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Abstract— We consider the problem of estimating the total In collaboration with Turing, Good [5] proposed an esti-

probability of all symbols that appear with a given frequenty mator for the probabilities of rare symbols that differs con
in a string of i.i.d. random variables with unknown distribu tion. siderably from the ML estimator. The Good-Turing estimator

We focus on the regime in which the block length is large yet no has b h ¢ K i fi 6 diti
symbol appears frequently in the string. This is accompliskd by as been shown to work well in practice [6], and it is now

allowing the distribution to change with the block length. Under  Used in several application areas [3]. Early theoreticatkwo
a natural convergence assumption on the sequence of undeilg on the estimator focused on its bias [5], [7], [8]. Recent

distributions, we show that the total probabilities convege to a work has been directed toward developing confidence inerva
deterministic limit, which we characterize. We then show tiat the 4 the estimates using central limit theorems [9], [10] or
Good-Turing total probability estimator is strongly consistent. concentration inequalities [11], [12]. Orlitsky, Santaam and
Zhang [3] showed that the estimator has a pattern redundancy
that is small but not optimal. None of these works, however,
The problem of estimating the underlying probability dishave shown that the estimator is strongly consistent.
tribution from an observed data sequence arises in a varfety We show that the Good-Turing estimator is strongly consis-
fields such as compression, adaptive control, and lingsistitent under a natural formulation of the problem. We consider
The most familiar technique is to use the empirical distitiu  the problem of estimating the total probability of all synigbo
of the data, also known as the type. This approach hi@t appeak times in the observed string for each nonnegative
a number of virtues. It is the maximum likelihood (ML)integerk. Fork = 0, this is the total probability of the unseen
distribution, and if each symbol appears frequently in theymbols, a quantity that has received particular atter{@n
string, then the law of large numbers guarantees that #1]. Estimating the total probability of all symbols withet
estimate will be close to the true distribution. same empirical frequency is a natural approach when the
In some situations, however, not all symbols will appeaymbols appear infrequently so that there is insufficietd t@a
frequently in the observed data. One example is a digitatcurately estimate the probabilities of the individuahgypls.
image with the pixels themselves, rather than bits, viewsed Although the total probabilities are themselves random, we
the symbols [1]. Here the size of the alphabet can meet sifow that under our model they converge to a deterministic
exceed the total number of observed symbols, i.e., the numbmit, which we characterize. Note that if the alphabet isaim
of pixels in the image. Another example is English text. Eveand the block length is large, then the problem effectively
in large corpora, many words will appear once or twice or ne¢éduces to the usual probability estimation problem sihé® i
at all [2]. This makes estimating the distribution of Englis unlikely that multiple symbols will have the same empirical
words using the type ineffective. This problem is particiyla frequency.
pronounced when one attempts to estimate the distribufion olt is known that the Good-Turing estimator performs poorly
bigrams, or pairs of words, since the number of bigrams fisr high-probability symbols [3], but this is not a probleinee
evidently the square of the number of words. the ML estimator can be employed to estimate the probagsiliti
To see that the empirical distribution is lacking as aaf symbols that appear frequently in the observed string. We
estimator for the probabilities of uncommon symbols, conherefore focus on the situation in which the symbols are
sider the extreme situation in which the alphabet is infinitenlikely, meaning that they have probabil®(1/»). We allow
and we observe a length-sequence containing distinct the underlying distributions to vary with the block length
symbols [3]. The ML estimator will assign probabiliy/n n in order to maintain this condition, and we assume that,
to then symbols that appear in the string and zero probabilifyroperly scaled, these distributions converge. This madslel
to the rest. But common sense suggests that(the- 1)st discussed in detail in the next section, where we also descri
symbol in the sequence is very likely to be one that has not ythe Good-Turing estimator. In Secti@nllll, we establish the
appeared. It seems that the ML estimator is overfitting tha.daconvergence of the total probabilities. Sectlad IV uses thi
Modifications to the ML estimator such as the Laplace “adtbnvergence result to show strong consistency of the Good-
one” and the Krichevsky-Trofimov “add half” [4] have beenTuring estimator. Some comments regarding how to estimate
proposed as remedies, but these only alleviate the proldgm pther quantities of interest are made in the final section.

