proof: We shall show that

E[ζnk ] = E[gn−1
k ((n− 1)Pn(Xn))]. (3)

First consider the casek ≥ 1. Here

ζnk =
∑

ω∈Cn

k + 1

n
1(ω ∈ An

k+1).

So by monotone convergence,

E[ζnk ] =
∑

ω∈Cn

k + 1

n

(

n

k + 1

)

(Pn(ω))
k+1(1− Pn(ω))

n−k−1

=
∑

ω∈Cn

(

n− 1

k

)

(Pn(ω))
k(1− Pn(ω))

n−k−1Pn(ω)

=
∑

ω∈Cn

gn−1
k ((n− 1)Pn(ω))Pn(ω)

= E[gn−1
k ((n− 1)Pn(Xn))1(Xn ∈ Cn)]

= E[gn−1
k ((n− 1)Pn(Xn))].

Next consider the casek = 0. Here

ζn0 =
1

n
|An

1 |

=
1

n
|An

1 ∩ Cn|+ 1

n
|An

1 − Cn|

=
1

n

∑

ω∈Cn

1(ω ∈ An
1 ) +

1

n
|An

1 − Cn|.



Again invoking monotone convergence,

E[ζn0 ] =
1

n

∑

ω∈Cn

(

n

1

)

Pn(ω)(1 − Pn(ω))
n−1

+ Pn(Ωn − Cn)

=
∑

ω∈Cn

gn−1
0 ((n− 1)Pn(ω))Pn(ω)

+ Pn(Ωn − Cn)

= E[gn−1
0 ((n− 1)Pn(Xn))1(Xn ∈ Cn)]

+ E[gn−1
0 ((n− 1)Pn(Xn))1(Xn /∈ Cn)]

= E[gn−1
0 ((n− 1)Pn(Xn))].

This establishes (3). Following the reasoning in the proof of
Lemma 1, this implies

lim
n→∞

E[ζnk ] = E[gk(Y )] = λk

for all k.
Lemma 4:For all nonnegative integersk,

lim
n→∞

|ζnk − E[ζnk ]| = 0 a.s.
Proof: Observe that if we alter one symbol in the under-

lying i.i.d. sequence, thenζnk will change by at most2(k +
1)/n. As in the proof of Lemma 2, the Azuma-Hoeffding-
Bennett concentration inequality [15, Corollary 2.4.14] then
implies that

Pr(|ζnk − E[ζnk ]| > ǫ) ≤ 2 exp

[

− ǫ2n

8(k + 1)2

]

.

Since the right-hand side is summable overn, the conclusion
follows.

Proof of Proposition 2:The result follows from Lemma 3,
Lemma 4, and Scheffé’s theorem [17, Theorem 16.12] as in
the proof of Proposition 1.

V. SHADOW ESTIMATION

Proposition 1 shows that the total probabilities converge to
a deterministic limit, which is a function of the limit of the
scaled shadows,Q. In fact, the total probabilities converge to
a Poisson mixture, withQ being the mixing distribution. The
functional form of the Poisson distribution enables us to create
a simple function of the observed string, the Good-Turing
estimator, that has the same limit as the total probabilities. In
particular, we can consistently estimate the total probabilities

without having to explicitly estimateQ.
In general, such a shortcut might not be available. It is of

interest therefore to study how to estimateQ itself from the
observed string. With an estimator forQ, one could create a
“plug-in” estimator for other quantities of interest.
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