I. INTRODUCTION
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Il. PRELIMINARIES C. Shadows

Let (Q2,,F,, P,) be a sequence of probability spaces. We The distributions of the total probability;’, and the Good-
do not assume thaf), is finite or even countable. OurTuring estimatorg;’, are unaffected if one relabels the symbols
observed string is a sequenceroymbols drawn i.i.d. from in Q,. This fact makes it convenient in what follows to
Q,, according toP,,. Note that the alphabet and the underlyingonsider the probabilities assigned 5; without reference
distribution are permitted to vary with. This allows us to to the labeling of the symbols.
model the situation in which the block length is large while Definition 1: Let X,, be a random variable of2, with
the number of occurrences of some symbols is small. distribution P,,. The shadowof P, is defined to be the
A. Total Probabilities distribution of the random variabl®, ({ X, }).

L As an example, if2,, = {a, b, c} and
For each nonnegative integér let A7 denote the set of P {a,b.¢}

symbols in(2,, that appear exactly: times in the string of P,({a}) = P,({b}) = lpn({c}) = 1,
lengthn. We call 2 4

&= Po(4y) then the shadow of, would be uniform oveq1/4,1/2}. If
P, is itself uniform, then its shadow is deterministic. Note
that the discrete entropy of a distribution only dependshen t
distribution through its shadow. We will writ&,(X,,) as a

the total probability of symbols that appeak times.
Of course, fork > 1, & is simply the sum of the

probabilities of the symbols with frequenéy On the other ;
hand, A7 will be uncountable if, is. shorthand forP,, ({X,,}) in what follows.

We view ¢ as a random probability distribution on the For finite alphabets, specifying the shadow is equivalent

nonnegative integers. Our goal is to estimate this dididbu to spe(:_|fy|ng the unqrdgred componeqtsm, viewed as a
] ] probability vector. This is clearly seen in the above exampl
B. The Good-Turing Estimator since the shadow is uniformly distributed ovir/4,1/2} if
The Good-Turing estimator is normally viewed as an esnd only if the underlying distribution has two symbols with
timator for the probabilities of the individual symbols. tLe probability 1/4 and one with probabilityl /2.
oy = |A}| denote the number of symbols that appear exactlylf P, has a continuous component, then the shadow will
k times in the observed sequence. The basic Good-Turingve a point mass at zero equal to the probability of this com-
estimator assigns probability ponent. The shadow reveals nothing more about the contnuou
(k+1)pp, component than its total probability, but we shall have neche
o for such information. Indeed, the distributions of bgthand
Pr n .
. ¢p depend onP,, only through its shadow.
to each symbol that appeaks< n — 1 times [5]. The case
k = n must be handled separately, but this case is unimport&ht Unlikely Symbols
to us since under our model it is unIiker that only one symbol To prove strong consistency, we assume that the scaled
will appear in the string. profiles,n - P, (X,,), converge to a nonnegative random vari-
This formula can be naturally viewed as a total probabilityble Y with distribution Q. This implies, in particular, that
estimator since they in the denominator is merely dividing agsymptotically almost every symbol has probabiliy1/n)
the total probability equally among the! symbols that appear and therefore appea3(1) times in the sequence on average.
k times. Thus the Good-Turing total probability estimatons an example, i, is a uniform distribution over an alphabet

assigns probability of size n, then the scaled shadow,- P,(X,), equals one
" (k+1D)ep, a.s. for eacln (and hence it converges in distribution). More
k= n complicated examples can be constructed by quantizing @ fixe

to the aggregate of symbols that have appedrdiines for density more and more finely to generate the sequence of
eachk in {0,...,n — 1}. As a convention, we shall alwaysdistributions.

assign zero probability to the set of symbols that appear 1. TOTAL PROBABILITY CONVERGENCE
Before considering the performance of the Good-Turing

times
n o .__

G =0 estimator, we study the asymptotics of the total probaddlit
Like &7, ¢ is a random probability distribution on thethemselves. Under our assumption that the scaled shadows
nonnegative integers. converge, we show that the total probabilities convergeoatm

As a total probability estimator;;’ is not ideal. For one surely to a deterministic Poisson mixture.

thing, ¢;' can be positive even whety! is empty, in which case  Proposition 1: The random distributiog” converges to
& is clearly zero. A similar problem arises when estimating ok
the probabilities of individual symbols, and modificatictos A= / vy exp(—y)
the basic Good-Turing estimator have been proposed to avoid 0 k!
it [5]. But we shall show that even the basic form of the Goodn L' almost surely as — oc.
Turing estimator is strongly consistent for total probipil We prove this result by first showing that the mean{bf
estimation. converges toA and then proving concentration around the

dQ(y) k=0,1,2,...



mean. To show convergence of the mean, it is convenientThis established11). SineeP, (X,,) converges in distribution

make several definitions. Let to Y, we can create a sequence of random variapeg 5 ,
. n\ /y\* Yk such thatY;, has the same distribution asP,(X,,) andY,,
95 (y) = (k) (ﬁ) (1 - 5) converges td” almost surely [14, Theorem 4.30]. Then
and gr(Yn) = g (Y) a.s.
_ yFexp(—y) .
gr(y) = i Since ¢7(Y,,) < 1 a.s., the bounded convergence theorem
Since ) 1 implies
n . n .
()= s Jim Blgt(¥,)] = Blge(v)]
and . ~ [ o) Q) = .
(1 + —n) —exp(y) if yn — v, 0
" O
it follows that for all sequenceg, — y, g (yn) — gk(y). Lemma 2:For all nonnegative integers
Note also thatg'(y) < 1 if 0 < y < n by the binomial .
theorem. Let Jim [ - El&][ =0 as.
Proof: Let
C" ={weQ,: P,(w) >0}
1
and note that’™ is countable for each. B" = {w € Qi Pr(w) 2 W}
Lemma 1:For all nonnegative integers
n| < 3/4.
lim B[E7] = Ar. and note thatB™| < n°/*. Then let
n—oo It
Proof: We shall show that & = Pa(Ap N BY),
E[&}] = Elgr (nPp (X)) (1) and note that
First consider the case> 1. Here l&p — Blep]| < |(&7 — €7) — Elep — €7)| + €2 + B[R
& =P(ApNnC") Now if we change one symbol in the underlying se-
— Z L(w € A?) P, (w) quence, ther¢) — ¢ can change by at most/n3/4. By
weon the Azuma-Hoeffding-Bennett concentration inequalityp,[1

so by monotone convergence Corollary 2.4.14], it follows that for alk > 0

~ ~ 2
Bl =Y (Z) Po(w)*(1 = Py(w))" %P, (w) Pr ( (& — &) — El5 — &) = e) < 2exp [—E g/ﬁ] :
weln . . . . - .
N Z G (0 Pa (@) P () Since the rlght—han~d side is sum['nable oxethis implies that
G € & - Blg - 1| -0 as.

= Elgp(nPo(X,))1(X, € C™)]

n Now
= Elgi; (P, (Xn))]- &= Puw)lweAp)
Next consider the case= 0. Here wEB™
€ = Pu(45) 5
= P, (A5 NC™) + P (A§ — C) Bl =Y Pu(w) (Z) (Po(w)*(1 = Pp(w))™ "
= ) 1w € AP)Pu(w) + Pa(Qn — C™). wEB™
ween < " P, (w))F(1 = Py(w))"F
So again by monotone convergence, a wezgn (k)( It )
El¢] = Z (1= Po(w))" Po(w) + Pn(Q2n — C™) But
weldn n e
= 3 G PA)Pa(e) + Pa(@y — C7) (k) (Pa(w))* (1= Poe))"*
weln k k
= Elgg (nPp(X,))1(X™ € C™)] = exp {—n (H (5) D (ﬁ‘ Pn(w)>)] ;

. + Blgo (nPo(Xn))1(Xn & C)] where H(-) denotes the binary entropy function arl-||-)
= Elg5 (nPn(Xy))]- denotes binary Kullback-Leibler divergence, both withunat



logarithms [16, Theorem 12.1.2]. For all sufficiently large V. STRONG CONSISTENCY

k/n < 1/n3/%, which implies that for altu € B™, _ _ _ .
/n /n P The key to showing strong consistency is to establish

D <E’ Pn(w)) >D (ﬁHL) . a convergence result for the Good-Turing estimator that is
n - nlln3/ analogous to Propositidd 1 for the total probabilities.
This gives Proposition 2: The random distributiog™ converges to\
in L* almost surely as, — oo.
(Z) (P (w))*(1 = Py (w))" " The desired strong consistency follows from this result and
. - Propositior[IL.
- (n (L) ( B L) Theorem 1:The Good-Turing total probability estimator is
— \k/) \ n3/4 n3/4 ’ strongly consistent, i.e.,
S0 k n—k n
EIE] < n?/4 (Z) (#) <1 _ #) | Tim M jer - ¢ =0 as.
k=0
Since (n) _ n_k Proof: We have
k - k" n o0 (o]
this implies Z|§7§—CQ| §Z|§Z—/\k|+2|)\k—€£|-
ey Lo\ k=0 k=0 k=0
Elg] < %l (1 - n3/4) : (2)  We now letn — oo and invoke Propositiord 1 aiidl 2. [

The proof of PropositioRl2 parallels that of Proposifién 1 in
N the previous section. In particular, we first show that theame
lim E[¢}] = 0. of ¢" converges to\ and then establish concentration around
"0 the mean.

Lemma 3:For all nonnegative integers

Now the right-hand side tends to zeroas+ oo, SO

In fact, the right-hand side ofl(2) is summable overBy
Markov’s inequality,

; E[&) lim B[]] = Ai.
e < n— 00
Prigi; > €) =< e Proof: We shall show that
this implies thalz;:,? — 0 a.s. The conclusion follows. [ n 1
Proof of PropositioIL:It follows from Lemmadll an@2 ElGk] = Elgy ((n = D) Pu (X)) )

that for eachk, First consider the case > 1. Here

lim &' =\, a.s.
That is, £€* converges pointwise ta with probability one. Gr=> —— 1w e A)-
The strengthening td.! convergence follows from Scheffé’s weon
theorem [17, Theorem 16.12], but we shall give a self, by monotone convergence,
contained proof since it is brief. Observe that with probgbi

one, N El¢;] = Z % (ki 1> (Pn(w))’“rl(l — Pn(w))n*kfl
0=3 v —&] v
= . - % (" @t Ay R
= A — 577' + . — &M , welcn
kzzo[ Lo k;[ Lo = 3 g (= DPuw) Pa(w)
weln

where[-|" and[]~ represent the positive and negative parts,
respectively. Thus

Do l=2> N -&1" as.
k=0 k=0

= Elgp((n — 1) Py (X)) 1(X,, € C™)]
= E[g?il((n - 1)Pn(Xn))]

Next consider the case = 0. Here

But [\ —&}|T converges pointwise to 0 a.s. and is less than or = 1|A"|
equal to),. The dominated convergence theorem then implies 0
1 1
that i X = —[AF N O™+ |47 - ¢
lim M —&2]" =0 as. 1 1
n~>oo: = _ 1 A" —|AT —C™|.
k=0 Z (we A7)+ n| 1 |

n
OJ weln



Again invoking monotone convergence,

B3] = % 3 (711) Pow)(1 = Py ()™

weln

+ P, (2, —C™)

= > g0 ((n—1)Py(w))Pu(w)

weln

without having to explicitly estimaté).

In general, such a shortcut might not be available. It is of
interest therefore to study how to estimapeitself from the
observed string. With an estimator f@, one could create a
“plug-in” estimator for other quantities of interest.
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Elgy™ ! ((n = )P (X)) 1(X,, € C)]
+ Elgy M (n — 1) Py (X)) 1(X ¢ C™)] [1]
= Elgg™ ((n — 1) Pu(X0))].
This established13). Following the reasoning in the prdof ol2l
Lemmall, this implies
lim E[G] = Egr(Y)] = A

n—oo

for all k. o M
Lemma 4:For all nonnegative integers 5]

nlggo Gk — B¢ =0 as. 6]
Proof: Observe that if we alter one symbol in the under-
lying i.i.d. sequence, theg; will change by at mosR(k + o
1)/n. As in the proof of Lemmdl2, the Azuma-Hoeffding-
Bennett concentration inequality [15, Corollary 2.4.1Agn
implies that (8]

(3]

627’L
n_ B¢ < _ .
Pr(|<k EKk]' > 6) - 2exp |: S(k + 1)2] (9]
Since the right-hand side is summable oxeithe conclusion (10
follows. O

Proof of PropositiofR:The result follows from LemmAl 3, [11]
Lemmal#, and Scheffé’s theorem [17, Theorem 16.12] as in
the proof of Propositiofil1. 0 2

V. SHADOW ESTIMATION [13]

Propositior L shows that the total probabilities conveme t

a deterministic limit, which is a function of the limit of the[14]
scaled shadows). In fact, the total probabilities converge t0[15]
a Poisson mixture, witld) being the mixing distribution. The
functional form of the Poisson distribution enables us &ate [16]
a simple function of the observed string, the Good—Turirt%]
estimator, that has the same limit as the total probatsilitie
particular, we can consistently estimate the total prdhisi
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